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CFTs

QFT provides an immensely powerful framework for

the description of the subatomic world, condensed
matter systems, etc.

CFTs appear in the study of
Renormalization group
+ AdS/CFT and thus gravity
» String theory
» Ciritical phenomena

How do we study conformal field theories (CFTs)?

Flow is governed

: : uv by the 8 function
One way is to view

CFTs as endpoints of
7 M B = 0 = fixed points
renormalization group

flows.
IR



Conformal Bootstrap

Bootstrap: Solve a theory simply by imposing self-consistency
conditions/constraints!

First suggested in the 1960s by Chew for the S-matrix, and by
Polyakov in the 1970s for CFTs.

The first successful numerical implementation of the method
fOI" CFTS appeal‘ed |n 2008. (Rattazzi, Rychkov, Tonni & Vichi)

The numerical conformal bootstrap:
Is non-perturbative.
Is not specific to any theory (does not need a Lagrangian).
Can be used in any spacetime dimension.
Exploits the power of conformal symmetry.
Has errors that are under control.



3D Ising Model

For the 3D Ising model everyone agrees:

* £ expansion
» ERG
Monte Carlo

Experiments

Any new computational approach to critical phenomena better
reproduce the Ising results.

The conformal bootstrap reproduces these results and in fact has
succeeded in giving the most precise determination of the critical
exponents to date!



3d Ising Model

Ising: Scaling Dimensions
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(Kos, Poland, Simmons-Duffin & Vichi, 2016)
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The bootstrap philosophy
The cubic bootstrap
Structural phase transitions

The MN bootstrap
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Operators in CFTs

In CFTs operators can be grouped into primaries and
descendants:

K,(0O0)) =0 or K, (0O(0)) = 0.
Descendants are derivatives of primaries.

Correlation functions of primary operators are severely
constrained:

Co
ojte

(O(x)0(0)) =

(01(x)02(0)) =0,
Ci23

O (x1)02(x2)O0 = ’
(01 (x1)02(x2)03(x3)) (x152) 3 (Br+82-03) (12 1 (Aa+A3=A1) ( 12)3 (B1+83-2)



Four-point Functions in CFTs

These constraints arise from the fact that with two or three

points in space one cannot write down any conformally
Invariant quantities.

This is not so with four points:
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The four-point function of primary operators in CFTs is
given in terms of an arbitrary function of u and v:

| |
v 5 (A1 =A7) ) 5 (A3—A4) U v
<O|(X|)02(X2)03(X3)04(X4)>=(—242) (_|42) , el , :
X|4 X3 (XIZZ)§(A|+A2)(X342)7(A3+A4)



Conformal Blocks

In remarkable work Dolan and Osborn computed this
function g(u, v) for scalar external operators in 2001.

Using the operator product expansion (OPE),

: Ci20
Bl x Cr0) = ; (XZ)%(A|+A2—A0) 2

one can view the four point function as a sum over
contributions of the form

0,
I \ 0 /
Ci20 Cs40
O> / \ O4

The exchanged operators can be primaries or descendants.

e

Os




Conformal Blocks

Dolan and Osborn managed to resum the contributions of
the descendants of any given primary, and determine the
dependence of the four-point function on u and v.

As a result, Conformal
blocks

/
g(uv) = ) C20C340 g0 (U:V).
0,

The conformal blocks depend on the scaling dimension and
the spin of the exchanged primary operators.

The four-point function follows from knowing all possible
exchanged primary operators.
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Crossing Symmetry

We are now ready to set up the constraint used in the
conformal bootstrap program.

It must be that

O Os O Os

S oo -
& 0O, /CIZO C340\ Oq4 < O4 e 0,

(kin. fac.) X} C120C340 go (V) = (kin. fac) X »  Cia0-Caz0r gor (v, )
0] O’

This simple constraint provides the basis of all bootstrap
analyses.

Hl



How To Extract Information

Let’s take the simple case of a CFT containing a scalar
operator ¢.

Its four-point function can be expressed in two ways:

I I I I
(P(x1)B(x2)$(x3)p(x4)) = Z)A Z 55080t V),

(X122X34

| | | | | :
(BP0 X)P08)) = ;Cgbcpaga(v, ).

Equality of the right-hand sides gives
N €L oFowy) =0, Fo(uv) =u"go(uv)-v>go(vu).
0,
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How To Extract Information: OPE Coefficients

D CloTowy) =0, Fo(uv) =u"go(uv)-v > go(vu).
0,

If our theory is unitary then
2
Css0 > 0.

Let us separate the contributions of the identity operator
and another operator Oy of interest:

T Z 2 it
O+1,0y

We can act on this equation with a linear functional a:

C 0.0 — 9T ) 000
O+1,0q
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How To Extract Information: OPE Coefficients

Coo0o)=alf)- ¥ Caf)

O+1,0q
We can now demand
a(Fo,) = | and a(Fo) = 0.
Then,
C;¢O = o) Z (positive X positive) < —a(F).

O+1,0q

If we now minimize —a (%) we have an upper bound on Cy40,!

This is an optimization problem, solved numerically on the
computer.

With this method we can obtain rigorous bounds on the
interaction strength of CFTs!
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More Information: Operator Dimensions

There is another way to write the crossing constraint:

~Fi = ), Cgo%o0-
O+l
If we act with a as before,

—a(Fi) = ), C2,,a(Fo),
O+

make some assumptions about one or more of the O’s and

demand
alt ) =1 and alfag) =0

then if such functional a exists we have a contradiction:

| —
—| = positive.

