Asymptotic safety and phenomenology in extensions of the Standard Model

Tom Steudtner University of Sussex

in collaboration with G. Hiller, C. Hormigos-Feliu (TU Dortmund) D.F. Litim (U Sussex)

FRGIM - Functional and Renormalization-Group methods 16.-20.09.2019 ECT* Trento UNIVERSITY OF SUSSEX

Motivation

1

SM is complete (as a theory) – but this is not the end of the story:

- does not address e.g. gravity
- cannot explain some observations e.g. $(g-2)_{\mu}$

Extension required, but is there a paradigm?

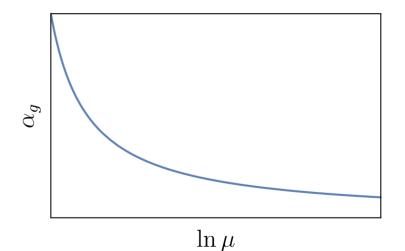
✤ UV completion

Motivation

Historic approach: asymptotic freedom [Gross, Wilczek, Politzer (1973)]

- theory becomes non-interacting at high energies
- viable for non-abelian gauge groups $U(1)_Y \times SU(2)_L \times SU(3)_C$

$$\beta_g = \frac{\partial \alpha_g}{\partial \ln \mu} = \underbrace{-B}_{<0} \alpha_g^2 + \mathcal{O}(\alpha^3)$$
asymptotic freedom



Total AF for model building:

- → embed U(1) groups
- ➤ avoid too much matter

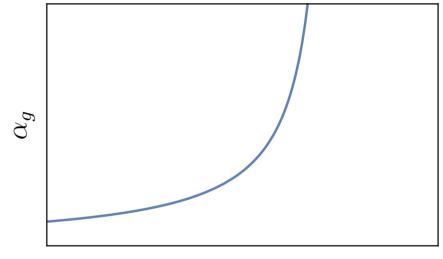
 $B \sim [\text{Gauge Bosons}] - [\text{Matter}]$

Beyond asymptotic freedom?

Landau poles endanger UV completion

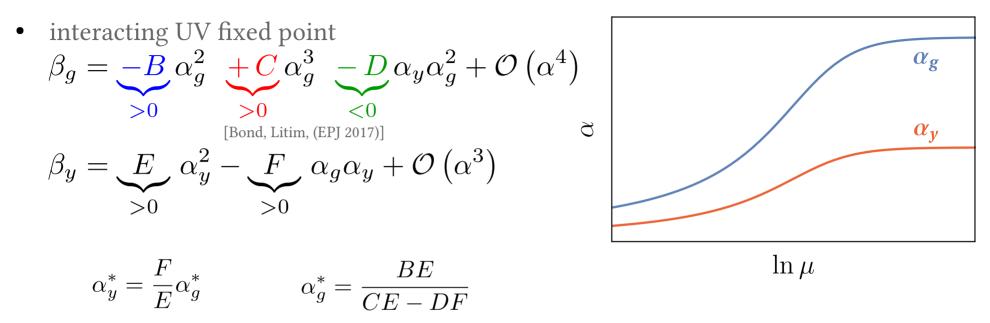
$$\beta_g = \frac{\partial \alpha_g}{\partial \ln \mu} = \underbrace{-B}_{>0} \alpha_g^2 + \mathcal{O}\left(\alpha^3\right)$$

➤ Asymptotic safety



 $\ln \mu$

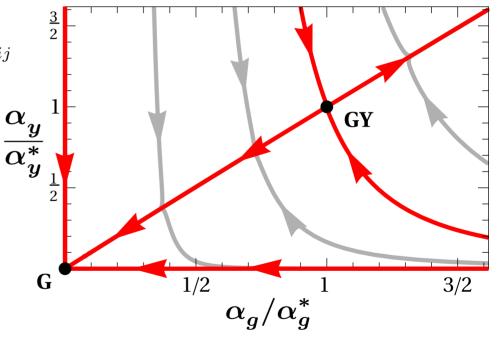
Asymptotic safety



- running of gauge coupling towards Landau pole is controlled by Yukawa interaction
 - fundamental building block is a gauge-Yukawa theory [Litim, Sannino, JHEP 2014][Litim, Sannino, Mojaza, JHEP 2016]
 - ➤ new opportunities for model building

- $SU(N_c)$ gauge sector
- N_f quark-like fermions ψ_i
- N_f^2 uncharged, meson-like scalar matrix S_{ij}
- Yukawa interaction $-\mathcal{L}_{yuk} = y \,\overline{\psi}_{Li} \, S_{ij} \, \psi_{Rj} + \text{h.c.}$
- scalar quartic sector

$$-\mathcal{L}_{qrt} = u \operatorname{tr} \left(S^{\dagger} S \right)^{2} + v \left(\operatorname{tr} S^{\dagger} S \right)^{2}$$



