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Motivation:

Quantum gravity has power law UV divergences, which
are discarded in dimensional regularisation but which
are crucial in defining a perturbative continuum limit.

Need to make these visible by UV regularisation A. This
breaks diffeomorphism (BRST) invariance. Then:

Need to distinguish between breaking by the
regularisation and breaking which is inherent to the
quantisation.

Need to develop streamlined procedures for solving for
physical amplitudes when BRST invariance is (only)
broken by the cutoff.
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A flows to the UV:

Standard assumption: D
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Wilsonian effective action:
UV cutoff function K (p?/A*%)
S =50+ 571 /
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Free BRST transformations: Qo gbA . RAB ¢B

Full BRST transformations: ngA = (¢A, ) Kgé;
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Wilsonian effective action:

Quantum Master Equation: ="
= 2(5,5) — AS
Polchinski Equation:
S aAs_,AAaBSI L) ANABgE D, St =164[ST, St] — a1]S1)

IR cutoff propagator K =1 — K

Compatibility: Y = 57,0 — G112

The gauge invariant surface is an invariant subspace:
once youTre in you never leave...
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Flows to the UV:

Standard assumption: pifie

onc2 vourz in you navar lzava...




Legendre effective action:

Legendre transformation:
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with IR cutoff A




Legendre effective action:

Effective average action:
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These give modified Slavnov-Taylor identities
U Ellwanger, Phys Lett B335 (1994) 364

= Zinn-Justin identities as A—0



Legendre effective action:

Gives direct access to physics in limit A—=>0
Is one-particle irreducible

But BRST invariance obscured at A>O:

a —1
3 = LD, TRy (mﬁ) [1 s AF_SQ)} )

Wilsonian effective action:

Is entirely equivalent

UV regularisation makes A well defined
Unbroken quantum BRST invariance: 3 = 1(S,5)— AS =0
But AS #0 leads to A-dependent mass terms etc..



In interacting case neither equation has local solufions:

» UV cutoff function K (p? /A?)

(S,9) — AS =0
i —1
(D) —T¥ (Krf) [1 & AFP] )

N[— DN

2.
D

so no local bare action that satisfies reqularised QME or mST

But dont need a bare action.
Can solve these equations directly for the
renormalized trajectory to all orders in
derivative expansion.



Many explicit examples at tree-level & 1 loop in:

Y Igarashi, K Itoh & TRM, 1904.08231, fo be publ in Prog. Theor. Exp. Phys.

Here concentrate on general framework...
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Figure 5.1; Onuloop vertioes in 'y, In gauge invariant basis. A® also plays the rile of the antighost.

The one-loop vertices as a whole have to satisfy the mST identities (3.43). Apart from the

freedom to choose the imtegration constants according to (4.11), there i ro further Sexibility, and
thus the body of such a solution (3.42), us defined by the momentum integrals, must already satisfy
these mST identitics as we noted in C4 and at the end of sec. 3.5, and will confirm shortly, We

can write the vertioes as

s e/ AP AG). AN T2 p.q.7) ./ AL (p)[ALg). C{r)I T (p, q.7)
PAT P,
«/ CPICERICH T (g, r), (5.24)
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where {2:)‘6{;; +q+r) 1 understood to be included in the mensure. The correction ternms ot

mST can similarly be written:
Tr (- KT3, ATy, + KT AR Ar")
/ Clp)[A.l), Au(r)] A :,“}/ q,r)+ / -1;:p}('3q)(.'{r}A:.'v"'!:p.q,r). (5.25)
ar oAy
We compute that
(T1,T3) = —iCa {({AL C) + A -8,A,, A]) BOC + 8,ALBC? — A, AuiA,,C]) . (5.26)
and thus for example from the A*CC part of (3.43) we find one must have:
I, q,7) 4+ 2. T2 (1, g, 1) = ~Ca [pB(p) + r.Blr)] + A Cp.q.7). (5.27)

The A-integration constants satisfy the LHS alone and correspond to the freedom to change the
normalization of the bracketed pair in (4.11). The rest of the above oquation can be viewed as
defining the longitudinal part T2 (p, ¢, 7) Pl () of AAC vertex. Similarly, other mST relations

