Constraining BSM models by nonperturbative Higgs physics

René Sondenheimer

Institute of Physics Karl-Franzens-University Graz

in collaboration with A. Maas and P. Törek

FRGIM 2019, September 19th 2019

German Research Foundation

Standard recipe to compute the mass spectrum of a BEH theory:

Standard recipe to compute the mass spectrum of a BEH theory:

$$\phi(x) = v + \varphi(x)$$

Standard recipe to compute the mass spectrum of a BEH theory:

• Nontrivial minimum of the potential

 $\bullet\,$ Inserting split into Lagrangian $\rightarrow\,$ mass term for gauge bosons

Standard recipe to compute the mass spectrum of a BEH theory:

• Nontrivial minimum of the potential

$$\phi(\mathbf{x}) = \mathbf{v} + \varphi(\mathbf{x})$$

...

• Inserting split into Lagrangian \to mass term for gauge bosons • ${\rm SU}(2){:}~3$ massive gauge bosons +~1 massive Higgs

Standard recipe to compute the mass spectrum of a BEH theory:

$$\phi(x) = v + \varphi(x)$$

- $\bullet\,$ Inserting split into Lagrangian $\rightarrow\,$ mass term for gauge bosons
- SU(2): 3 massive gauge bosons + 1 massive Higgs
- Successful phenomenological description of electroweak physics

Standard recipe to compute the mass spectrum of a BEH theory:

$$\phi(x) = v + \varphi(x)$$

- $\bullet\,$ Inserting split into Lagrangian $\rightarrow\,$ mass term for gauge bosons
- SU(2): 3 massive gauge bosons + 1 massive Higgs
- Successful phenomenological description of electroweak physics
- same number of states also seen in lattice computations [Shrock'85-88, Maas'12, Maas&Mufti'13]

Standard recipe to compute the mass spectrum of a BEH theory:

$$\phi(x) = v + \varphi(x)$$

- $\bullet\,$ Inserting split into Lagrangian $\rightarrow\,$ mass term for gauge bosons
- SU(2): 3 massive gauge bosons + 1 massive Higgs
- Successful phenomenological description of electroweak physics
- same number of states also seen in lattice computations [Shrock'85-88, Maas'12, Maas&Mufti'13]
- BUT! Mismatch to lattice computations for SU(3) [Maas&Törek'16,'18]

BEH physics - SU(3) with fundamental scalars

- Conventional perspective: $SU(3) \rightarrow SU(2)$
- Mismatch conventional analysis vs lattice spectrum:

elementary fields

[Maas&Törek '16,'18]

BEH physics - SU(3) with fundamental scalars

- Conventional perspective: $SU(3) \rightarrow SU(2)$
- Mismatch conventional analysis vs lattice spectrum:

[Maas&Törek '16,'18]

BEH physics - SU(3) with fundamental scalars

- Conventional perspective: $SU(3) \rightarrow SU(2)$
- Mismatch conventional analysis vs lattice spectrum:

[Maas&Törek '16,'18]

• Physical observable is gauge invariant!

- Physical observable is gauge invariant!
- Gribov-Singer ambiguity

- Physical observable is gauge invariant!
- Gribov-Singer ambiguity
- No observable non-Abelian gauge charge [Lavelle&McMullan'97, Ilderton et al. '07, Heinzl et al. '08]

- Physical observable is gauge invariant!
- Gribov-Singer ambiguity
- No observable non-Abelian gauge charge [Lavelle&McMullan'97, Ilderton et al. '07, Heinzl et al. '08]
- Spontaneous symmetry breaking vs Elitzurs theorem
 - \rightarrow Higgs VEV is not a suitable order parameter (gauge-dependent)

- Physical observable is gauge invariant!
- Gribov-Singer ambiguity
- No observable non-Abelian gauge charge [Lavelle&McMullan'97, Ilderton et al. '07, Heinzl et al. '08]
- Spontaneous symmetry breaking vs Elitzurs theorem
 → Higgs VEV is not a suitable order parameter (gauge-dependent)
- Spectrum qualitatively the same in QCD and Higgs-like region [Osterwalder&Seiler'78, Fradkin&Shenker'79]

- Physical observable is gauge invariant!
- Gribov-Singer ambiguity
- No observable non-Abelian gauge charge [Lavelle&McMullan'97, Ilderton et al. '07, Heinzl et al. '08]
- Spontaneous symmetry breaking vs Elitzurs theorem
 → Higgs VEV is not a suitable order parameter (gauge-dependent)
- Spectrum qualitatively the same in QCD and Higgs-like region [Osterwalder&Seiler'78, Fradkin&Shenker'79]
- \Rightarrow Rethinking of the particle spectrum!

