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Overview on the Problematics of the SM

The gauge couplings seem to unify at the GUT scale but then divergences
appear.

0.005F ® Landau-pole in the

U(1)-gauge sector as
well as for the
Higgs-scalar sector.
Triviality problem.

0.004 -
0.003 +
0.002 ¢
0.001

0. B )\ < 0 at a relative

‘ ‘ ‘ ‘ “small” energy scale.
0 20 40 60 80 Instability of V/(¢).

t = log(u/Mz)

[Fabbrichesi,Percacci et al. JHEP 11 ('18)]
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m The SM is an Effective Theory and can be considered valid up to a
certain scale A, typically assumed to be Mp.

m Given this A one can draw a phase diagram for the SM Higgs potential.

i : ‘ ‘ = 180 T — T - = -
200 Tnstability’ - 18 - 10"
N < i’ Instability __— * Meta- stability :
8 150 T oW z ‘ "
- £ g -
- e ) = 7 \
= 2 1233
2 100 Stability g
g £ -
s z g0k . )
= = o 12
5 3 : .
50 S L L Stability
0 — 165 A A .
0 50 100 150 200 115 120 125 130 132
Higgs mass M), in GeV Higgs mass M, in GeV

[Degrassi, Giudice, Isidori, Strumia et al. JHEP 08 ('12)]

® Absolute stability of the Higgs potential is excluded at 98% C.L. for
Mh < 126 GeV [Degrassi, Giudice, Isidori, Strumia et al. JHEP 08 ('12)]
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I =k
“Ghost-Busting” the Scalar Sector

Stability: Is it possible to have A\¢* > 0V A and V ¢?
Triviality: Is it possible to have a UV-complete theory?
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Models under Investigation

Solve the U(1) is cumbersome }—b

Y

The Coleman-Gross Theorem
‘Only the non-Abelian gauge group of SM is retain garanties that AF
trajectories exist

Y

[SU(?))C x SU(2), gauge-group coupled to ¢ and 1/)top}
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Models under Investigation

ESoIve the U(1) is cumbersome]—b

Y

The Coleman-Gross Theorem
[Only the non-Abelian gauge group of SM is retain garanties that AF
trajectories exist

Y

[SU(?))c x SU(2), gauge-group coupled to ¢ and 1/)top}

Within standard perturbation theory the couplings retained are 4:

m g, the charge of SU(2), ® h, the top-Yukawa coupling
= g, the charge of SU(3), = )\, the ¢* coupling
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Total Asymptotic Freedom: known solutions

Already at 1-Loop, perturbative renormalizabile analysis is capable to re-
veal asymptotic freedom in all the couplings (g, &s, frop, A). [GrossWilczek 173,
Cheng,Eichten,Li '74; Chang '74; Fradkin,Kalashnikov '75; Chang,Perez-Mercader '78; Bais,Weldon '78; Callaway '88; Giu-

dice, Isidori,Salvio,Strumia '15; Holdom,Ren,Zhang '15]
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Total Asymptotic Freedom: known solutions

Already at 1-Loop, perturbative renormalizabile analysis is capable to re-
veal asymptotic freedom in all the couplings (g, &s, frop, A). [GrossWilczek 173,

Cheng,Eichten,Li '74; Chang '74; Fradkin,Kalashnikov '75; Chang,Perez-Mercader '78; Bais,Weldon '78; Callaway '88; Giu-

dice, Isidori,Salvio,Strumia '15; Holdom,Ren,Zhang '15]
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Red trajectories: hfop ~ g2 ~ g2 ~ ), or vice versa when g2 — 0

" g?/g2 = #g " \/82 = # " %,/ 82 = H#iop < 00
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Going beyond Perturbative Renormalizability

= HOW?

[New Ingredients in the Scalar Sector}

/ S~

Higher-dimensional (irrelevant) The “Asymptotic Symmetry”
operators are included assumption is relaxed

1 !
R R =t
¢ fluctuations

[Functional RG for the full V(¢)}
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Going beyond Perturbative Renormalizability

= HOW?
New Ingredients in the Scalar Sector

e .

Higher-dimensional (irrelevant) The “Asymptotic Symmetry”
operators are included assumption is relaxed

S oe vev can be # 0
L¢ ; ¢°, -+ into V(9) ’ YV momentum i |
¢ fluctuations

[Functional RG for the full V(¢)}

B MOTIVATION: asymptotic freedom can be found in models which are
not AF in standard perturbation theory [Gieszambelii PR D92 ('15), PR D96 ('17)]
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Implementing the functional set-up

= As we observed: A ~ g2 in the UV limit.