define either longitudinal or transverse parts, vin QpA, or @ A}, respectively.
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mspau..g fig. 5.1, we sce that there is only ooe diagram that contributes to ("b’ nxcr in
H 11). This is therefore the casiost way to extract 3, which in tum will give us the um\k‘o
S-function. We find: \z\“
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To extract the 5-function, we absorb the Z; ' in (4.11) into the coupling t
b,
.
gA) =g =2 g, (5.29) 2
i
which thus runs. To one loop, the S-function is then /
&/
7
S(g) = Adyg{A) #A) = 5, 9(A), (5.30) /,’3
_ /7
where from (5.28), (5.17) and (5.12) we recover the famous result, here as a flow in A2 x/‘
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T‘:.n:’e- .S'u.w diagrams that contribute to the AAC vertex in (411
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where the propagators are all evaluated at g. The end result agroes with (5.25) and thas again we get
the famous one-loop 5 function coeflicient (5.31). Verification of the wavefunction renormalization
dependence of the other vertices in (4.11) proceeds in & similar if somewhat longer fashion. We
note that through such relations, of. (5.12), (5.17), (5.258) and (5.32), we can confirm that the
Slavnov-Taylor identities (4.23) are indeed satisfied.

We finish by confirming explicitly that the body of the momentum integrals do sutomatically

satisfy (5.27). The AC vertex in (3.39), of. (5.13), can be written as
CiA A8 AC. (5.33)

As we bave seen, care 8 needed in defining the integration constant Bod, in this vertex, but here
we will be interested in putting this to one side and demonstrating that the bulk of the integral

The S function under flow i A, specalied] 10 SUT) aod Foytonan-gauge, was comnputed m ool 58

42



Wilsonian effective action: operators
0,9

Koszul-Tate charge: Q ¢% = (¢%,9) = _KW

If S+c0O satishes > =0: s@F=1)

O = (s <A e - AMD

Therefore: O =35K=(K,5)— AK satishes > =0

But this just corresponds to field and source redefinitions:
0, IC 0K
0d% D

Therefore want: sO =0 such that O #sK

L e A regularised
Quantum BRST cohomology & derivative expansion

Spt = —cK

0y = eK




Renormalized trajectory inside > =0
> = ag[St, 2] =ta; 2

Fixed point inside is not enough

E.g. Gaussian fixed point...

Sy =0T P

¥ =30 = 2(50,50) — ASp =0



Renormalized trajectory inside > =0
Z:aO[SI,Z]—al[Z] S]Z%ao[S[,S]]—al[S[]

Eigenoperators inside (are not enough)
>, = S() s gSl

Eigenoperator eqn:
S1 = —&1[51]

General soln is
expansion over
eigenoperators
with constant
coefficients.

/

(close to fixed point)




Renormalized trajectory inside > =0
Z:aO[SI,Z]—al[Z] S]Z%ao[S[,S]]—al[S[]

Eigenoperators inside (are not enough)
S =050+9g51 X=X+ g2

Eigenoperator eqn:
S1 = —&1[51]

General soln is
expansion over
eigenoperators
with constant
coefficients.

/

(close to fixed point)

So=2Qo P e
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(close to fixed point)

So=2Qo P e

31 = 509 S satishies
21 — —al[El]




Renormalized trajectory inside > =0
Z:aO[SI,Z]—al[Z] S]Z%ao[S[,S]]—al[S[]

Eigenoperators inside (are not enough)
S =050+9g51 X=X+ g2

Eigenoperator eqn:
S1 = —&1[51]

General soln is
expansion over
eigenoperators
__ with constant
7 coefficients.

(close to fixed point)

So=2Qo P e

31 = 509 S satishies
21 — —al[El]

/

Quantum BRST cohomology in this space



Renormalized trajectory inside > =0
n—1
. 1
ik SO —|—951 —I—QQSQ il Sn M 5 Z aO[Sn—mas’m] R al[Sn]

(close to fixed point) i

T EO = gzl 1 9222 Z CL() n— ma e al[zn]



Renormalized trajectory inside > =0

n—1

: 1
S=S0+gS1+g°S2+ - =23 aolSu-m,Sm] = @[S

(close to fixed point) L

INEEDI 9222 M = a

If QME already solved up to < =0
then Zn — —&1[En]



Renormalized trajectory inside > =0

n—1

: 1
S=S0+gS1+g°S2+ - =23 aolSu-m,Sm] = @[S

(close to fixed point) =]

INEEDI 9222 M = ar
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then Zn — —&1[En]

—> 2., can only be violated by a
linear combination of eigenoperators



Renormalized trajectory inside > =0

n—1

: 1
S=S0+gS1+g°S2+ - =23 aolSu-m,Sm] = @[S

(close to fixed point) L

INEEDI 9222 M = ar

If QME already solved up to < =0
then Zn — —&1[En]

—> 2, can only be violated by a
i linear combination of eigenoperators

5 D (Sn—m, Sm)

=l




Renormalized trajectory inside > =0
1
1

S=So+gSi+ g S+ 8y == @S, Sml —ar[Sa
(close to fixed point) "
D, — 0N gzl 1 9222 Z CLO n— ma e al[zn]