This allows us to exclude CFTs with certain operator spectra.
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Cubic CFTs in 3D

Cubic CFTs have a discrete global symmetry,
Oh =Zz3><153 254XZ2.

= 2

¢ = (61, b2, $3) :

L4
L4
L4
L4
L4

Relevant whenever we have cubic lattices, e.g. cubic magnets
like Fe or Ni.
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Cubic CFTs in 3d

Using the & expansion one can find a fixed point with cubic
symmetry, but the critical exponents are almost identical to
those of the Heisenberg model.

Heisenberg
cubic

(Kleinert & Schulte-Frohlinde, 1995)
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Bootstrapping Cubic CFTs in 3d

We will look at the four-point function
(Bi(x1)dj(x2)Pk(x3)Pi(x4)).

The OPE follows from group theory:
i X ¢j ~ 05S + X + Y + Ay
Ax
15

iz 1 ‘\\

| decoupled Ising
13t

1.2

1.1

]_ L : : : : ; : : : : ! : : : : ; ; : : : ! : : : : ! : : : : ! : : : : { A(b
0.5 0.505 0.51 0.515 0.52 0.525 0.53 0.535

(AS,2018)
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Bootstrapping Cubic CFTs in 3d

Let us now consider the system of four-point functions

(@i(x1)9j(x2) Pk (x3)Pi(X4)),
(@i(x1) Xk (x2)P1(x3)Xmn(x4)),
(Xij(x1)Xia(x2)Xmn (x3) Xpq(x4)) .

We will assume that the dimension of X lies on the bound.
This is now a much bigger numerical optimization problem.
In order to make progress we need to make assumptions.

It turns out that it is important to limit the number of relevant
operators.
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Bootstrapping Cubic CFTs in 3d

AX/>3
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(Kousvos & AS, 2018)
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Bootstrapping Cubic CFTs in 3d
Axr,Agr =3

1.2

1_1577::::}::::}::::}::::}::::}::::}::::}::::}::::}:: A¢
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(Kousvos & AS, 2018)
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Bootstrapping Cubic CFTs in 3d

Axr > 3, Agr > 3.8
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13
128
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1.24 |
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(Kousvos & AS, 2018)
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Bootstrapping Cubic CFTs in 3d

Ag

1.34

Lz | The presence of the island
= indicates that we found a
very special solution to the
crossing equation.

15284

1.26 |

1.24 ¢

129 | : ; | ; ; ; .
MEE E ol bl < 057 5 Db0l 0520 & 05235 0:624= 0525

The critical exponents obtained differ significantly from those
of the & expansion:

B ~0.308+0.002, v =~ 0.594+0.004,
B ~ 0368, ¥ ~0.709.

Does the & expansion fail, or have we found a new CFT?
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Structural Phase Transitions

In many crystals the crystallographic structure changes at some
critical temperature.

This happens usually in a discontinuous way, but there are
cases where the transition is continuous.

In fact, Landau developed his theory of phase transitions in the
late 1930s motivated by continuous structural phase transitions.

In structural phase transitions the symmetry of the two phases
is different, contrary to the case of liquid/gas transitions.

The thermodynamic state of the system in either phase becomes
the common state at the transition point (no equilibrium of two
distinct phases).

One phase must have higher symmetry than the other.The smaller
symmetry group is a subgroup of the bigger one.
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Perovskites

ABX3

25



T~ 105K

Symmetry breaking:
O}, =ZzB><IS3 = Sa X7y > Bur = Da X7,
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SrTiO3

Measurements:
B =033 002 063 +00/
(Muller & Berlinger, 1971) (von Waldkirch, Miller, Berlinger & Thomas, 1972)
Bootstrap:

B =—0308-+0002, v=0594+0004

The same critical exponent 8 has been measured in the
ferromagnetic phase transition of EusS. elier & Benedek, 1965)

Clear goal: get better experimental results for the critical
exponents.
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MN Theories

Symmetry group: MN,, , = O(m)" < §,

In the £ expansion we have a two-coupling theory:

V=022 +gl(@F +- + @22+ + (B iy + o + OB

0(2)* x S, : Describes NbO,, Ho, Dy, Tb

0(2)? < S : Describes K,IrClg, TbD,, Nd
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MN Theories
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MN Theories
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MN Theories
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MN Theories

MNs 3

3.9 | second kink
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0(2)* < S,

Experiments:

NbO, Ho and Dy Tb
e 0.40i8'8‘71 B =0.39(4) £ =0.23(4)
' v = 0.57(4) y=0.53(4)

Perturbative methods:

B=0370. v=07]5

Bootstrap:
b —0.293(3) B =0.355(5)
v = 0.566(6) v = 0.576(8)
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0(2)3 = S3

Experiments:

Nd
B =0.36(2)

Perturbative methods:

B~0363. v~0./702

Bootstrap:
b = 03501(3) B = 0.394(5)
v = 0.581(6) v = 0.590(8)
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Summary

The numerical conformal bootstrap provides a widely-
applicable and robust method for the study of CFTs.

There is a host of experimental results pertaining to
structural and other types of phase transitions that have no
theoretical explanation yet.

The conformal bootstrap has suggested the existence of
previously undiscovered CFTs with potential relevance to
structural and other phase transitions.

Are there other new nonperturbative universality classes
relevant for physical systems?

Thank you!
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