1. Construct a gauge-invariante operator

 $\mathcal{O}(x) = (\phi^{\dagger}\phi)(x)$

1. Construct a gauge-invariante operator

 $\mathcal{O}(x) = (\phi^{\dagger}\phi)(x)$

2. Choose a gauge which allows for a nonvanishing VEV

1. Construct a gauge-invariante operator

 $\mathcal{O}(x) = (\phi^{\dagger}\phi)(x)$

- 2. Choose a gauge which allows for a nonvanishing VEV
- 3. Expand Higgs field in correlator in fluctuations around the vev $\langle (\phi^{\dagger}\phi)(x) (\phi^{\dagger}\phi)(y) \rangle = v^{4} + v^{3} \langle \varphi \rangle + v^{2} \langle \varphi^{2} \rangle + v \langle \varphi^{3} \rangle + \langle \varphi^{4} \rangle$

1. Construct a gauge-invariante operator

 $\mathcal{O}(x) = (\phi^{\dagger}\phi)(x)$

- $2. \ \mbox{Choose}$ a gauge which allows for a nonvanishing VEV
- 3. Expand Higgs field in correlator in fluctuations around the vev $\langle (\phi^{\dagger}\phi)(x) (\phi^{\dagger}\phi)(y) \rangle = v^{4} + v^{3} \langle \varphi \rangle + v^{2} \langle \varphi^{2} \rangle + v \langle \varphi^{3} \rangle + \langle \varphi^{4} \rangle$
- 4. Perform standard perturbation theory on the right-hand side $\langle (\phi^{\dagger}\phi)(x) (\phi^{\dagger}\phi)(y) \rangle = v^2 \langle h(x)h(y) \rangle + \langle h(x)h(y) \rangle^2 + \mathcal{O}(g,\lambda)$

1. Construct a gauge-invariante operator

 $\mathcal{O}(x) = (\phi^{\dagger}\phi)(x)$

- 2. Choose a gauge which allows for a nonvanishing VEV
- 3. Expand Higgs field in correlator in fluctuations around the vev $\langle (\phi^{\dagger}\phi)(x) (\phi^{\dagger}\phi)(y) \rangle = v^{4} + v^{3} \langle \varphi \rangle + v^{2} \langle \varphi^{2} \rangle + v \langle \varphi^{3} \rangle + \langle \varphi^{4} \rangle$
- 4. Perform standard perturbation theory on the right-hand side $\langle (\phi^{\dagger}\phi)(x) (\phi^{\dagger}\phi)(y) \rangle = v^{2} \langle h(x)h(y) \rangle + \langle h(x)h(y) \rangle^{2} + \mathcal{O}(g,\lambda)$
- 5. Compare poles on both sides

1. Construct a gauge-invariante operator

 $\mathcal{O}(x) = (\phi^{\dagger}\phi)(x)$

- 2. Choose a gauge which allows for a nonvanishing VEV
- 3. Expand Higgs field in correlator in fluctuations around the vev $\langle (\phi^{\dagger}\phi)(x) (\phi^{\dagger}\phi)(y) \rangle = v^{4} + v^{3} \langle \varphi \rangle + v^{2} \langle \varphi^{2} \rangle + v \langle \varphi^{3} \rangle + \langle \varphi^{4} \rangle$
- 4. Perform standard perturbation theory on the right-hand side $\langle (\phi^{\dagger}\phi)(x) (\phi^{\dagger}\phi)(y) \rangle = v^2 \langle h(x)h(y) \rangle + \langle h(x)h(y) \rangle^2 + \mathcal{O}(g,\lambda)$
- 5. Compare poles on both sides
 - Confirmed on the lattice for SU(2)-Higgs theory [Maas'12]

$$\mathcal{L} = -rac{1}{4} W_{i\,\mu
u} W^{\mu
u}_i + (D_\mu \phi)^\dagger D^\mu \phi - U(\phi^\dagger \phi)$$

$$\mathcal{L} = -rac{1}{4} W_{i\,\mu
u} W^{\mu
u}_i + (D_\mu \phi)^\dagger D^\mu \phi - U(\phi^\dagger \phi)$$