• asymptotic safety is guaranteed in Veneziano limit

$$N_{c,f} \to \infty, \quad \epsilon = \frac{N_f}{N_c} - \frac{11}{2}$$

 $\epsilon \ll 1\,$ expansion parameter for UV fixed point, critical exponents

• RGEs up to 3-loop gauge, 2-loop Yukawa, 2-loop quartics [Bond, Litim, Medina, TS (PRD 2018)]

• asymptotic safety is guaranteed in Veneziano limit

$$N_{c,f} \to \infty, \quad \epsilon = \frac{N_f}{N_c} - \frac{11}{2}$$

 $\epsilon \ll 1\,$ expansion parameter for UV fixed point, critical exponents

• RGEs up to 3-loop gauge, 2-loop Yukawa, 2-loop quartics [Bond, Litim, Medina, TS (PRD 2018)]

$$\beta_v^{(1)} = 12\alpha_u^2 + 4\alpha_v (\alpha_v + 4\alpha_u + \alpha_y)$$

$$\beta_v^{(2)} = 8\alpha_v \alpha_y \left[\frac{5}{4}\alpha_g - 4\alpha_u - \alpha_v - (\frac{33}{8} + 34\epsilon)\alpha_y\right] + (11 + 2\epsilon)\left[(11 + 2\epsilon)\alpha_y + 4\alpha_u\right]\alpha_y^2 - 8\alpha_u^2 \left[12\alpha_u + 5\alpha_v + 3\alpha_y\right]$$

$$\beta_{g}^{(1)} = \frac{4}{3} \epsilon \alpha_{g}^{2}$$

$$\beta_{g}^{(2)} = \left(25 + \frac{26}{3}\epsilon\right) \alpha_{g}^{3} - 2\left(\frac{11}{2} + \epsilon\right)^{2} \alpha_{y} \alpha_{g}^{2}$$

$$\beta_{g}^{(3)} = \left(\frac{701}{6} + \frac{53}{3}\epsilon - \frac{112}{27}\epsilon^{2}\right) \alpha_{g}^{4}$$

$$-\frac{27}{8}(11 + 2\epsilon)^{2} \alpha_{g}^{3} \alpha_{y}$$

$$+\frac{1}{4}(11 + 2\epsilon)^{2}(20 + 3\epsilon) \alpha_{y}^{2} \alpha_{g}^{2}$$

$$\beta_y^{(1)} = (13+2\epsilon) \alpha_y^2 - 6 \alpha_y \alpha_g$$

$$\beta_y^{(2)} = \frac{20\epsilon - 93}{6} \alpha_g^2 \alpha_y + (49+8\epsilon) \alpha_g \alpha_y^2$$

$$-4 [(11+2\epsilon)\alpha_y - \alpha_u] \alpha_u \alpha_y$$

$$- \left(\frac{385}{8} + \frac{23}{2} + \frac{\epsilon^2}{2}\right) \alpha_y^3$$

$$\beta_u^{(1)} = -(11+2)\alpha_y^2 + 4\alpha_u(\alpha_y + 2\alpha_u)$$

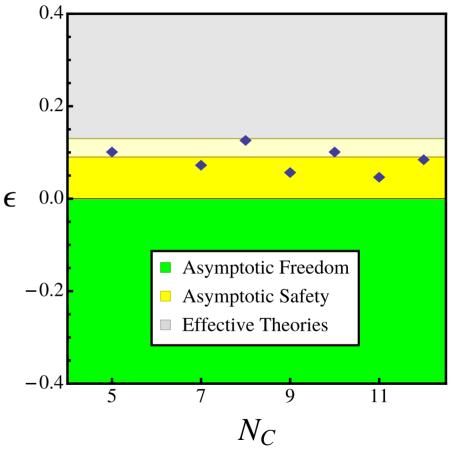
$$\beta_u^{(2)} = \alpha_u\alpha_y [10\alpha_g - 16\alpha_u - 3(11+2\epsilon)\alpha_y]$$

$$+(11+2\epsilon) [(11+2\epsilon)\alpha_y - 2\alpha_g]\alpha_y^2$$

$$-24\alpha_u^3$$

• RGEs imply constraints $\epsilon < \epsilon_{max}$ from vacuum stability, fixed point mergers, ...

• allows for finite values $N_C \ge 5$



SM + template model

- SM particle content, gauge group
- N_f BSM fermions ψ_i , various reps of $SU(2)_L imes SU(3)_C$ [Bond, Hiller, Kowalska, Litim, JHEP 2017]
 - no large N_c
- uncharged BSM scalar S_{ij}
- Yukawa interactions

 $-\mathcal{L}_{yuk} = y \,\overline{\psi}_{Li} \, S_{ij} \, \psi_{Rj} + \text{h.c.}$ BSM Yukawa interaction