If QME already solved up to < =0
then Zn — —&1[Zn]

—> 2., can only be violated by a
linear combination of eigenoperators

1 —1
S =80 Sp + QM

™~ fo be repaired by a
linear combination of eigenoperators




Renormalized trajectory inside > =0

n—1
i - 2 o oltle = i i 1
S=5+951+g°S+- 8, = 5;1%[5”_%5”7,] =1[Sy,)
T EO = gzl 1 9222 Z CI,() n— ma e al[zn]

follows from perturbative development of
the BRST cohomology

—= Y G only be violated by a
linear combination of eigenoperators

_SOS _I_ E n mv

’ro be repaired by a
linear combination of eigenoperators




Renormalized trajectory inside > =0

Only freedom is to change coeffs in linear sum over
eigenoperators

Soln of flow eqn (body of the physical amplitudes)
guaranteed correct up fo this
linear combination of eigenoperators

Fix remaining freedom with renormalization
conditions

Causes coupling constants to run.



Loop expansion
space-time dimension

Eigenoperator eqn: Sy —a}%]

Relevant operators built from local tferms with dimensibn < 4

Only freedom is in these consfarnL local terms
(counter-terms)

N.B. derivative expansion property at finite A, crucial.



Legendre effective action

Effective average action:
[ =Lg+T;, 3Ty = s DAl & &% R 07

0.2 dpilee 0.2 |
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Yang-Mills ~ 2tr / e
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Yang-Mills 2131”/"}

(@A) + A 4@
—
Qo Ay = 8,0, i OSATS A L 0,0 AWM Ct L. A
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Ghost numbers
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Yang-Mills 2131”/"}
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Yang-Mills 2131”/"}

To = L(AuA0) = L (@4)’ & 4 @i
+1 e
Qo A, =0,C, * QEdl =§LA4 T 0, 0. AW 1 (¢ —=u). 4"
0 l

Ghost numbers



Yang-Mills 2131”/"}

To = L(AuA0) = L (@4)’ & 4 @i
+1 e
Qo A, = 0,C. i 0BAT T A 0,0 4T Ct . 48
0 1

Ghost numbers



Yang-Mills 2131”/"}

To = L(AuA0) = L (@4)’ & 4 @i
+1 +1 i =1
Qo Ay = 0.0, #Tiadl =ERALE 0, 0. AW (= =) 4
0 1

Ghost numbers



Yang-Mills 2131”/"}

To = L(AuA0) = L (@4)’ & 4 @i
+1 +1 i =1
Qo Ay = 0.0, #Tiadl =ERALE 0, 0. AW (= =) 4
0 1 -2

Ghost numbers



Yang-Mills 2131"/"}

To = L(AuA0) = L (@4)’ & 4 @i
+1 +1 7 -1
Qo Ay = 0,0, Qad; =834, % 70,,0- 44 . CE =20 A
0 1 2

Ghost numbers Dimension



Yang-Mills 2131"/"}

. L0400 = L (@4)° & A i

.|.

+1 +1 7 -1

Qo Ay = 0.0, #Tiadl =ERALE 0, 0. AW (= =) 4
0 1 -2

Ghost numbers Dimension



Yang-Mills  2tr / an

2
- To=3(0u4))" - 3 (0-4) + 4,0,C 7
+
QA =0,C, Qi =DA,~0,04, Q3O =-b.4
0, | 4]

Ghost numbers Dimension



Yang-Mills ek
2
[o=1(8,4.)° - 1(8-4)° + A30,C
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Qo Ay = 0,0, Qad; =834, % 70,,0- 44 . CE =20 A
0 1 )

Ghost numbers Dimension



Yang-Mills ek
2
[o=1(8,4.)° - 1(8-4)° + A30,C
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Qo Ay = 0,0, Qad; =834, % 70,,0- 44 . CE =20 A
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Ghost numbers Dimension



Yang-Mills ek
2
[o=1(8,4.)° - 1(8-4)° + A30,C
+1 +1 |
+1 +1 G 2
QoA =0,C, » Qad;, =84, 0,0 A8 #OC* =—0-A"
0 | -2
Ghost numbers Dimension Anti-field number:

treats pieces differently!



Yang-Mills ek
2
o = § (Buds)’ — § (8-4)° + A10,0
+1 +1 1
+1 +1 G 2
Qo Ay — 0 Q(}AZ — &4 " 0,0 44 Qg C" =—0-A"
+0' 0 ] L =2
0 0
Ghost numbers Dimension Anti-field number:

treats pieces differently!



