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Which matter systems are asymptotically safe in d = 47

e Gauge-Yukawa theories at large N & N, (perturbatively)
e How far does this extend to small N_.?

e Test gauge theories at large N¢ non-perturbatively



Which matter systems are asymptotically safe in d = 47

e Gauge-Yukawa theories at large N & N, (perturbatively)
e How far does this extend to small N_.?

e Test gauge theories at large N¢ non-perturbatively

Standard QCD picture:

e Small N¢: asymptotic freedom &
confinement in the IR

e Medium Ny: asymptotic freedom
& IR Banks-Zaks fixed point

e lLarge Nf: asymptotic freedom lost
— asymptotic safety?



Which matter systems are asymptotically safe in d = 47

e Gauge-Yukawa theories at large N & N, (perturbatively)
e How far does this extend to small N_.?

e Test gauge theories at large N¢ non-perturbatively

Standard QCD picture: 70
60
e Small N¢: asymptotic freedom & - Safe QCD
confinement in the IR _40
30
e Medium Ny: asymptotic freedom 20/ — onforme
& IR Banks-Zaks fixed point i
) O2 3 4 5 6 7
e lLarge Nf: asymptotic freedom lost Ne

— asymptotic safety?



Gauge theories at large Ny

Usual expansion of beta function in gauge coupling
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Advantages of 1/Nf expansion:
e Perturbative in the expansion parameter 1/N¢
e Non-perturbative in the 't Hooft gauge coupling

e Model building in SM extensions



Topologies of diagrams and counting of vertices

Due to the rescaled gauge coupling g ~ /K/N¢
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Topologies of diagrams and counting of vertices

Due to the rescaled gauge coupling g ~ /K/N¢

1
~ g"Ne =0 —7r—
(N,f/z )
Bubble chain

@...@:om

Each gauge line is always fully dressed with fermion loops



QED beta function at 1/N [Palandues-

Feynman diagrams at 1/N:
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QED beta function at 1//N

Feynman diagrams at 1/N:

(D £ o)

Resummation formula for 1/e pole

> (5 )~ - Hes

n=1

B (K)—3K2+K—2 Kd Fqeo(x) + O €

QED =3 2N; Jq X FQED(X %

(x +3)0x = 3)(x = 3)sin(F) T3~ )
27~22?X—57r%(x—3)xr(3—§)

Radius of convergence: K, = 2

Fqep(x) = —



QCD beta function at 1//N¢ acey '96; Holdom '10]

New Feynman diagrams at 1/Nj:
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QCD beta function at 1//N¢

New Feynman diagrams at 1/Nj:

No resummation formula, but result from critical-point formalism (c.cc, o

2 2
-2 o D) oo )
Faco(x) = 2”3/32 (5'”( ))X (rz( 3—_?;) [gjg)) (4x* — 42x® + 288x — 1161x)

- 42’5% (x — 3)(x + 3)(2x — 9)(2x — 3)]

Radius of convergence: K, =3



Beta functions of (S)QED and (S)QCD

B(k) = pO(K) + 221

TP oo
f

10

UV fixed point for QED & QCD

Landau pole for SQED & SQCD



How physical are these fixed points?

e The fermion mass anomalous dimension goes to zero in QCD and to
infinity in QED

e Hints for FP in QCD at medium N from resummations with Meijer
G-functions

e Lattice studies inconclusive so far

e Poles might be resummable within the 1/Nf series



How to go beyond 1//N

e The next orders in the 1/N¢ expansion would test the physical
nature of the FP

e No known resummation formula for two bubble-chains,
needed for 1/N? and higher orders

e Can we extract the location of the pole, the residuum, etc.,
with a finite amount of coefficients?



How to go beyond 1//N

e The next orders in the 1/N¢ expansion would test the physical
nature of the FP

e No known resummation formula for two bubble-chains,
needed for 1/N? and higher orders

e Can we extract the location of the pole, the residuum, etc.,
with a finite amount of coefficients?

Two methods:

e Large-order behaviour of expansion coefficients

e Padé approximants



Large-order behaviour: Darboux’s Theorem

The nearby singularity determines the large order growth of the expansion
coefficients a,. E.g. for expansion around z =0

e pole of order p at zy (f(z) ~ ¢(2)(1 — z/2)P + finite)
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zy n
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The nearby singularity determines the large order growth of the expansion
coefficients a,. E.g. for expansion around z =0

e pole of order p at zy (f(z) ~ ¢(2)(1 — z/2)P + finite)
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Expectation for QED Fqep = ), fn X"

2\" 2\" 2\"
fn"‘[R0<15> +R1<21> —|—R2<27> —|—}



Large order behaviour of Fqep
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Ratio test f"f“ reveals location of the first pole
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Large order behaviour of Fqep
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With the knowledge of the pole the residuum is computable
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Large order behaviour of Fqep
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coefficients are needed?