• scalar quartic sector

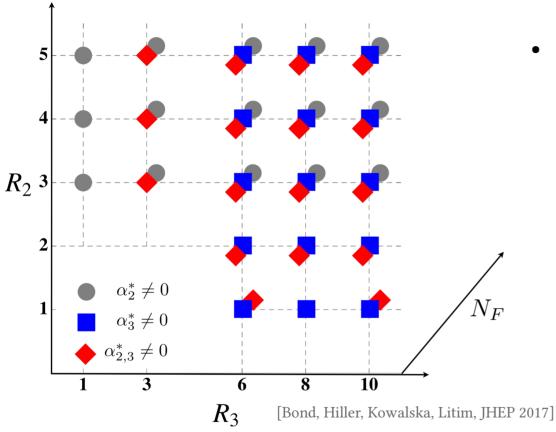
$$-\mathcal{L}_{qrt} = u \operatorname{tr} \left(S^{\dagger}S
ight)^2 + v \left(\operatorname{tr}S^{\dagger}S
ight)^2 + \lambda \left(H^{\dagger}H
ight)^2 + \delta \left(H^{\dagger}H
ight) \left(\operatorname{tr}S^{\dagger}S
ight)$$

BSM scalar self interactions

Higgs quartic

Higgs portal

SM + template model



- further study with full SM gauge group [Percacci et al., JHEP 2018] $U(1)_Y imes SU(2)_L imes SU(3)_C$
 - no fixed points under perturbative control
 - stronger couplings required

New idea

- connect SM and BSM flavour symmetries
- Yukawa interaction of Higgs with BSM fermions ψ_i
- fixes $N_f = 3$
- for now, consider ψ_i only with hypercharge and weak isospin, but no color
 - ➤ 6 different models

$$-\mathcal{L}_{yuk} = y \,\overline{\psi}_{Li} \,S_{ij} \,\psi_{Rj} + \kappa_{ij} \,\overline{L}_i \,H \,\psi_{Rj} + \kappa' \,\overline{E}_i \,S_{ij}^{\dagger} \psi_{Lj} + \text{h.c.}$$

BSM Yukawa interaction

Higgs-BSM mixing BSM scalar + SM leptons

$$-\mathcal{L}_{qrt} = u \operatorname{tr} \left(S^{\dagger}S\right)^{2} + v \left(\operatorname{tr}S^{\dagger}S\right)^{2} + \lambda \left(H^{\dagger}H\right)^{2} + \delta \left(H^{\dagger}H\right) \left(\operatorname{tr}S^{\dagger}S\right)$$

BSM scalar self interactions

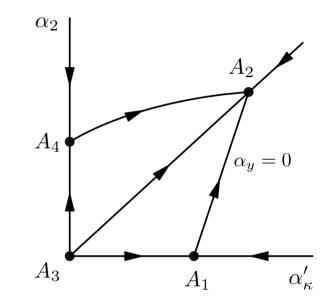
Higgs quartic

Higgs portal

RG study

- RGEs can be computed in perturbation theory [Machacek, Vaughn, NPB 1983-85]
- leading order analysis:

FP	$lpha_1^*$	$lpha_2^*$	$lpha_\kappa^*$	$lpha^*_{\kappa'}$	$lpha_y^*$
A_1	1.063	0	0.886	1.594	0
A_2	1.105	0.569	1.205	1.657	0
A_3	2.151	0	0.782	0	3.032
A_4	2.267	0.200	0.933	0	3.165



- ➤ fixed points are boarderline perturbative
- ➤ require higher loop-order analysis, but complexity grows...