Yang-Mills ek
2
[o=1(8,4.)° - 1(8-4)° + A30,C
+1 +1 1
+1 +1 G 2
Qo Ay = 0.0, #Tiadl =ERALE 0, 0. AW (= =) 4
+0 O ] L -g
0, 0,
Ghost numbers Dimension Anti-field number:

treats pieces differently!



Yang-Mills ek
2
[o=1(8,4.)° - 1(8-4)° + A30,C
+1 +1 1
+1 +1 e 2
QoA, =0,C, Qaed, — AL 0,0. 44 Qo C* =—0-A7
+0 O 1 -1 1 -g
0 0 .
Ghost numbers  Dimension Anti-field number:
treats pieces differently!
S0l =10

Want a solution up to I'i —= I'1 + 50K



Yang-Mills ik
2
[o=1(0,4,)° —1(0-4)" + A%9,0
+1 +1 1
+1 &1 A 2
QOA,u:au,Cy QSAZ: AM—(‘?M(?A, Qac* — _0-A"
+0' 0 1 1 1 -2
0 0 e
Ghost numbers Dimension Anti-field number:
j treats pieces differently!
S0 Fl —1

Want a solution up to  I'1 — I'y + 3&C

But £ must be A independent, max dimension 3,
ghost number -1, and have 3 fields!



Yang-Mills ek
2
[o=1(8,4.)° - 1(8-4)° + A30,C
+1 +1 1
+1 +1 e e 2
Qo Ay = 0.0, #Tiadl =ERALE 0, 0. AW (= =) 4
+0 O | -1 1 -2
0 0 | e
Anti-field number:

Ghost numbers  Dimension
not conserved by
501 =0 action!
For same reasons, I'1 has maximum anti-field number 2
where it is unique: ~ I'{ = —iC*C”
Thus: [ e
is the unique extension of Maxwell theory



QQ A'u — 8MC’, QSAZ i A,u P @’u@.A, Qac* A

$50T1=(Qo+Qy)r1 =0 [ == C-
Descendents:

QT =
Qol'; = —Q, I
i0-A*C? = —1A7{0,C,C} = —iA;{QoA,, C} = iQo (A}[A,, O))

—> Iy = —iA}[A,,C] unique ‘deformation’ to A*D,C
Qol'l = —Q Ty

— I!=-i9,A,[A,,A)]  unique cubic interaction



QQ A'u — 8MC’, QSAZ i A,u P @’u@.A, Qac* A

$50T1=(Qo+Qy)r1 =0 [ == C-
Descendents:

Qe =0i. N8
QoT'; = —Qp Ty
i0-A*C? = —1A7{0,C,C} = —iA;{QoA,, C} = iQo (A}[A,, O))
—> Iy = —iA}[A,,C] unique ‘deformation’ to A*D,C
Qol'7 = —Qy T}
— I!=-i9,A,[A,,A)]  unique cubic interaction

soT2,c0 = (Qo+ Qg )20 =—2(T1,T'1) = Qo (—i[AWAu]Z)
unique quartic inferaction



QQ A'u — 8HC, QSAZ == A,u s 6’“8.14’ Qac* A

Define coupling to be coefficient of unique:
g(A) Ty = Z (A)grl

Only other possibility are so-closed two-point vertices.

Uniquely two options:
124(Qo + Q7)) (A5 4,) = 324 { (BuAL) — (B-4)° + 124470,C
s20(Qo + Qg )(C*C) = 520 A}0,C

But these are so-exact, so just canonical reparametrisation:
1

K = Z2 o 80

O ; 0,

dF = = K@, D]

(?“)



1 1 1 1

Ap=Z3 A0y, A,=Z,%A%,, C=Z3Cy, C"=2Z5°Cp,

Thus RG flow generates flow in the freely variable parts:

a7 el
%ZJZlAu(_ 5W—|—8M3,/)AV 2 ZElZCQA;auC

1 53
— 192, 252 (C*C* + A} [A,, Oy = i9Z, 224 20, A [Ay, A

1 2:r7—=2 r7y—2 2
: | " Zg Zg ZA [AWAV]
Standard parameterisation:
A I ! 3 1
73 =Z4', s = L4575 i AR 2 S N = 77

Tiie. 7y

1
- =1 - —Ee N Slavnov-Tavlor identities!
Z3 Z3 Zl g—A Y



Conclusions.

@ Despite breaking by cutoff BRST invariance
still very much present in flow equation.

@ Regularisation of A plus existence of
derivative expansion, defines quantum BRST
cohomology.

@ Together yields a formalism that is still
elegant and not much harder than Dim Reg.



