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Effective action I in scalar field theory

e start: generic action S;[x]

Silx] = /ddx{ 241 m X +|nteractions}

@ generating functional for connected Green functions

WIJ] = |n/Dxexp{5,;[x]+/ddex}

e classical field SWI[J
0= =5,

effective action '[¢] = Legendre transform of W[J]
Mg] = /ddxj¢— WI[J]
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Effective average action [y in scalar field theory
e start: generic action S;[x]

SiIx] = /ddx{ 9,X)? + 1m?x? + interactions}
e introduce scale-dependent mass term A, S[x] in W[J]
Wi [J] = In/DX exp {—S,Q[X] — AkS[x] + / ddeX}

ASD] = /ddxka( )y

e discriminate between low/high-momentum modes U p2
k2 p2 < k2
Ri(p?) =
k(p ) { 0 p2 > k2 k2
@ high momentum modes: integrated out
o low momentum modes: suppressed by mass term IR p2 =0
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Effective average action I, for scalars

e start: generic action S;[x]

Silx] = /ddx{ 241 m X +|nteractions}

@ introduce scale-dependent mass term A, S[y] in W[J]
Wi[J] = In/DX exp {—S,;[X] — AkS[x] + / ddex}
o classical field SW.LJ
=)= 55[ ]
define T [¢] = Legendre transform of W,[J]
Flo] = /ddeqﬁ— Wi [J]

o effective average action

Mk[8] = Fi[¢] — AkS[¢]
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Properties of the effective average action

Definition:

Mlo] = Filo] — AkS[4]

k-dependence governed by Functional RG Equation (FRGE)
kakrk[q5] = %Tr {(62Fk + Rk)_l kakRk]

e Formally: exact equation < no approximations in derivation
o independent of “fundamental theory” < S; enters as initial condition

o Limits: ' interpolates continuously between:
e k=00 =~ bare/classical action S
e k—0 = ordinary effective action I'

Theory: specified by RG trajectory
k — rk[gf)]
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Effective average action for gravity

e starting point: generic diff inv action S&#[~,, ]

e perform background gauge fixing v, = &uw + hu

set=1 / d*xVEF,Y"F,

Fo = D"hy, — S2D,h,  YH = 16:GN + ﬁD2] g

o gauge choices: harmonic gauge (p = 1), geometric, ..UV p? = k?
o add ghost term: S&"[h, C, C, b, b; 8]

o IR cutoff AyS: expand hy,,, C,, C* in D?-eigenmodes K2
o —D?-eigenvalues > k*: integrated out
o —D?-eigenvalues < k?: suppressed by mass term 5
IRL pc=0
@ exact RG equation for I'y:

kOl = %Tr [(52I'k + Rk(—Dz))_l kak'Rk(—Dz) + ghosts

AS gravity =y



|
Truncating the theory space

e Caveat: FRGE cannot be solved exactly

@ non-perturbative approximation scheme: truncation of I',[®]

N

Fe[®] =) di(k) 0;[9]

i=1

e — substitute into FRGE
e = projection of flow gives S-functions for 7;(k)

kok (k) = Bi(di; k)

o A first truncations:
Mg, C,C, b2l =M™ [g] + Tulg — &: 8] +5% + 5=
—
truncate

e suggested by WT-identities: Fk[g —g;8|=0
STy W



|
Truncating the theory space

e Caveat: FRGE cannot be solved exactly

@ non-perturbative approximation scheme: truncation of I',[®]

N

Fe[®] =) di(k) 0;[9]

i=1

e — substitute into FRGE
e = projection of flow gives S-functions for 7;(k)

kok (k) = Bi(di; k)

@ Example: Einstein-Hilbert truncation:

y 1
M *g] = 167Gy d*x/g {—R + 2/}

o [-functions for dimless couplings gx = Gik?, A\ = Ak™2
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.
The Einstein-Hilbert truncation

e Einstein-Hilbert truncation <= two “running” couplings: G(k), A(k)
1
gl = —=— [ d* —R +2A(k
£lel = Temgq | AXVE R+ 2A(0)

@ project FRGE onto truncation subspace

@ result: non-perturbative S-functions for dimensionless couplings
2 . -2
8k ‘= k Gk, )\k = /\kk