$$\begin{split} \beta_{\delta}^{(2)} &= -4\alpha_{\delta}^{2}\alpha_{\kappa'} - 9\alpha_{\delta}\alpha_{\kappa'}^{2} + 10\alpha_{1}\alpha_{\delta}\alpha_{\kappa'} - 72\alpha_{\delta}\alpha_{\kappa}\alpha_{\lambda} - 12\alpha_{\delta}^{2}\alpha_{\kappa} - \frac{27}{2}\alpha_{\delta}\alpha_{\kappa}^{2} + \frac{75}{4}\alpha_{1}\alpha_{\delta}\alpha_{\kappa} \\ &+ \frac{45}{4}\alpha_{2}\alpha_{\delta}\alpha_{\kappa} - 72\alpha_{\delta}^{2}\alpha_{\lambda} - 60\alpha_{\delta}\alpha_{\lambda}^{2} + 24\alpha_{1}\alpha_{\delta}\alpha_{\lambda} + 72\alpha_{2}\alpha_{\delta}\alpha_{\lambda} - 19\alpha_{\delta}^{3} \\ &+ \alpha_{1}\alpha_{\delta}^{2} + 3\alpha_{2}\alpha_{\delta}^{2} + \frac{797}{48}\alpha_{1}^{2}\alpha_{\delta} - \frac{145}{16}\alpha_{2}^{2}\alpha_{\delta} + \frac{15}{8}\alpha_{1}\alpha_{2}\alpha_{\delta} - 12\alpha_{1}^{2}\alpha_{\kappa'} + 40\alpha_{3}\alpha_{\delta}\alpha_{b} \\ &- 72\alpha_{\delta}\alpha_{\lambda}\alpha_{b} - 12\alpha_{\delta}^{2}\alpha_{b} - \frac{27}{2}\alpha_{\delta}\alpha_{b}^{2} + \frac{25}{12}\alpha_{1}\alpha_{\delta}\alpha_{b} + \frac{45}{4}\alpha_{2}\alpha_{\delta}\alpha_{b} - 21\alpha_{\delta}\alpha_{b}\alpha_{t} \\ &+ 40\alpha_{3}\alpha_{\delta}\alpha_{t} - 72\alpha_{\delta}\alpha_{\lambda}\alpha_{t} - 12\alpha_{\delta}^{2}\alpha_{t} - \frac{27}{2}\alpha_{\delta}\alpha_{t}^{2} + \frac{85}{12}\alpha_{1}\alpha_{\delta}\alpha_{t} + \frac{45}{4}\alpha_{2}\alpha_{\delta}\alpha_{t} - 48\alpha_{\delta}\alpha_{u}\alpha_{\kappa'} \\ &- 144\alpha_{\delta}^{2}\alpha_{u} - 200\alpha_{\delta}\alpha_{u}^{2} - 240\alpha_{\delta}\alpha_{u}\alpha_{v} - 48\alpha_{\delta}\alpha_{u}\alpha_{y} - 80\alpha_{\delta}\alpha_{v}\alpha_{\kappa'} - 240\alpha_{\delta}^{2}\alpha_{v} - 200\alpha_{\delta}\alpha_{v}^{2} \\ &- 80\alpha_{\delta}\alpha_{v}\alpha_{y} - 18\alpha_{\delta}\alpha_{y}\alpha_{\kappa'} + \frac{47}{2}\alpha_{\delta}\alpha_{\kappa}\alpha_{y} - 4\alpha_{\delta}^{2}\alpha_{y} - 9\alpha_{\delta}\alpha_{y}^{2} + 10\alpha_{1}\alpha_{\delta}\alpha_{y} \\ &+ 30\alpha_{\kappa}\alpha_{y}\alpha_{\kappa'} + 14\alpha_{\kappa}^{2}\alpha_{y} + 30\alpha_{\kappa}\alpha_{y}^{2} - 12\alpha_{1}\alpha_{\kappa}\alpha_{y} - 12\alpha_{1}^{2}\alpha_{y} \end{split}$$

need a different search strategy

Search for UV trajectories

- start from SM and run IR \rightarrow UV, 2-loop
- BSM fermions all have mass $M_F \approx 1$ TeV, which is the matching scale

6 SM parameters, fixed by matching

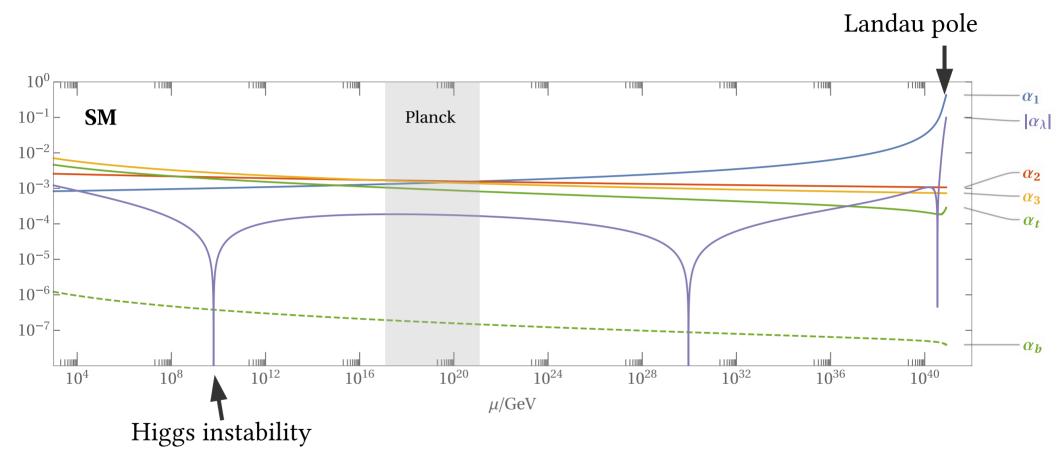
- α_1 hypercharge gauge
- α_2 weak gauge
- α_3 strong gauge
- $lpha_t$ top Yukawa
- α_b bottom Yukawa
- α_{λ} Higgs quartic