® How can be achieved that at a functional level?
We need a “smart” field rescaling:

x=g2P(¢l9),  f(x)=u(d'e), F(x0)=
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Implementing the functional set-up

= As we observed: A ~ g2 in the UV limit.
®m How can be achieved that at a functional level?
We need a “smart” field rescaling:

x=g2P(eTe),  f(x)=u(¢lp),  f(x0)=0.

For example in a polynomial truncation the quartic interaction reads:

A
e P (oT9)? - = f(x).

2

X

&
® Projecting the Exact RG equation onto constant field configuration:

0ef(x) = —4f(x) + (2 + nx)xf'(x) +
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Results: first part
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Novel AF Solutions for a Toy Model

Consider the limiting Z,-Yukawa-QCD case
(g% =0):

_1/(327?) 27/(87?)
 143682Px 94 2g272Px
scal;loop fermion loop
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Novel AF Solutions for a Toy Model

Consider the limiting Z,-Yukawa-QCD case
(g% =0):

_1/(327?) 27/(87?)
1+3682Px 94 2g272Px
scala:rrloop fermion loop

The FP equation 0;f(x) = 0 has an analytic solution:

4 _2+77X

2F1 17_ ) )
12872 2+mx 2+ 1k
3 4 240 2 5, 0p

-2 _Rl1,- < .
3271-22 1|:7 2+77x’ 2+77x, 95s X

f(x) = Cfxﬁ +

14/23



Parameters Conditions
[Pa Zo, §2’ Cf] [f/<330) = Oa f”(:lf()) = 52]

N
[Pe[

=
N

], &> e
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Parameters Conditions

(Powo, &, Cr) (o) =0, f"(z0) = &)
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Scheme (in)dependence within FRG?

® We need to access ALL possible Mass-dependent Scheme! How?
Let us go back to the more general SU(2);, x SU(3), model:

Goldstone loop Gauge loop Fermion loop

Higgs loop
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Scheme (in)dependence within FRG?

® We need to access ALL possible Mass-dependent Scheme! How?

Let us go back to the more general SU(2);, x SU(3), model:

1672 A

-~

1
= 5 [0@) + 30(z0) + 96 (2w) — 1267 (z)
—— ———

Higgs loop  Goldstone loop Gauge loop Fermion loop

2z = g2" (f' + xf"),
Z9 = gs2Pf/7
Zp = #top gszisz

Zw = g gs2_2PX/2'

17/23



Scheme (in)dependence within FRG?

® We need to access ALL possible Mass-dependent Scheme! How?

Let us go back to the more general SU(2)1, x SU(3). model:

1
= |6+ 37(@) + 9" (zw) - 1267 (ar)|,
16w N — N—_—— ~

-~

Higgs loop  Goldstone loop Gauge loop Fermion loop

zn = g2" (' + xf"),

_ 2Py
zg=g5 f, o5)2
_ 2-2P

ZF = #top 8s X 0o

w = #g gsz_sz/2.
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Assumption in the UV

[limgg—m 2.y = 0]—>(Tay|or expansion of lé"')(z)}

At the linear order:

‘ﬂIIIIE’ ~ — Ay zy — 3Ap zg — 9Aw zw + Ar zp.
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Assumption in the UV
(limgg—m 2.y = 0]—>[Tay|or expansion of l(()"')(z)]

At the linear order:

‘ﬂIIIIE’ ~ — Ay zy — 3Ap zg — 9Aw zw + Ar zp.

The coefficients A¢ > 0 encode for ALL possible FRG regulators. Indeed

_ ! () _ 1 [d* 3:Pa(p?)
Ao =152 (267, = 22 | Gamyt (putr

where Py is the regularized kinetic term.
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Results: second part
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N - 1 . 2
Simple example: P =1/4

® Only the scalar loops contribute in the UV limit

Bef = —4f 4+ (2 4+ e )xF — g2/ [Au(f' + 2xf") 4+ 3A4pf"] .
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N - 1 . 2
Simple example: P =1/4

® Only the scalar loops contribute in the UV limit

Ocf = —4f + (24 n)xf' — g2/2 [Au(f' + 2xF") + 3Af"] .