40 - 8

coefficients

20 -

10 -

Tpole

"Closer” to the origin — less coefficients are needed
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Padé methods

Analytic continuation of truncated Taylor series by ration of two
polynomials

. PR(X)

Fqep(x) = Z f,x" — p[R,S](X) _ W
n=0 S
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with R+ S = M.
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Padé methods

Analytic continuation of truncated Taylor series by ration of two
polynomials

M Pr(x)

Fqep(x) = Z f,x" — p[R,S](X) _ W
n=0 S

~—

with R+ S = M.

Rewriting of resummed Fqep(x)

r+35)sin®(%)
M3 +3) cos(%)

Padé approximant with 2R a S should lead to best results.

Fqep(x) ~
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Padé approximants of Fqep

1 — FqEep i

0.5 | i

* ]

—-0.5 5

0 2 4 6 8§ 10 12 14 16 18 20

15



Padé approximants of Fqep
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Padé approximants of Fqep
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Padé approximants of Fqep

g ————————
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e Need ~ 30 coefficients to resolve first singularity
(similar to large order growth analysis)

e Can resolve function beyond the first singularity
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QED beta function

l/Nf':

(D € e
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QED beta function

l/Nf':

(D £ e

1/N? (subset):

& - >
A& ) ~CBO-
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QED beta function

1/Ny:

(D £ e

1/N2 subset):

-CEO

Master integral known / not know
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Beyond 1//N¢: nested diagrams

Nested sub-part of beta function: gauge & RG scale independent

Computation up to K*
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Beyond 1//N¢: nested diagrams

Nested sub-part of beta function: gauge & RG scale independent

Computation up to K*

At O(1/N3)

Computation up to K32
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Ratio test at O(1/N?)
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Ratio test at O(1/N?)
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Richardson extrapolation

Enhance the convergence of the series
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Richardson extrapolation

Enhance the convergence of the series
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First Richardson (B=C =...=0)

RWga, =s= (n+ 1)ap+1 — na,
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Richardson extrapolation

Enhance the convergence of the series

A B C
an=s+—+7+—3+...
n n n

First Richardson (B=C =...=0)

RWga, =s= (n+ 1)ap+1 — na,

Second Richardson (C = ... =0)

RP®,, =5= ((n+ 2)2ani =0 () £ g e nza,,)

N
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Ratio test at O(1/N?)
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Bare series: K* = 3.14
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Ratio test at O(1/N?)
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Ratio test at O(1/N?)
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Residue at O(1/N?)
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Bare series: 3"n%b, = —0.512
Second Richardson: 3"n?b, = —0.500007
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Subleading behaviour
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Subleading behaviour
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Subleading behaviour
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Large-order behaviour

Large-order behaviour
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~237n(n—1)
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Large-order behaviour

Large-order behaviour

b, ~

Resummation
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Large-order behaviour

Large-order behaviour

b, ~

Resummation

11 1+1
23n \ n2  nd

+...>+(9((X>13)n>

11 1

237 n(n—1)

> K" ~ %(K -3) In(l — ;() + finite

n=4

Logarithmic branch cut but no pole!
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Nested beta function at 1/N?

"Exact” nested beta function up to K =3

Beta function unphysical beyond K = 3 or magic cancellation needed
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Nested beta function at

1/N? beyond the first branch cut
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No singularity before K = 15/2

Positive pole at K = 15/27
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Nested beta function at 1/N}

(3)
nested

B
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No singularity before K =3

Branch cut at K = 3?
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Factorially divergent diagrams

102 [
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S =

Two factorially divergent contributions but the sum goes to zero

Is there are smarter way of computing it?
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Summary and outlook

e Which matter theories in d = 4 are asymptotically safe?

e Non-perturbative resummation applied to gauge theories at large N¢
e Large-order behaviour & Padé methods constitute powerful tools
e First partial result beyond O(1/N¢) for QED:

New logarithmic branchcut at K* = 3 without pole

ToDo: Remaining diagrams (Master integrals?) & QCD

29



Summary and outlook

e Which matter theories in d = 4 are asymptotically safe?

Non-perturbative resummation applied to gauge theories at large Ny

Large-order behaviour & Padé methods constitute powerful tools

First partial result beyond O(1/Ny) for QED:

New logarithmic branchcut at K* = 3 without pole

ToDo: Remaining diagrams (Master integrals?) & QCD

Thank you for your attention
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