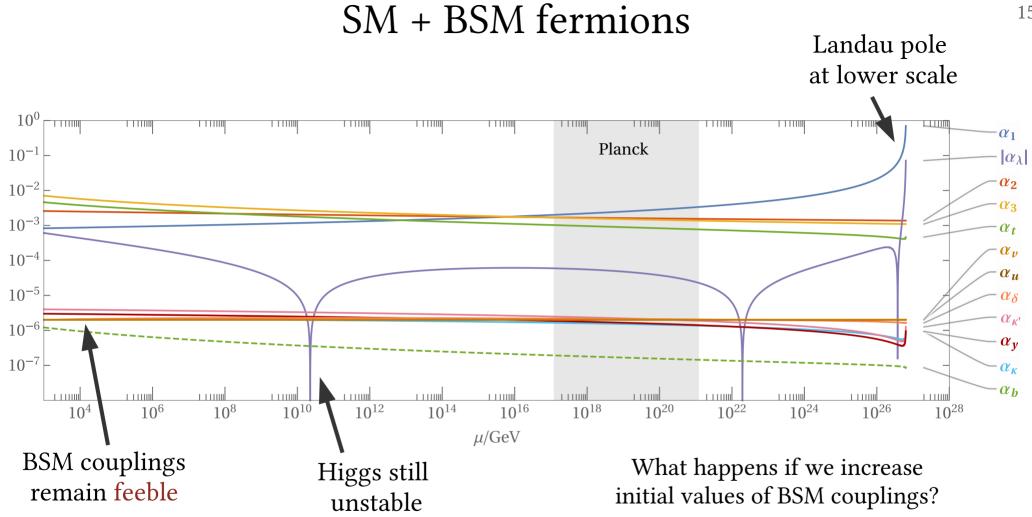
6 open BSM parameters

- α_{κ} Higgs + BSM fermion Yukawa
- $lpha_{\kappa'}$ BSM scalar + SM lepton Yukawa
- $lpha_y$ BSM-only Yukawa

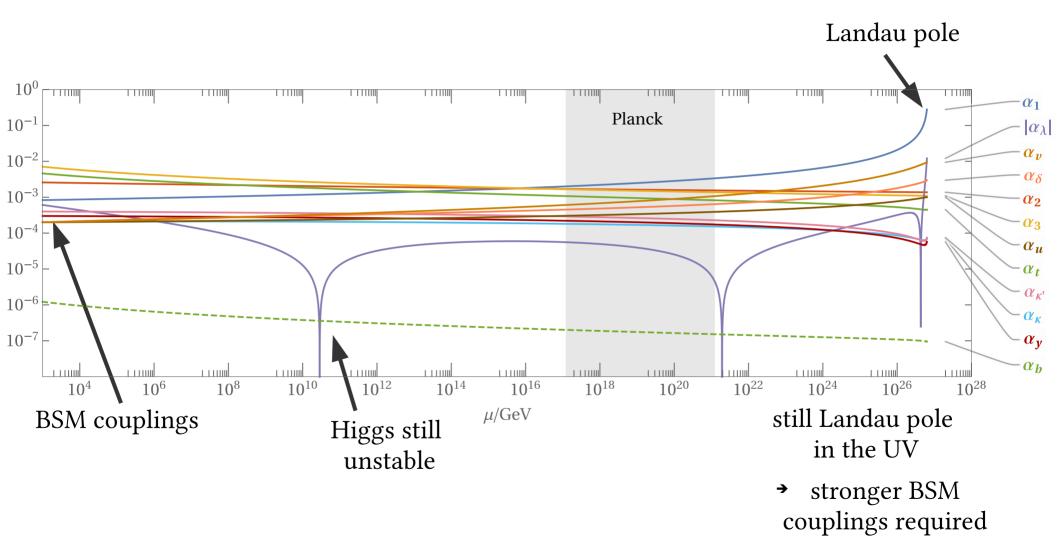
What to expect in the SM ...