• Strict gauge-invariant description of the Higgs $\langle \phi^{\dagger}\phi\,\phi^{\dagger}\phi \rangle \simeq \langle hh
angle + \cdots$

$$\mathcal{L} = -\frac{1}{4} W_{i\,\mu\nu} W_i^{\mu\nu} + (D_\mu \phi)^{\dagger} D^\mu \phi - U(\phi^{\dagger} \phi)$$

- Strict gauge-invariant description of the Higgs $\langle \phi^{\dagger}\phi\,\phi^{\dagger}\phi\rangle\simeq\langle hh
 angle+\cdots$
- Triplet of gauge bosons?

$$\mathcal{L} = -\frac{1}{4} W_{i\,\mu\nu} W_i^{\mu\nu} + (D_\mu \phi)^{\dagger} D^\mu \phi - U(\phi^{\dagger} \phi)$$

- Strict gauge-invariant description of the Higgs $\langle \phi^{\dagger}\phi\,\phi^{\dagger}\phi\rangle\simeq\langle hh
 angle+\cdots$
- Triplet of gauge bosons?
- Local SU(2)_L Symmetry: $W_{\mu} \rightarrow \alpha W_{\mu} \alpha^{-1} \frac{\mathrm{i}}{g} (\partial_{\mu} \alpha) \alpha^{-1}, \quad \phi \rightarrow \alpha \phi$

$$\mathcal{L} = -rac{1}{4} W_{i\,\mu
u} W^{\mu
u}_i + (D_\mu \phi)^\dagger D^\mu \phi - U(\phi^\dagger \phi)$$

- Strict gauge-invariant description of the Higgs $\langle \phi^{\dagger}\phi\,\phi^{\dagger}\phi \rangle \simeq \langle hh
 angle + \cdots$
- Triplet of gauge bosons?
- Local SU(2)_L Symmetry: $W_{\mu} \rightarrow \alpha W_{\mu} \alpha^{-1} \frac{\mathrm{i}}{g} (\partial_{\mu} \alpha) \alpha^{-1}, \quad \phi \rightarrow \alpha \phi$
- \bullet Additional global ${\rm SU}(2)_{\rm cust.}$ symmetry

$$W_\mu(x) o W_\mu(x), \qquad \phi(x) o a\phi(x) + b\phi^*(x)$$

$$\mathcal{L} = -rac{1}{4} W_{i\,\mu
u} W^{\mu
u}_i + (D_\mu \phi)^\dagger D^\mu \phi - U(\phi^\dagger \phi)$$

- Strict gauge-invariant description of the Higgs $\langle \phi^{\dagger}\phi\,\phi^{\dagger}\phi \rangle \simeq \langle hh
 angle + \cdots$
- Triplet of gauge bosons?
- Local SU(2)_L Symmetry: $W_{\mu} \rightarrow \alpha W_{\mu} \alpha^{-1} \frac{\mathrm{i}}{g} (\partial_{\mu} \alpha) \alpha^{-1}, \quad \phi \rightarrow \alpha \phi$
- \bullet Additional global ${\rm SU}(2)_{\rm cust.}$ symmetry

$$W_{\mu}(x)
ightarrow W_{\mu}(x), \qquad \phi(x)
ightarrow a\phi(x) + b\phi^{*}(x)$$

Possible to construct custodial vector triplet
 → expands to elementary gauge triplet in leading order

$$\mathcal{L} = -\frac{1}{4} W_{i\,\mu\nu} W_i^{\mu\nu} + (D_\mu \phi)^{\dagger} D^\mu \phi - U(\phi^{\dagger} \phi)$$

- Strict gauge-invariant description of the Higgs $\langle \phi^{\dagger}\phi\,\phi^{\dagger}\phi \rangle \simeq \langle hh
 angle + \cdots$
- Triplet of gauge bosons?
- Local SU(2)_L Symmetry: $W_{\mu} \rightarrow \alpha W_{\mu} \alpha^{-1} \frac{\mathrm{i}}{g} (\partial_{\mu} \alpha) \alpha^{-1}, \quad \phi \rightarrow \alpha \phi$
- \bullet Additional global ${\rm SU}(2)_{\rm cust.}$ symmetry

$$W_{\mu}(x)
ightarrow W_{\mu}(x), \qquad \phi(x)
ightarrow a\phi(x) + b\phi^{*}(x)$$