@ Particular choice of Ry (sharp cutoff)
k Okgk = (v + 2)8k ,

KO M = = (2= ) M — & [5In(1 = 20) = 2¢(3) + 3w
anomalous dimension of Newton's constant:

28k
e |25 +5In(1 - 20) = ¢(2) + 6|

v = —
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The Einstein-Hilbert truncation

@ non-perturbative S-functions for dimensionless couplings

k Okgk = Bg(8k, Ak), Kk Ok Ak = Br(gks Ak)

e (-functions have NGFP:
Be(g™, \*) = Br(g*, X)) =0, g">0, X*>0

e UV attractive in g, Ax
e quantum physics: anomalous dim. of Newtons constant: ny = —2!
G(k)=g"k=2, NAk)=\"k?

@ If present in full theory: NGFP provides UV completion of gravity

AS gravity W



Phase diagram of quantum gravity in the EH-truncation

Type Ila

Type Illa

%
Type IIIb

M. Reuter, F. Saueressig, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054]
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Questions raised by the Einstein-Hilbert results:

Einstein-Hilbert truncation leads to natural questions:

@ Does the NGFP also exist in higher-dimensional truncations?

@ How many couplings are relevant?

@ What does it happen at kK = 07
@ What is the physical content of the theory?
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Exploring the theory space of gravity (I'; *[g])

R8

R7

R6

RS

R* ..

R3 Co” oo™ Cor v ROR + 7 more
R2 Copor CHP° Ry RV
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]
Exploring the theory space of gravity (I'; *[g])

Einstein-Hilbert truncation
RS

R7

R6

R5

R4

R3 Cw” Cpo™ Cor OR + 7 more
R? Cyupo CHVPO R, R

1
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]
Exploring the theory space of gravity (I'; *[g])

Einstein-Hilbert truncation
RS

R?
R6
R5

" R2-truncation

R3 C,U,Vpa Cpon)\ C/i/\'uy UR + 7 more
R C,quO' Crvpo R/U/ RHv
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]
Exploring the theory space of gravity (I'; *[g])

(R)
R7
R6
R5
R4
R3
R2

1
N

Einstein-Hilbert truncation

" polynomial f(R)-truncation

Cu’? CPU“)‘C,Q,\“” ROR + 7 more

Cuvpo CHVP7 R, R*
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]
Exploring the theory space of gravity (I'; *[g])

(R)
R7
R6
R5
R4
R3

Einstein-Hilbert truncation

" polynomial f(R)-truncation

* R? 4+ C2-truncation

Cu’? CPU“)‘C,Q,\“” ROR + 7 more

R2

1

C;wpa C'IWWD R/U/ RHv

N\
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]
Exploring the theory space of gravity (I'; *[g])

(R

R7
R6
R5
R4
R3

Einstein-Hilbert truncation
" polynomial f(R)-truncation

" R? + C2-truncation
C3-truncation: Goroff-Sagnotti

C

C/WIW C/)(TH/\ CH/\/“/ ROR + 7 more

R2

1

C;wpa C'IWp(D R/“/ RHv

N\
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Increasing evidence for a finite dimensional UV-manifold

A. Codello, C. Rahmede, R. Percacci, 2007, Phys.Rev.Lett
D. Benedetti, F.Saueressig, P.Machado, 20009.

AB, M.Reuter, JHEP 2005

D. Benedetti, F. Caravelli, JHEP 2012 f(R)

Gies et al, 2017 PRL , C3

de Brito, G.P. et al, f(R) reparametrization

...(gravity + matter, unimodular gravity, tensor models)
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e Falls, Litim, Schroeder, PRD 2019
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Issues in Quadratic Gravity

Gravitational action of the type

S = /d4x\/—g [YR — aCH*? Cpypor + BR?] (0)

leads to a renormalizable theory in D = 4 dimensions

e Unitarity is lost due to the presence of a spin-2 ghost of mass
m3 = 5= in the spectrum of physical states
K. Stelle PRD 16, 953, 1977

@ see M. Piva’s talk for the fakeon solution

@ What is the phase diagram from the functional RG approach?

o Benedetti, Machado, Saueressig, MPA 2009
e Hamada & Yamada JHEP 2017
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Issues in Quadratic Gravity
The starting action is
= Ffra"ity + ng + Sgh' (1)

