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Introduction

Exact Renormalization Group Equation

Physical systems at different energy scales, are described by different
descriptions.

Renormalization Group (RG) transformations, transform us between these
different descriptions of a physical system at different energies.

By means of Wilsonian RG & specific regularization (Cut-off on
Momenta),
We’ll have a RG differential Equation (RGE), which is Exact.

Gauge Symmetry

What will happen to the gauge symmetry, in this procedure?

I Cut-off on Momenta → Breaking of Gauge Symmetry

I Gauge Symmetry through the flow
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Wetterich ERGE

(Wetterich’93, Gies’06)

eWk [J] ≡ Zk [J] := exp
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, ∂t = k d
dk

, φ(x) = 〈ϕ(x)〉J = δWk [J]
δJ(x)
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Breaking of gauge symmetry by regularization

Adding a mass-like regulator term to gauge-fixed Yang-Mills theory:

∆Sk =
1

2

∫
dDp

(2π)D
Aa
µ(−p) (Rk,A)abµν(p)Ab

ν(p) + ghosts

Manifest BRST invariance is certainly lost. For having a BRST
symmetric RG flow:

I Starting with a gauge symmetric regularized effective action

I Compatibility of the flow equation with the gauge symmetry
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Faddeev-Popov Quantization (Off-shell formulation)

(Zinn-Justin’74)

Z =

∫
DAe−SYM [A]

Z =

∫
DAe−SYM [A]δ

(
F [A]− n(x)

)
∆ab

FP

Using Fourier transform of δ
(
F [A]− n(x)

)
, introducing Nakanishi-Lautrup

field and writing ∆ab
FP = δFa[A]

δAc
µ

δAω c
µ

δωb

∣∣∣
ω=0

= δFa[A]
δAc
µ
Dcb
µ in terms of ghosts:

Z =

∫
DADbDc̄Dc e−SYM [A]−ba(x)

(
F a[A]−na(x)

)
−Sgh [c̄,c,A]

Choosing a Gaussian weight for the

noise field e
−nana

2ξ results in:

SNL =
ξ

2
baba

Sgf =
1

2ξ
F a[A]F a[A]

Choosing a Fourier weight for the noise

field e
−vana

2ξ results in:

e−SNL = δ(ba − v a)

Sgf = v aF a[A]
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BRST symmetry

(Zinn-Justin’74)

For any SNL, the action, is invariant un-
der the following BRST symmetry:

SYM [A]+Sgf [A, b]+SNL[b]+Sgh[A, c̄ , c]

where Sgf [A, b] = baF a[A].

sAa
µ = Dab

µ cb

sca =
g

2
f abccbcc

sc̄a = ba

sba = 0 .

In the case of Fourier noise after integration over ba, we’ll left with:

sAa
µ = Dµc

a ,

sca =
g

2
f abccbcc ,

sc̄a = v a ,

sv a = 0 .

Sgf [A, v ] = v aF a[A]

Sgf remains linear in F a[A]



BRST symmetry and Zinn-Justin Master equation

(Zinn-Justin’74)

Zinn-Justin Master Equation:

eW [J,η,η̄,v,K ,L] =

∫
DADcDc̄ e−S[A,c,c̄,v ]−Sso .

Sso =− Jµa A
a
µ − η̄aca − c̄aηa

+ K a
µ (Dµc)a + La

1

2
gf abccbcc .

Using s2 = 0 and the Legendre transform:

Γ[A, c, c̄, b,K , L] = sup
J,η,η̄

{
Jµa A

a
µ + η̄aca + c̄aηa −W [J, η, η̄,K , L]

}
,

δΓ

δAµa

δΓ

δK a
µ

+
δΓ

δca
δΓ

δLa
+ va δΓ

δc̄a
= 0 .
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Modified Master Equation

(Ellwanger’94; Reuter, Wetterich’94)

By adding the mass-like regulator term:

Γ̃k = Γk +∆Sk , ∆Sk = 1
2

∫
Aa
µ Rµν A

a
ν + ghosts

δΓ̃k

δAµa

δΓ̃k

δK a
µ

+
δΓ̃k

δca
δΓ̃k

δLa
+ ba

δΓ̃k

δc̄a
− TrRµν

( δ2Γ̃k

δAa
µδΦ

)−1 δ2Γ̃k

δΦ†δK aµ
+ · · · = 0 .

where:

Φi =

Aaµ

ca

−c̄a


concrete calculations possible but tedious

(Ellwanger,Hirsch,Weber’96’98)
(Gies,Jaeckel,Wetterich’04)

modified master equation preserve under the flow.

(Ellwanger’94; Litim, Pawlowski’99;Pawlowski’95)
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Flow equations and gauge invariance
I Use of background field methods

(Reuter, Wetterich’94)
True quantum gauge invariance encoded in modified symmetry identities

(Nielsen identities, Shift-Ward identity) (. . . )

I Manifestly gauge invariant RG
(Morris’98)

(Arnone,Gatti,Morris’02;Morris,Rosten’06)

Embedding into SU(N |N) gauge theory, no gauge fixing, no ghosts
I Geometric effective action and Wilsonian flows

(Pawlowski’03)
(Branchina,Meissner,Veneziano’03;Donkin,Pawlowski’12)

Vilkovisky-DeWitt framework, modified Nielsen identities
I Gauge invariant flow equation

(Wetterich’16’17)

Projection onto physical modes, bootstrap construction of action and
fields

BRST Symmetry:

I Quantum BRST transformation which is scale dependent BRSTk

(Sonoda’07)
(Igarashi,Itoh,Sonoda’07’08’10; Igarashi,Itoh,Morris’19)

I the regulator as a part of gauge fixing

∆Sk + Sgf → Sgf ,k

(Sh.A,Gies,Zambelli’19)
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Non-Linear gauge and mass-like regularization
(Sh.A,Gies,Zambelli’19)

In the case of Fourier weight for the noise field, Sgf = v aF a[A]; we
choose a non-linear gauge:

Fa[A] = AbµQabc
µν A

cν + Lab
µ Aaµ

Qabc
µν =

v a

2|v |2 Qµνδ
bc ,

Lab
µ =

(
1 + rgh(−∂2)

)
∂µδ

ab

Qµν = Rµν(∂)−
1

ξ
∂µ∂ν .

Rµν(∂) = RL(−∂2)ΠµνL + RT(−∂2)ΠµνT

Rgh(∂) = (−∂2)rgh(−∂2)

Sgf =
1

2
Aa
µQµνAa

ν + v a(1 + rgh(−∂2))∂µAa
µ,

Sgh = −c̄a(1 + rgh(−∂2)) (∂µDµc)a

− v a

2|v |2 c̄
a
((

QµνAb
ν

)
(Dµc)b + Ab

µ (QµνDνc)b
)

Breaking of global color symmetry, non-local vertex, new and v -dependent ghost-gluon
vertices.

BRST-symmetric and regularized effective action
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ERGE

(Sh.A,Gies,Zambelli’19)

Obtaining the Exact RG flow equation:

eWk [J,η,η̄,v ,K ,L] =

∫
DADcDc̄ e−S[A,c,c̄,v ]−Sso

Sso = −JaµAa
µ−η̄aca−c̄aηa+K a

µ(Dµc)a+La
g

2
f abccbcc−

va

|v |2
c̄aAb

µI
bµ−

va

|v |2
c̄a (Dµc)b Mbµ .