- Possible to construct custodial vector triplet
 → expands to elementary gauge triplet in leading order
- Similar considerations for left-handed fermion doublets

$$\mathcal{L} = -rac{1}{4} W_{i\,\mu
u} W^{\mu
u}_i + (D_\mu \phi)^\dagger D^\mu \phi - U(\phi^\dagger \phi)$$

- Strict gauge-invariant description of the Higgs $\langle \phi^{\dagger}\phi\,\phi^{\dagger}\phi \rangle \simeq \langle hh
 angle + \cdots$
- Triplet of gauge bosons?
- Local SU(2)_L Symmetry: $W_{\mu} \rightarrow \alpha W_{\mu} \alpha^{-1} \frac{\mathrm{i}}{g} (\partial_{\mu} \alpha) \alpha^{-1}, \quad \phi \rightarrow \alpha \phi$
- \bullet Additional global ${\rm SU}(2)_{\rm cust.}$ symmetry

$$W_\mu(x) o W_\mu(x), \qquad \phi(x) o a\phi(x) + b\phi^*(x)$$

- Possible to construct custodial vector triplet
 → expands to elementary gauge triplet in leading order
- Similar considerations for left-handed fermion doublets
- Mapping of local to global multiplets in the Standard Model \rightarrow phenomenological implications

[Fröhlich et al '80, '81] Trento, 09.04.2019 6 / 11

• Verification requieres non-perturbative methods

- Verification requieres non-perturbative methods
- lattice is conceptually cleanest set up (But: expensive for larger gauge groups/representations, chiral gauge theories)

- Verification requieres non-perturbative methods
- lattice is conceptually cleanest set up (But: expensive for larger gauge groups/representations, chiral gauge theories)
- Functional methods!

- Verification requieres non-perturbative methods
- lattice is conceptually cleanest set up (But: expensive for larger gauge groups/representations, chiral gauge theories)
- Functional methods!
- Scale dependent field transformations:

$$\begin{split} \Gamma_{k} &= \int_{X} \left[\frac{1}{4} F_{i\mu\nu} F_{i}^{\mu\nu} + (D_{\mu}\phi)^{\dagger} D^{\mu}\phi + U(\phi^{\dagger}\phi) \right. \\ &+ h_{\Phi} \Phi_{k} \phi^{\dagger}\phi + h_{V} V_{\mu} \mathrm{i} \phi^{\dagger} D^{\mu}\phi + \cdots \right] \\ &\partial_{t} \Phi_{k} = (\phi^{\dagger}\phi) \partial_{t} A_{k}, \qquad \partial_{t} V_{k} = (\mathrm{i} \phi^{\dagger} D^{\mu}\phi) \partial_{t} B_{k} \end{split}$$

- Verification requieres non-perturbative methods
- lattice is conceptually cleanest set up (But: expensive for larger gauge groups/representations, chiral gauge theories)
- Functional methods!
- Scale dependent field transformations:

$$\Gamma_{k} = \int_{X} \left[\frac{1}{4} F_{i\mu\nu} F_{i}^{\mu\nu} + (D_{\mu}\phi)^{\dagger} D^{\mu}\phi + U(\phi^{\dagger}\phi) + h_{\Phi} \Phi_{k} \phi^{\dagger}\phi + h_{V} V_{\mu} i \phi^{\dagger} D^{\mu}\phi + \cdots \right]$$

$$\partial_t \Phi_k = (\phi^{\dagger} \phi) \partial_t A_k, \qquad \quad \partial_t V_k = (i \phi^{\dagger} D^{\mu} \phi) \partial_t B_k$$

• Compute properties of *n*-point functions on both sides of the FMS relation

R. Sondenheimer (KFU Graz)

Nonperturbative checks of FMS Preliminary!

