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Why NC Quantum Field Theories?

Initially a method to regularize infinities in QFT
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Quantized Space-Time
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ally assumed that space-time is a continuum. This assumption is not required by
ance. In this paper we give an example of a Lorentz invariant discrete space-time.

It is us
Lorentz inva

HE problem of the interaction of matter trary procedures, and neither process has yet
and fields has not been satisfactorily solved ~been formulated in a relativistically invariant

to this date. The root of the trouble in present manner. It may not be possible to do this.
field theories seems to lie in the assumption of It is possible that the usual four-dimensional
point interactions between matter and fields. continuous space-time does not provide a suitable
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[%1, %] = 2i6.

NC QFT
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More recent approaches:

Connes geometric perspective
Connes & Lott, Nucl. Phys. Proc. Suppl. 18B (1991), pag. 29-47;

As effective field theories of Strings
Seiberg & Witten, hep-th/9908142;

Agrees with expected general features of effective field theories

of Quantum Gravity

for example Doplicher, Fredenhagen, Roberts hep-th/0303037 .
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Maybe the simplest approach is to deform the algebra of func-
tions (fields):

(Fxg)(x) = [ &% % £(x) g(x) ]

* is NC & associative; indeed

[Xa7 Xb]* = 2i@ab-
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st Now one can define a QFT by replacing products with x. For

the quartic theory
4 2 2 2, A 4
S= [ dx(9p.)" + migi + el

where A\p?* = A * ¢ x o * ) and x is the Moyal product.
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mutative
QFT
rne LiogDetd — 2 1 m?
1—loop — 5 og e - + m

+

w| >

[L(62()) + R(&(x)) + L(6 )R(¢>}},
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Because of the Moyal product, we have three different contri-
butions:

1
rNe loop = 5 log Det{ — 0%+ m?

+

w| >

[L(62(0)) + R(E(x)) + L(s )Rw)}},

where we have used the notation

L(¢(x))a(x) = o(x) x g(x),  R(d(x))g(x) = g(x) x d(x).
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L(¢*(x)), R(¢*(x)) = _O_
_%

L(g)R(¢) =
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Planar contribution

L(¢*(x) + R(¢*(x)) —

rP :A md—2
1=loop ™ 31 (277)d/2

F(l—d/2,m2//\2)/ ®?
]Rd
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L(¢)R(¢) —

A . ~
r{Vf'loop = E(16 7r3)_d/2md_2 /ddﬁ ¢*(p)¢(P) : ZNP(P)-

A Smearing function is generated by the geometry

Ynp(p) = 2(’"\@ﬁ|)1_d/2Kd/2—1(2m\@ﬁ|)

1 o 0\O-2(2—0
neo ¢ bR o B(E=9)07(%=9) (¢
I_1—Ioop /Rddx ¢(X) /]Rd dydet@ € ¢(Y)
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S L@)R(4) -
8;1.?“\/6

A - - 5 o (p)o

. M lop = 15(167°) 79/ 2m?2 / d*p 6" (P)o(p) - e (p).
Closing

remarks

A Smearing function is generated by the geometry

Tnp(p) :=2(mOp) K, ;
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Tnp(p) = 2(m|©p]) 2Ky n-1(2m|©p])

4
UV/IR mixing.

Minwalla, Van Raamsdonk, Seiberg, hep-th/9912072

Craig, Koren: hep-ph/1909.01365 — possibility to generate small
scales in Standard model



AS and NC

S. Franchino-
Vinas

Grosse-Wulkenhaar model

These problems are not shared by every NC QFT.

Consider for example the “minor” change introduced by Grosse
& Wulkenhaar ('03)

5:/d4x¢*(m+m2)¢+A¢i+ii Wi 1L (1)

It is renormalizable to all-orders in a perturbative expansion
(Grosse & Wulkenhaar '04)
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e Computation of the one-loop beta function (Grosse &
Wulkenhaar, '04)

Gw A1 — w?6?
Pr= 182 223 T
4872 (1 + w?6?)

® Two- and three-loops beta function (Disertori &
Rivasseau, '06)

e All order beta function (Disertori, Gurau, Magnen and
Rivasseau, '06)

4
Asymptotic safety



AS and NC

5. Franchino. Grosse-Wulkenhaar model

Vinas

Responsible for this:
— Langman-Szabo duality ('02);
S = /d4xq§* (O4 m?) ¢+ At +w’x*¢*  (3)

— easy solution because of a sort of Ward identity (unitary
transformation, similar to those of Luttinger liquid).
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Can we construct some connection with cosmology?

Consider de Sitter (or FRW) noncommutative geometries.

® construction of fuzzy de Sitter via representations of Lie
algebras (Buri¢, Latas, Nenadovi¢, '18, '19);

® curved k-Minkowski spaces from Quantum Groups
(Gutierrez-Sagredo, Ballesteros, Gubitosi, Herranz, '19);
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Snyder-de Sitter (SFV & Mignemi hep-th/1909.xxxxx, 1806.11467):
(%, %] = i8°J5,  [Bi Bj] = ia®Jy,
[%, 5] = 6 + &2Xi% + B*pipi + aB(Xipi + Bi%)]-
SdS

(A =302 ~ 10%6eV—2)

Motivated by unmodified Poincaré symmetries:
[Jijs D) = i(0icdit — Sirdjxe + OjucJin — 0jJiwc),

[Juv pk] ( Ikpj 6kj/3i)7

[Jij, %] = (0 X; — 0k %i).-
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Snyder-de Sitter model

Consider a ¢* action in Snyder-de Sitter:
D ) o? ) 2 4
One can make a transformation of the coordinates
o
X =: Xi + AP;, pi=:(1—-XNP; — EX,‘,
(3
(X, X = iB°Jj, [Pi, Pi] =0, [Xi, Pj] = i(6+B%PiPj),
This is Snyder space.
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P =:pi=—i0i, Xi=:x+ B>xpipi = xi — B°x;0;0;.

¢

sds Canonical commuting variables!
If we choose projective coordinates in de Sitter,

1
1+ a2)?2)(D+1)’

g = (
we can expand the quadratic part of the action for small «

2
5@ = /deng <p2 +m? - D(D;l)az + %% + o (xp)(px)
(1-D) o, (D+1)a*
L T S

x* + 0(04)) .
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Consider the one-loop divergent terms:

/¢4 _ A2 _ 0‘2)‘2”75# _ 52)‘2”7(29#
12872 647m2cw? 3272¢

302N BPNW2) BN,
25672 32m2e 12872¢
+ $(6m? + x?6w? + higher powers of x)¢

Sds + (;54 X2 [

> Apolynomial(a, 3, w)

om- =
24072ew*
Su? — A (w2 (w — 416a2) +9602m* + 652m2w3)
YT 1672ew
702003 Axtw (82w +4002m?)  AB2xPw3(—02)
hp of x =

3m2e 8m2e 9672w



AS and NC

S. Franchino-

Vinas

Closing
remarks

¢

¢

Closing remarks

connection of Grosse-Wulkenhaar's term with geometry;
need to study the 1-loop renormalization flow;

possibility of generating the cosmological constant scale
through RG flow?

relation to swampland AdS conjecture;
implications/bounds from g—; ~ 10%V??

existence of Ward identity?
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