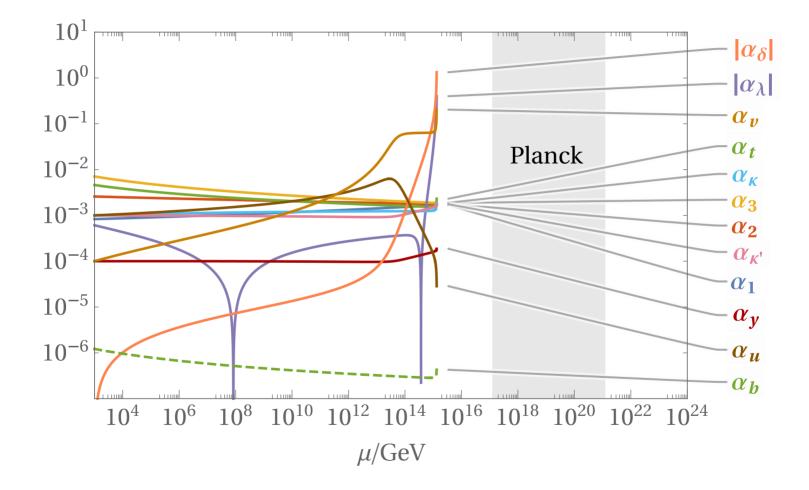
Standard Model flow





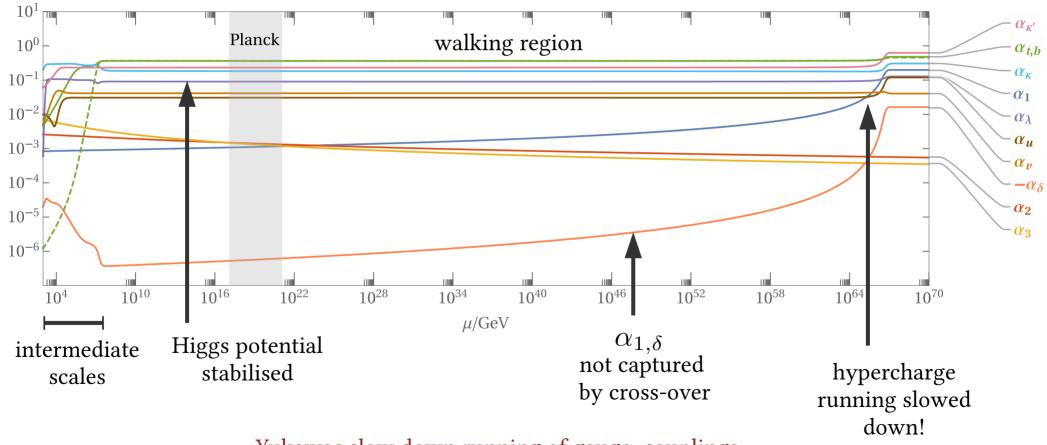
Weak BSM sector



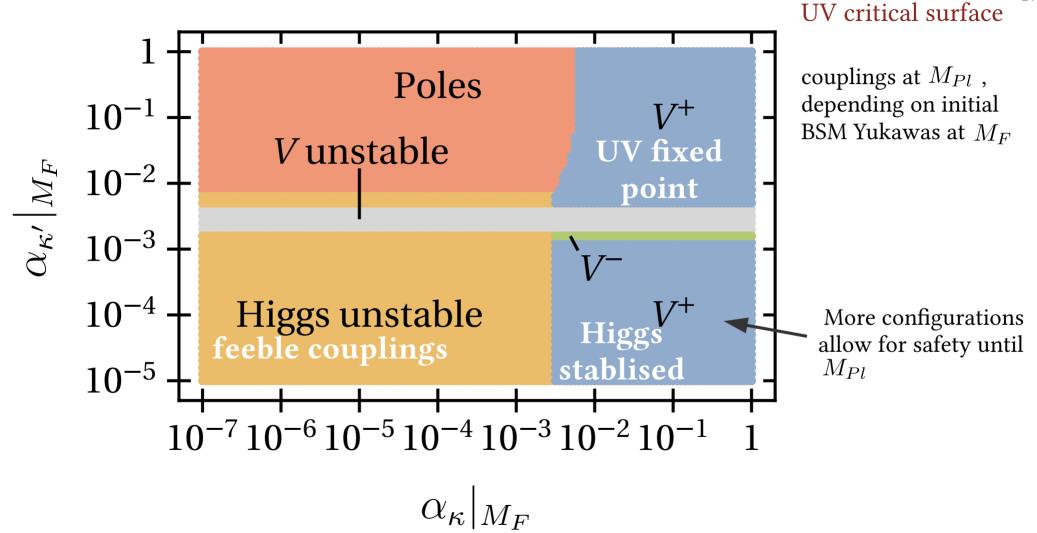


UV fixed points

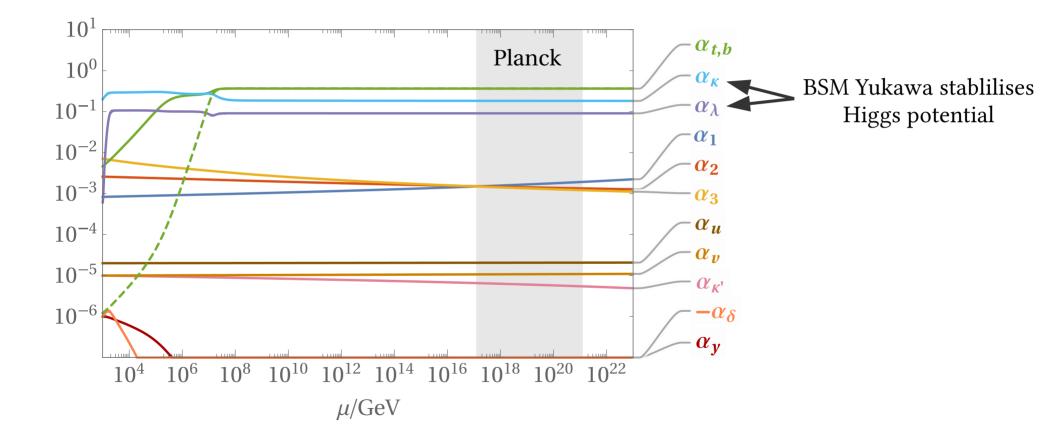
UV fixed point



Yukawas slow down running of gauge couplings



Safety until Planck scale



Conclusion about UV safety

- some models allow feebly coupled BSM sector
- BSM sector can
 - ➤ stabilise Higgs potential
 - → push Landau poles towards UV
- BSM Yukawas play crucial role in these tasks

Are there experimantally verifiable predictions?