• SU(N > 2) gauge theory + Higgs in fundamental representation

- SU(N > 2) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match: SU(N) vs U(1)

- SU(N > 2) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match: $\mathrm{SU}(N)$ vs $\mathrm{U}(1)$

- SU(N > 2) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match: $\mathrm{SU}(N)$ vs $\mathrm{U}(1)$

- SU(N > 2) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match: $\mathrm{SU}(N)$ vs $\mathrm{U}(1)$

- SU(N > 2) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match: $\mathrm{SU}(N)$ vs $\mathrm{U}(1)$

- SU(N > 2) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match: SU(N) vs U(1)

J^P	SU(N) invariant	SU(N-1) invariant	el. Fields	Multiplicity
0+	$\phi^{\dagger}\phi$	h	h	1
	$\phi^{\dagger} D^2 \phi$	$h, (A_{\rm s}^2), (A_{\rm f} ^2)$		
1-	d [†] D ^µ d	Λμ	Δμ	$(N - 1)^2 - 1$
1	$\varphi^{,} D^{,} \varphi$	$\mathcal{A}_{\mathrm{S}}^{\prime}$	A_a^{\dagger}	(N = 1) = 1
			$ A_{\rm f}^{\mu},A_{\rm f}^{\mu} $	2(N-1)
			$A_{\rm s}^{\mu}$	1

- SU(N > 2) gauge theory + Higgs in fundamental representation
- \bullet Local and global symmetry group do not match: $\mathrm{SU}(N)$ vs $\mathrm{U}(1)$

J^P	SU(<i>N</i>) invariant	SU(N-1) invariant	el. Fields	Multiplicity
0+	$\phi^{\dagger}\phi$	h	h	1
	$\phi^{\dagger} D^2 \phi$	$h_{\rm r} (A_{\rm s}^2), (A_{\rm f} ^2)$		
	$\mathrm{tr}F^{2}$	$(trF_{a}^{2}), (F_{f} ^{2}), (F_{s}^{2})$		
1-	$\phi^{\dagger}D^{\mu}\phi$	$A^{\mu}_{ m s}$	$A^{\mu}_{ m a}$	$(N-1)^2 - 1$
	$\phi^{\dagger}F^{\mu u}D_{ u}\phi$	$(F_{\mathrm{f}}^{\mu u}A_{\mathrm{f} u})$, $(F_{\mathrm{s}}^{\mu u}A_{\mathrm{s} u})$	$A^{\mu}_{ m f}$, $A^{\dagger \mu}_{ m f}$	2(N-1)
			$A^{\mu}_{ m s}$	1

- SU(N > 2) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match: $\mathrm{SU}(N)$ vs $\mathrm{U}(1)$

- SU(N > 2) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match: $\mathrm{SU}(N)$ vs $\mathrm{U}(1)$

 Nonperturbative check for N = 3 on the lattice [Maas, Törek'16,'18]

- SU(N > 2) gauge theory + Higgs in fundamental representation
- Local and global symmetry group do not match: $\mathrm{SU}(N)$ vs $\mathrm{U}(1)$

- Nonperturbative check for *N* = 3 on the lattice [Maas, Törek'16,'18]
- Also mismatches between spectra for other representations or gauge groups

$$\mathrm{SU}(5) \xrightarrow{\langle \Sigma \rangle \sim w} \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \xrightarrow{\langle \phi \rangle \sim v} \mathrm{SU}(3) \times \mathrm{U}(1) \quad (w \gg v)$$

J^P	SU(5) invariant	${ m SU}(3) imes { m U}(1)$ invariant	el. Fields
0+			h
			$+18$ fields with $m{\sim}w$
1-			A^{μ}
			$W^{\pm \mu}$
			Z^{μ}
			$G^{\mu}(8)$
			+12 Leptoquarks with $m \sim w$

 $\mathrm{SU}(5) \xrightarrow{\langle \Sigma \rangle \sim w} \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \xrightarrow{\langle \phi \rangle \sim v} \mathrm{SU}(3) \times \mathrm{U}(1) \quad (w \gg v)$

• Global symmetry: $\mathrm{U}(1) imes \mathbb{Z}_2$

J^P	SU(5) invariant	${ m SU}(3) imes { m U}(1)$ invariant $ $	el. Fields
0+	<i>O</i> ₀₊		h
	<i>O</i> ₀₋		$+18$ fields with $m{\sim}w$
	$O_{\pm 1+}$		
	$O_{\pm 1-}$		
1-	O_{0+}^{μ}		A^{μ}
	O_{0-}^{μ}		$W^{\pm\mu}$
	O_{+1+}^{μ}		Z^{μ}
	$O_{\pm 1-}^{\overline{\mu}^{-1}}$		$G^{\mu}(8)$
			+12 Leptoquarks with $m \sim w$