The higher-derivative gravity action is parameterised with
reraviy — / d*x /8 [A\—ER+ aR?> + bR |

:/d4x\/§[/\—§R+<a+§> R2+bC2 g }

/d“xf[)\ ER+ <a+ b> R2+bRﬁVpU—ZE}, (2)

where we define the Gauss-Bonnet term E = R? — 4R, R* 4 Ry pe RHVPT
which is topological invariant in d =, and C? = E + 2R RH — 2/3F\’2 =

2 2 2
Rivpe — 2Ry, +2/3R< is the squared Weyl tensor.
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The gauge and ghost action are given by

1

Sop= —
gf 2

/ d*xVEg&g"' L, %, , (3)

- - 1—8- = —
Sgh = —/d4X\/§ CM |:g'“l/v2 + TﬁV“V” + RMY Cy, (4)

where C, and Cu are the ghost and anti-ghost fields and

B+1c

Y, =Vh, ———V,h, (5)

with h = g" h,,.

AS gravity I



@ Employ the York decomposition
- _ N 1_
h“y = hNV + V#&/ + Vyf# + V“Vy - Zglulllj o + Zg,u,ljh7
Cu=Cr+V,C,

Co=0Cr+

<
(@1}

I

@ Lichnerowicz Laplacians
AL()S = —E‘ 5,
AL].E/J = _igﬂ + RILVé'V?
Apphyy = —0hu + R hoy + RPhyy — 2R, P hog.

25 / 46
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@ The Hessian of ', are given as follows:

_ . R\ b/ 3R ~ R?
r{rm = gAu —aR <AL2 - 2> +35 <A§2 - 5B+

AS gravity
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16 8 8 16a 3
(9)

eSS R 38 - _

rioh — rlho) A ) A (Bo— = ) - =B (2
k 16 8 Ao + Lo Lo o~ 3 160 Lo
(10)

3¢ 9a R 3b R\ - A B2

I'(hh):——A Ap—~ |4 App—— B+ 5 — -1
K o+ 4 8 -3 o+ 4 8 -3 L0+8 160
(11)
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It may be useful to use regulators such that the regulator such that the
Lichnerowicz Laplacians are replaced to k2. That is,

R{E) = (F00) - r{T0@) 0k —2) with 2= Ao (12)
RO (z) = (rffﬁ)(/@) _ |—(k€€>(z)) 0(k*—z) withz=Ap;, (13
REE) = (M9 (0) ~190) 067 —2) with 2= Ao (14)

These regulators are the so-called type-Il cutoff. We can choose the type-|
cutoff or hybrid of both types.

AS gravity 50 ) 0



The flow equation

After long manipulations, the flow equation reads

1 atRhJ_hJ_ 1 6tRH7 (]_) (O)
Il = 5 Trr) [2 TN |y | T
2 Ewi)hL + R 2 rgﬁ) + R

(15)

One can easily count the degrees of freedom: from the TT mode (5 degrees of

freedom) and h-mode (1 degrees of freedom), there are 6 degrees of freedom,

while degrees of freedom of 77,(}) and 77/((0) have 3 and 1, respectively. 77,(3)

and n,EO) have a minus sign, so that the total degrees of freedom is 6 —4 = 2.
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Fixed points of the beta functions

@ Pure quadratic gravity
e a=0.00509116 b = —0.0112065 £ = 0.0112348 X = 0.0043599
o The masses of the spin-2 and spin-0 field are: m3 = —1.00252
m2 = —0.0112347663 are imaginary near the cutoff
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Sperically symmetric solutions (m3 > 0)

ds? = —h(r)dt® + a + r2dQ?
f(r)

Define:
h(r)=1+ V(r) f(r)=1+ W(r)

Defining a new function Y(r) = r=2 (rW(r))’ one finds, for large r
(V2= mj) (V2V+2Y) =0

2,2 2 2
w2 <<v2_32mzf"02> \/+2m22mo2y) _o.
m5 + 2mg m5 + 2mg

AS gravity
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Non tachyonic case

2M —mar mor
h(r)=1+C— == rovy S oyt
7efmor emor
+Yo ——+ Yo
2M —mar
f(r)zl—T—i-Y{e (1+ mor)+ (19)
emzr —Mmor
+ Y, p (I—mar)—Y, (1+ mor)+
+em0r
-Y, (1 —mor)
AS gravity
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Behavior near r =0