Some experimental predictions / constraints

- lower bound on BSM fermion mass M_F from e.g. Drell-Yan process [Farina et al., PRB 2017] $M_F \gtrsim \mathcal{O} (10^2) \text{ GeV}$ 1 TeV is reasonable choice
- bound on mixing between Higgs and BSM scalar $|\beta| \lesssim 0.2$ [Patrignani et al., CPC 2016]
 - ➤ favours heavy scalar

- Production at pp/ll colliders via BSM Yukawa and gauge interactions
 - ➤ sensitive on model, representations
- BSM fermion decays promptly $\Gamma(\psi \to h \, l) \sim \alpha_{\kappa} M_F \left(1 \frac{m_h^2}{M_F^2}\right)^2$ $M_{F,S}$ mass hierarchy observable via scalar decay $S \to \psi l, \, \psi \psi$

Application: Anomalous magnetic moments

• measured deviation from SM for muon and electron magnetic moments

Muon:

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = 268(63)(43) \cdot 10^{-11}$$

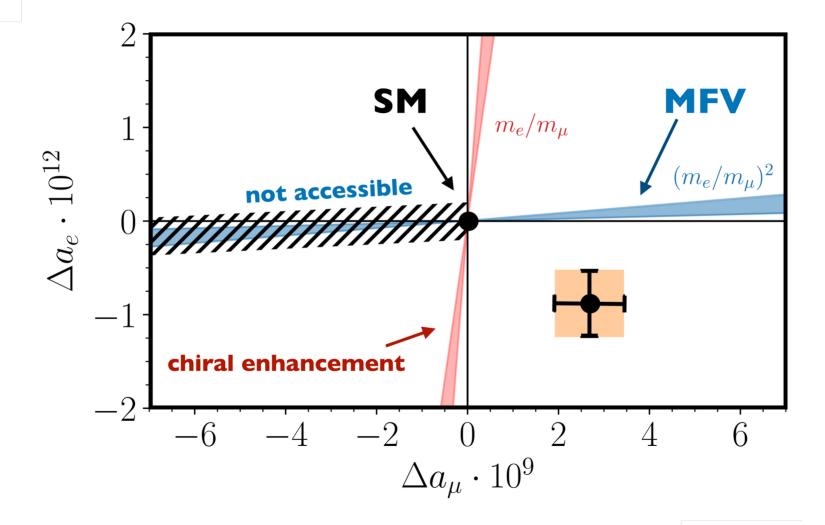
 $\Rightarrow + 3.5 \sigma$
[Tanabashi et al., PRD 2018]

 $a_e^{\exp} - a_e^{SM} = -88(28)(23) \cdot 10^{-14}$ $\Rightarrow -2.4 \sigma$ [Hanneke, Fogwell, Gabrielse, PRL 2008] [Parker et al., Science 2018]

Electron:

• electron and muon discrepancies have different sign, difficult to explain both together without breaking flavour universality

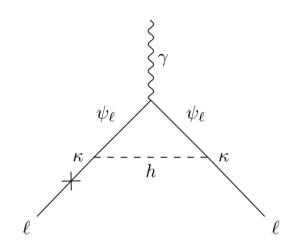
Application: Anomalous magnetic moments



Application: Anomalous magnetic moments $-\mathcal{L}_{yuk} = y \overline{\psi}_{Li} S_{ij} \psi_{Rj} + \kappa_{ij} \overline{L}_i H \psi_{Rj} + \kappa' \overline{E}_i S_{ij}^{\dagger} \psi_{Lj} + \text{h.c.}$

25

"MFV"



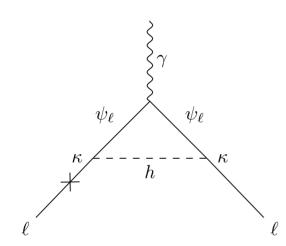
universal for all flavours, always positive

$$\delta a_l \sim \frac{\kappa^2}{(4\pi)^2} \; \frac{m_l^2}{M_F^2}$$

Application: Anomalous magnetic moments $-\mathcal{L}_{yuk} = y \overline{\psi}_{Li} S_{ij} \psi_{Rj} + \kappa_{ij} \overline{L}_i H \psi_{Rj} + \kappa' \overline{E}_i S_{ij}^{\dagger} \psi_{Lj} + \text{h.c.}$

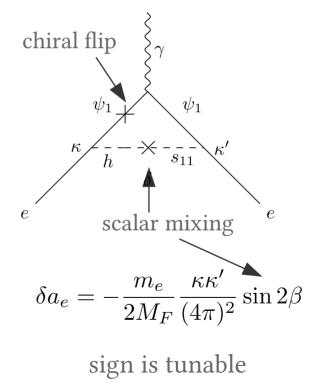
"MFV"