 $\mathrm{SU}(5) \xrightarrow{\langle \Sigma \rangle \sim w} \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \xrightarrow{\langle \phi \rangle \sim v} \mathrm{SU}(3) \times \mathrm{U}(1) \quad (w \gg v)$

• Global symmetry: $\mathrm{U}(1) imes \mathbb{Z}_2$

J^P	SU(5) invariant	$\mathrm{SU}(3) imes \mathrm{U}(1)$ invariant $ $	el. Fields
0+	<i>O</i> ₀₊	h, \cdots	h
	<i>O</i> ₀₋		$+18$ fields with $m{\sim}w$
	$O_{\pm 1+}$		
	$O_{\pm 1-}$		
1-	O_{0+}^{μ}		A^{μ}
	O_{0-}^{μ}		$W^{\pm\mu}$
	O_{+1+}^{μ}		Z^{μ}
	$O_{\pm 1-}^{\overline{\mu}^{-1}}$		$G^{\mu}(8)$
			+12 Leptoquarks with $m \sim w$

 $\mathrm{SU}(5) \xrightarrow{\langle \Sigma \rangle \sim w} \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \xrightarrow{\langle \phi \rangle \sim v} \mathrm{SU}(3) \times \mathrm{U}(1) \quad (w \gg v)$

• Global symmetry: $\mathrm{U}(1) imes \mathbb{Z}_2$

J^P	SU(5) invariant	$\mathrm{SU}(3) imes \mathrm{U}(1)$ invariant $ $	el. Fields
0+	<i>O</i> ₀₊	h, \cdots	h
	<i>O</i> ₀₋	h, \cdots	$+18$ fields with $m \sim w$
	$O_{\pm 1+}$		
	$O_{\pm 1-}$		
1-	O_{0+}^{μ}		A^{μ}
	O_{0-}^{μ}		$W^{\pm\mu}$
	O_{+1+}^{μ}		Z^{μ}
	$O_{+1-}^{\overline{\mu}^{-}}$		$G^{\mu}(8)$
			+12 Leptoquarks with $m \sim w$

 $\mathrm{SU}(5) \xrightarrow{\langle \Sigma \rangle \sim w} \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \xrightarrow{\langle \phi \rangle \sim v} \mathrm{SU}(3) \times \mathrm{U}(1) \quad (w \gg v)$

• Global symmetry: $\mathrm{U}(1) imes \mathbb{Z}_2$

J^P	SU(5) invariant	${ m SU}(3) imes { m U}(1)$ invariant $ $	el. Fields
0+	<i>O</i> ₀₊	h, \cdots	h
	<i>O</i> ₀₋	h, \cdots	$+18$ fields with $m{\sim}w$
	$O_{\pm 1+}$	states \sim w	
	$O_{\pm 1-}$	states \sim w	
1-	O_{0+}^{μ}		A^{μ}
	O_{0-}^{μ}		$W^{\pm\mu}$
	$O_{\pm 1+}^{\mu}$	states \sim w	Z^{μ}
	$O_{\pm 1-}^{\mu}$	states \sim w	$G^{\mu}(8)$
			$ $ +12 Leptoquarks with $m \sim w$

 $\mathrm{SU}(5) \xrightarrow{\langle \Sigma \rangle \sim w} \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \xrightarrow{\langle \phi \rangle \sim v} \mathrm{SU}(3) \times \mathrm{U}(1) \quad (w \gg v)$

• Global symmetry: $\mathrm{U}(1) imes \mathbb{Z}_2$

J^P	SU(5) invariant	$\mathrm{SU}(3) imes \mathrm{U}(1)$ invariant $ $	el. Fields
0+	<i>O</i> ₀₊	h, \cdots	h
	<i>O</i> 0-	h, \cdots	$+18$ fields with $m{\sim}w$
	$O_{\pm 1+}$	states \sim w	
	$O_{\pm 1-}$	states \sim w	
1-	O_{0+}^{μ}		A^{μ}
	O_{0-}^{μ}	Z^{μ} , (A^{μ}) , \cdots	$W^{\pm\mu}$
	$O_{\pm 1+}^{\mu}$	states \sim w	Z^{μ}
	$O_{\pm 1-}^{\mu}$	states \sim w	$G^{\mu}(8)$
			$ $ +12 Leptoquarks with $m \sim w$