® The Fixed Point solution:

&

3
frp(x) = > x* — %gsl/z(AH + Ap) x,

possesses a non-trivial minimum !

xo = 2g1 (g + An) = g¥2k.
28 T A

>0
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N - 1 . 2
Simple example: P =1/4

® Only the scalar loops contribute in the UV limit

Ocf = —4f + (24 n)xf' — g2/2 [Au(f' + 2xF") + 3Af"] .

® The Fixed Point solution:

3
fon() = 2 = 5262 + A0
possesses a non-trivial minimum ! ‘m‘

— 3 1/2 (A0+»AH) 1/2 /
26s e
>
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Conclusions & Outlook
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MS | P=1 Q.7 P—1Qi | P=1/2 Q%
FRG | P € [1/47 1/2]7 52 P e [1/4a 1/2]7 52 P e (07 —|—OO), 52
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Conclusions & Outlook

‘ SU(2)1, x SU(3). ‘ Z:2-Yukawa-QCD ‘ non-Abelian Higgs
MS P=1 Q& P=1,Q,~ P=1/2, Q,k
FRG | P € [1/47 1/2] & | Pe [1/4a 1/2]7 &2 P e (O’ +OO), &2

m Existence of two-parameters (P, &) family of NEW asymptotically free
solutions.

Stability of V/(¢) for any amplitude of the fluctuation field.

Threshold effects do invalidate conventional DER analysis.

This is a scheme-independent phenomenon.

A change of scheme induces a map of the coupling space of initial
conditions

Solve the RG flow down to k = 0 to get a prediction of My /M.
Inclusion of the U(1)

44
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NSNS
Simple example: P =1/2

= All loops contribute at the leading order in the gs-expansion of 9:f(x)

® The Fixed Point solution is still a quadratic polynomial

38s
pr(X) = Ef2X2 — &

5 T X [2£Q(AH + .AO) + 3~AW#g - SAF#top]a

which possesses a non-trivial minimum !

3gs
X0

[262(A9 + An) + 3Aw#g — 8Ar#iop] =

positive if

8Aph2 — 3Awg2 ‘Regulator
<& dependent!
2(Ag + An) dependent!
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|
MS Scheme

| SU(2)r, x SU(3). | Z»-Yukawa-QCD | non-Abelian Higgs
MS P=1,Q,% P=1, Q& P=1/2, Q,F
FRG | P€[1/4,1/2], & | P€[1/4,1/2], & | P € (0,+x), &

The MS scheme can be formulated in a functional way [0Dwyer,0sborn AnnPhys. 323

('08); Codello,Safari,Vacca,Zanusso EPJ C ('17)]

2 _
MD)I=4(2) = T = AP=0

It seems that NO AF solutions are present in this scheme.
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|
MS Scheme

‘ SU(2)1, x SU(3). ‘ Zi2-Yukawa-QCD ‘ non-Abelian Higgs
MS P=1,Q,~& P=1 Q,~ P=1/2, Q,k
FRG | P€[1/4,1/2], & | P€[1/4,1/2], & | P € (0,+00), &

The MS scheme can be formulated in a functional way [0Dwyer,0sborn AnnPhys. 323
('08); Codello,Safari,Vacca,Zanusso EPJ C ('17)]

2

I S)d:“(z)ZE —  AYS=o.

It seems that NO AF solutions are present in this scheme.

FALSE!
REASON: z 4 0 as g5 — 0. Thus the correct definition is:

e 1 MS Z
- ks 0] =12
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I
MS Scheme. Example P = 1.

Only the gauge-boson and fermion loops contribute to G¢:

9 3
O f(x) = —4f(x) + 2xF'(x) + Tom2 7% — 8?21%
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I
MS Scheme. Example P = 1.