Ji =

Jaµ
η̄a

ηa

 , Φi =

Aaµ

ca

−c̄a

 , Ii =


K a
µ

La

Ma
µ

I aµ

 . Γ̃[Φ, v , I] = supJi

{
J †i Φi −W [J , v , I]

}

∂t Γ̃ =
1

2

(
∂tRµνδ

ab
)(Γ̃(2)−1)

AaµAbν
+ Γ̃

(2)

Ma
µΦj

(
Γ̃(2)−1)

Φj Abν
+ Γ̃

(2)

Kb
ν I aµ

+
δΓ̃

δMa
µ

Abν −
(
δ

δK b
ν

Γ̃

)( ←

Γ̃
δ

δI aµ

)
+
(
∂t rgh∂µδ

ab
)(

Γ̃
(2)

Ka
µΦj

(
Γ̃(2)−1)

Φj (−c̄b )
− c̄b

(
δ

δK a
µ

Γ̃

))
+ ∂t∆Sgf ,

∂t∆Sgf =
(
∂t rgh∂µδ

ab
)
vbAaµ +

1

2

(
∂tRµνδ

ab
)
AaµAbν

,



ERGE
(Sh.A,Gies,Zambelli’19)

Γ[Φ, v , I] = Γ̃[Φ, v , I]−∆S[Φ, v ]

For a family of truncations:

Γk [Φ, v , I] = Γ[Φ, v ] + Sbrst
so [Φ, v , I]

Sgf =
1

2
Aa
µQµνAa

ν + va(1 + rgh(−∂2))∂µAa
µ,

Sgh = −c̄a(1 + rgh(−∂2)) (∂µDµc)a −
va

2|v |2
c̄a
((

QµνAb
ν

)
(Dµc)b + Ab

µ (QµνDνc)b
)

∂tΓ[Φ, v ] =
1

2

(
∂tRµνδ

ab
) (

Γ̃(2)−1
)
Aa
µA

b
ν

+
1

2

(
∂tRµνδ

ab
)

Γ̃
(2)

Ma
µΦj

(
Γ̃(2)−1

)
ΦjAb

ν

+
(
∂t rgh∂µδ

ab
)

Γ̃
(2)

Ka
µΦj

(
Γ̃(2)−1

)
Φj (−c̄b)

.



Master equation and BRST symmetry through the RG flow

(Sh.A,Gies,Zambelli’19)

Σ[Γ̃] =
δΓ̃

δAa
µ

δΓ̃

δK aµ
+

δΓ̃

δca
δΓ̃

δLa
+ v a δΓ̃

δc̄a

+ Ma
µ
δΓ̃

δK a
µ

+ Aa
µI

aµ +
δΓ̃

δMa
µ

I aµ.

Σ = 0 is the master equation. We
will have BRST-symmetry through
the flow if the master equation and
flow equation are compatible with
each other:

∂tZ = GtZ

Gt =
(
∂t rgh∂µδ

ab
)(

vb δ

δJaµ
−

δ2

δηbδK a
µ

)
−

1

2

(
∂tRµνδ

ab
)( δ2

δJaµδJ
b
ν

−
δ2

δMa
µδJ

b
ν

−
δ2

δI aµδK
b
ν

)
.

D = −Jaµ
δ

δK a
µ

+ η̄a
δ

δLa
+ vaηa −Mµ

a
δ

δK a
µ

+ I aµ
δ

δJaµ
− Iµa

δ

δMµ
a
,

[D,Gt ] = 0.



Summary

I Wetterich Exact Renormalization Group Equation

I Breaking gauge symmetry and modified master equation(non-linear
and second-order master equation)

I Regularized and BRST symmetric effective action (bilinear master
equation)

I Fourier noise and Nonlinear gauge fixing

I Breaking of the global color symmetry, an external
Nakanishi-Lautrup field, a non-local vertex, new regulator-dependent
ghost-gluon vertices

I Compatibility of the flow equation with the master equation

BRST symmetric RG flow



Future Works

I Simplest perturbatively renormalizable truncation

I Proper-time regulator Renormalization Group flow



Thanks for Your Attention



Backup

For any gauge-fixing functional F a[A]:

S[A, c, c̄, v ] = SYM [A] + Sgf [A, v ] + Sgh[A, c, c̄, v ]

can be written as usual:
S[A, c, c̄, v ] = SYM [A] + sΨ ,

where
Ψ = c̄aFa[A] .