Frobenious analysis

N

h(r) = hort (1 + Z hnr"> +0 (rt+N+1>

n=1

N
f(ry=r® <1 + Z h,,r") + 0O <r5+N+1)
n=0

@ (0,0) class: Minkowski solution and de Sitter solution. Regular metric
at r=20

@ (—1,—1) class: Schwarzschild solutions

@ (2,—2) class: new family of solutions (first discovered by Bob
Holdom).
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Behavior near r = rp # 0

h(r) = ho(r — ro)* <1+Zh r—ro) ) +O<rt+N+1)
f(r) = (r - rO)S <1 + Z h,,(r — ro)”> +0 (rS+N+1>
n=0

@ (1,0) class: Wormbholes: radial divergent metric and regular temporal
component of the metric

e (1,1) class: regular horizons

AS gravity eI



Behavior near horizon - Einstein-Weyl theory

Co— decreasing Yukawa - Gy coefficient of 1/r.

h(r) = by ((r = ) + o () (r = 1) =+ s (A i) (r = 1) + O ((r = 1
f(r)=f(r—ru)+fo(f,m)(r—rm) + 6, m)(r—m)’+ 0 <(r — )’

We “shoot" from large r towards an interior point and we impose continuity
of the function and the derivatives

AS gravity 25



Phase diagram

0.3 1.0

N

Figura: solid: vanishing metric, green diagonal: singular metric , blue diagonal
WHs
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=
T R BT N R

Figura: Holdom-type of solution obtained for M = 4.79 and v = —23.77. Radial
profile of —In(A(r) (dashed) and In B(r) (solid) for a, = 1.5 and
az = ag = by = 1. Dot-dashed line represents the corresponding Schwarzschild
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Critical point
C,.
0233}
'1 -
0.229
- - c
135 124 123 122 121720

Figura: Coexistence of the three solutions
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Entropy

@ Bekenstein-Hawking entropy

1
SBH = ZA

e Wald entropy

1 oS
S= d0d¢——~/—8tt&rr

8m Horizon 5thrt

AS gravity 0 )
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Tachyonic branch: m3 < 0

@ AB S.Silveravalle, PRD R 2019

2M cos (|mo|r + cos (|mglr +
My =15 G M op, R madrga) g cos(imolr + o)

r

2M cos (|mo|r + i
f(r):l—T—FAz ( 2r| s02)—I—Az|m2]sm(\m2|r+<,02)
cos(|mo|r + .
o CTOITEL0) g sin (ol + o)

which also depends on six unknown (four coefficients and two phases, ¢
and ¢2). However, the spacetime is no longer asymptotically flat and we

must require Ag|mp| < 1 and Az|my| < 1 for our linearised solution to be
valid at large values of the radial coordinate r.
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It is interesting to look at the behavior of the curvature invariant near r =0
for M = 0. It is not difficult to show that regular behavior at r = 0 can be
obtained if g = @2 = 7/2 4 27n so that

R = —3m3Ao
1
Ru R = 5 (TmGAT — 2m3|mof* Aoz + 4m3 A7) (20)

1
K= 5(5m8A§ — am3|mo3ApgAs + 8mSA3)

We have thus found a new class of “rippled" solutions of the field equations in
the weak field regime which are everywhere regular. One can argue that these
solutions are the Lorentzian counterpart of the kinetic condensate solutions
which stabilize the conformal factor in R + R? (AB, M.Reuter, PRD 2013)
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Numerical integration of the EOM

10 20 30 40 50 60 70"
Figura: f(r) (black) and h(r) (red) obtained by solving the EOM of the quadratic
theory as a function of the radial coordinate (in Planck units).
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Euclidean Quantum Gravity

@ Gravitational instanton

Z:/D[g]e‘sE

o lower bound
SE ~ —4.0771‘5

where 5 > 0 is the coefficient of the R? term.
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Conclusions

@ According to AS pure gravity seems to finite and predictive
@ UV critical manifold has finite dimensionality
@ The tensor structure of the resulting theory is problematic

e the quantum theory does not represent reality
e a miracle happens in the untruncated theory
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