Only the gauge-boson and fermion loops contribute to G¢:

9 3
O f(x) = —4f(x) + 2xF'(x) + Tom2 7% — 8?21%

3(3#2 - 16#t20p) 2

pr(X) = CfX2 — 25671’2 X In(x)

The consistency conditions f'(xp) = 0 and f”(xg) = & implies that Cr =
Cr(xo) such that:

3(16#1%op - 3#2)
2= 1282 >0

The positivity of & is fulfilled by the SM | xy remains unconstraint
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Cheng—Eichten—Li solution = DY, 2259 (1974)

The Z>-Yukawa-QCD model represents a toy model for the SM sub-sector
retaining only Higgs (¢), Top quark (¢/) and Gluons (A)

1 m A - ih -
_ - " o2 N4 : o
S /XLaﬂqﬁa ¢+ 50"+ 30 +w1ww+ﬁ¢ww
L i ciw I 2 | =i i j
P o DALY+ OV |

In the Deep Euclidean Regime m — 0: h, A and g
(perturbative renormalized coupling).
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Cheng-Eichten-Li solution

T
0.5

B
0a 0.08}
0.06}
2 03 0.04}
0.02}
0.2 )\_ )\ )
-15 -1 -0.5 ////'05 LOA(h )
oaf -0.02f
0.0 . —
0.0 0.2 0.4 0.6 0.8 1.0
'8
. 2 .
AF region: h? ~ g CEL solution: A4
gs—0
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I
Cheng-Eichten-Li solution

QUASI-FIXED POINT (QFP) CRITERIA?

?D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)

= Asymptotically Free (AF) trajectories can be detected via a suitable
rescaling of the couplings

N h2
h? ~ #g2 == — #
g2—0 — &5 g2—0
g2—0 2 = g? g52—>>0 #
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Cheng-Eichten-Li solution

) have constant QFP solutions.

) and Ao(g?

*(g?

~

® The RG flows of h

\\
z

)

\
\

N
f/w

N
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i ./,//
NN

PEEPEEPEEPSSSSS
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Effective field theory analysis including thresholds

The functional RG flow equation for the full dimensionless renormalized
potential in d = 4, Negor = 3 and Nijayor = 6 is

3272) 1 3(87°) "
N ) , ( _
eu = —4u(p) + (2 +ms)pt/ (p) +1 T u(p) +20u"(p) L+ hZp
scaling part A
57 () 157 (n)

where p ~ ¢?/2 and w = u'(p) + 2pu"(p).
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I
Effective field theory analysis including thresholds

1. Polynomial truncation assuming to be in the SSB regime

A
u(p) =D o= )"
n=2
2. Generalized boundary conditions! are introduced

0 Arbitrary rescaling P for )\,
7 An,+1 as a free parameter

¥

A2
Wv )‘n>2—m‘

1H. Gies and L. Zambelli, Phys. Rev. D96, 025003 (2017)
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Effective field theory analysis including thresholds

SOLUTIONS for P =1/2 (P3 =2) and N, =2

1. CEL solution: 3\;

1500

1000
A3
500
ok
0 2 4 6 8 10 1
A2

2. New solutions: x # 0

0.010

0.005

0.000 /—_—_—'

K _0.005

-0.010

-0.015

-0.020

0 2 4 6 8 10 12 14
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Functional Approach

QUASI-FIXED POINT (QFP) CRITERIA ]

1. Its functional implementation requires a field rescaling
x=0Pp,  F(x) = up).

For example: & = Aoh=4P.
2. We need to solve the non linear differential equation

¢ h?
h2

0 = 0tf(x) = Oru(p) — P xf'(x)
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Functional Approach

$*-DOMINANCE APPROXIMATION ]

3. Assumption: in the UV the scalar fluctuations are dominated by the
¢*-interaction.

1 1
32721 + 3h?2P&x

A
o)~ 22 = )~

4. 0¢f(x) = 0 has an Analytic Solution:
F(x) = Crx¥% + # R [1, b(h), c(h), —352/72”4
—#2F [1, b(h), c(h), —hzfsz}

5. Conditions: f'(xg) =0 and f"(xg) = &.
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Functional Approach

SOLUTIONS for P = 1/2 in the h?> — 0 limit J

II:

I1T1:

IV:

VAN
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Functional Approach

NEW SOLUTIONS for P = 1/2 with x # 0 J
— =10 —RP=7-102 —h2=4-102
20l —RB*=10"% —h*=7-10% —h*=4-107°
15+
u(p) =
10+ !
X
<
st 3
0
6 2 4 é 8 10

0.000  0.001 0.002 0.003 0.004 0.005

p
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T
¢*-dominance approximation: P € (1/4,1/2)

® In the (Cr, &2)-plane there is a one-parameter family of QFPs solutions

&

IT = {z3 > 0, +00}

00 05 10 15 20 25 30
Cy
f(x) ~ 0
X—>00
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