"chiral enhancement"



universal for all flavours, always positive

$$\delta a_l \sim \frac{\kappa^2}{(4\pi)^2} \; \frac{m_l^2}{M_F^2}$$



Summary

- explored new set of BSM models
- hints of safety until the Planck scale
- can stabilise Higgs and BSM scalar sector
- potential to explain both $(g-2)_{\mu,e}$

Thank you for your attention

Backup

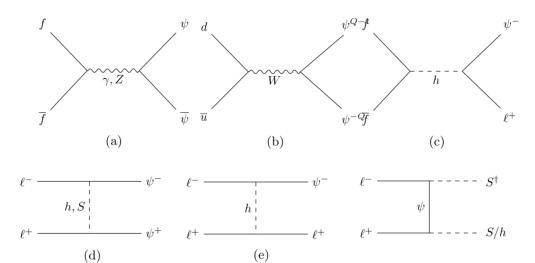
Field content

- SM gauge interactions, fermions, and Higgs H
- 3 Vector-like BSM fermions $\psi_{L,R}$ with mass M_F , carrying electroweak charge, interaction with SM Higgs + leptons

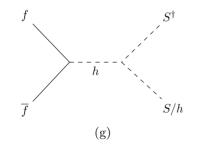
Model	(R_3, R_2, Y_F)
A	(1, 1, -1)
В	(1, 3, -1)
C	$\left(1,2,-rac{1}{2} ight)$
D	$(1, 2, -\frac{3}{2})$
E	(1, 1, 0)
F	$({f 1},{f 3},0)$

• Meson-like BSM scalar S_{ij} , (3 x 3) flavour matrix

Production channels



(f)



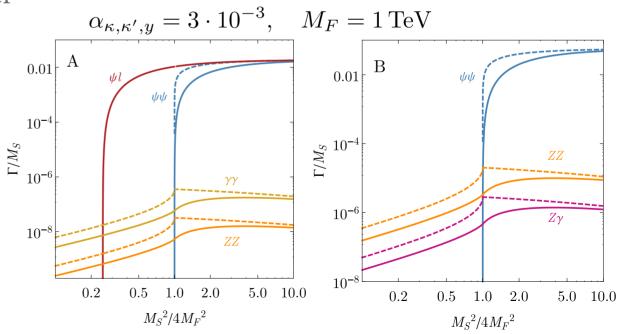
Decay

- Decay hierachies depend on BSM fermion/scalar mass $M_{F,S}$ and model
- BSM fermions undergo prompt decay $\Gamma(\psi \to h \, l) \sim \alpha_{\kappa} M_F \left(1 \frac{m_h^2}{M_F^2}\right)^2$ $M_F = 1 \text{ TeV}, \ \alpha_{\kappa} = 3 \cdot 10^{-3} : \Gamma^{-1} \sim \mathcal{O}\left(10^{-25}\right) \text{ s}$

higher charged ones live longer

- BSM scalar decays via y, κ' or into gauge bosons $(\psi$ -triangle)
- fermion mixing gives additional decays

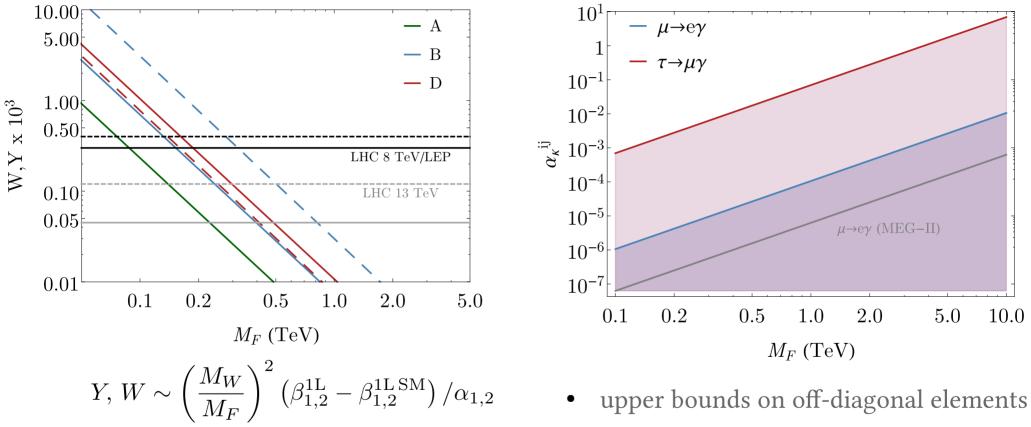
 $S \to l l$



Constraints

Drell-Yan process

Charged lepton flavour violation



• lower bound on fermion mass M_F , 1 TeV is fine

 $\alpha_{\kappa}^{ij} = (4\pi)^{-2} \sum \kappa_{mi} \kappa_{mj}$

Anomalous magnetic moments

$$\delta a_l = -\frac{m_l}{2M_F} \sqrt{\alpha_\kappa \alpha_{\kappa'}} \sin 2\beta$$