 $\mathrm{SU}(5) \xrightarrow{\langle \Sigma \rangle \sim w} \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \xrightarrow{\langle \phi \rangle \sim v} \mathrm{SU}(3) \times \mathrm{U}(1) \quad (w \gg v)$

• Global symmetry: $\mathrm{U}(1) imes \mathbb{Z}_2$

J^P	SU(5) invariant	${ m SU}(3) imes { m U}(1)$ invariant $ $	el. Fields
0+	<i>O</i> ₀₊	h, \cdots	h
	<i>O</i> ₀₋	h, \cdots	$+18$ fields with $m{\sim}w$
	$O_{\pm 1+}$	states \sim w	
	$O_{\pm 1-}$	states \sim w	
1-	O_{0+}^{μ}	$(Z^{\mu}), (A^{\mu}), \cdots$	A^{μ}
	O_{0-}^{μ}	Z^{μ} , (A^{μ}) , \cdots	$W^{\pm \mu}$
	$O_{\pm 1+}^{\mu}$	states \sim w	Z^{μ}
	$O_{\pm 1-}^{\mu}$	states \sim w	$G^{\mu}(8)$
			$ $ +12 Leptoquarks with $m \sim w$

$$\mathrm{SU}(5) \xrightarrow{\langle \Sigma \rangle \sim w} \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \xrightarrow{\langle \phi \rangle \sim v} \mathrm{SU}(3) \times \mathrm{U}(1) \quad (w \gg v)$$

• Global symmetry: $\mathrm{U}(1) imes \mathbb{Z}_2$

J^P	SU(5) invariant	${ m SU}(3) imes { m U}(1)$ invariant	el. Fields
0+	<i>O</i> ₀₊	h, \cdots	h
	O_{0-}	h, \cdots	$+18$ fields with $m \sim w$
	$O_{\pm 1+}$	states \sim w	
	$O_{\pm 1-}$	states \sim w	
1-	O_{0+}^{μ}	$(Z^{\mu}), (A^{\mu}), \cdots$	A^{μ}
	O_{0-}^{μ}	Z^{μ} , (A^{μ}) , \cdots	$W^{\pm\mu}$
	O_{+1+}^{μ}	states \sim w	Z^{μ}
	$O_{\pm 1-}^{\overline{\mu}^-}$	states \sim w	$G^{\mu}(8)$
			$+12$ Leptoquarks with $m \sim w$

• Similar considerations for SO(10), E(6), \cdots

$$\mathrm{SU}(5) \xrightarrow{\langle \Sigma \rangle \sim w} \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \xrightarrow{\langle \phi \rangle \sim v} \mathrm{SU}(3) \times \mathrm{U}(1) \quad (w \gg v)$$

• Global symmetry: $\mathrm{U}(1) imes \mathbb{Z}_2$

J^P	SU(5) invariant	${ m SU}(3) imes { m U}(1)$ invariant $ $	el. Fields
0+	<i>O</i> ₀₊	h, \cdots	h
	<i>O</i> ₀₋	h, \cdots	$+18$ fields with $m \sim w$
	$O_{\pm 1+}$	states \sim w	
	$O_{\pm 1-}$	states \sim w	
1-	O_{0+}^{μ}	$(Z^{\mu}), (A^{\mu}), \cdots$	A^{μ}
	O_{0-}^{μ}	Z^{μ} , (A^{μ}) , \cdots	$W^{\pm\mu}$
	$O_{\pm 1+}^{\mu}$	states \sim w	Z^{μ}
	$O_{\pm 1-}^{\mu}$	states \sim w	$G^{\mu}(8)$
			$ $ +12 Leptoquarks with $m \sim w$

- Similar considerations for $\mathrm{SO}(10),\,\mathrm{E}(6),\,\cdots$
- Rethinking of GUT construction!

Conclusions & Outlook

- Observable spectrum must be gauge invariant
- Non-Abelian gauge theory: composite operator
- FMS mechanism provides a mapping of local to global multiplets
- Same results in leading order for the standard model
- BSM model building can be affected

Thank you for your attention!