

BRST-invariant RG flows

Shimasadat Asnafi

Sept. 2019

Trento, Italy

Introduction

Exact Renormalization Group Equation

Physical systems at different energy scales, are described by different descriptions.

Renormalization Group (RG) transformations, transform us between these different descriptions of a physical system at different energies.

By means of Wilsonian RG & specific regularization (Cut-off on Momenta),

We'll have a RG differential Equation (RGE), which is Exact.

Gauge Symmetry

What will happen to the gauge symmetry, in this procedure?

- ightharpoonup Cut-off on Momenta ightarrow Breaking of Gauge Symmetry
- Gauge Symmetry through the flow

- Exact Renormalization Group Equation, ERGE (Wetterich)
- ► The special way of regularization → Breaking of gauge symmetry
- Recovering the symmetry: (4-d gauge-fixed Yang-Mills theory)

- Faddeev-Popov quantization with Fourier noise
- BRST symmetry and master equation
- Modified master equation
- flow equations and gauge invariance
- ▶ Non-linear gauge and mass-like regularization
- flow of the effective average action and compatibility with the master equation

- ► Exact Renormalization Group Equation, ERGE (Wetterich version)
- ► The special way of regularization → Breaking of gauge symmetry
- ► Recovering the symmetry: (4-d gauge-fixed Yang-Mills theory)

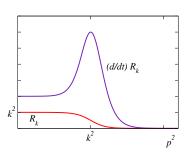
- ► Faddeev-Popov quantization with Fourier noise
- ► BRST symmetry and master equation
- Modified master equation
- flow equations and gauge invariance
- ► Non-linear gauge and mass-like regularization
- flow of the effective average action and compatibility with the master equation

Wetterich ERGE

(Wetterich'93, Gies'06)

$$\begin{split} \mathrm{e}^{W_k[J]} & \equiv & \mathcal{Z}_k[J] := \exp\left(-\Delta S_k \left[\frac{\delta}{\delta J}\right]\right) \, \mathcal{Z} \\ & = & \int_{\Lambda} \mathcal{D}\varphi \, \mathrm{e}^{-S[\varphi] - \Delta S_k[\varphi] + \int J\varphi}, \end{split}$$

$$\Delta S_k[\varphi] = \frac{1}{2} \int \frac{d^D q}{(2\pi)^D} \, \varphi(-q) R_k(q) \varphi(q)$$



$$\begin{split} \partial_t \Gamma_k &= \frac{1}{2} \operatorname{Tr} \left[\partial_t R_k \left(\Gamma_k^{(2)} [\phi] + R_k \right)^{-1} \right] \\ \Gamma_k [\phi] &= \sup_J \left(\int J \phi - W_k [J] \right) - \Delta S_k [\phi] \\ t &= \ln \frac{t}{\Delta} , \ \partial_t = k \frac{d}{dt}, \ \phi(x) = \langle \varphi(x) \rangle_J = \frac{\delta W_k [J]}{\delta J(x)} \end{split}$$

- Exact Renormalization Group Equation, ERGE (Wetterich version)
- ▶ The special way of regularization → Breaking of gauge symmetry
- ► Recovering the symmetry: (4-d gauge-fixed Yang-Mills theory)

- ► Faddeev-Popov quantization with Fourier noise
- ► BRST symmetry and master equation
- Modified master equation
- ▶ flow equations and gauge invariance
- ► Non-linear gauge and mass-like regularization
- flow of the effective average action and compatibility with the master equation

Breaking of gauge symmetry by regularization

Adding a mass-like regulator term to gauge-fixed Yang-Mills theory:

$$\Delta S_k = rac{1}{2} \int rac{d^D p}{(2\pi)^D} \, A_{\mu}^{a}(-p) \, (R_{k,A})_{\mu
u}^{ab}(p) \, A_{
u}^{b}(p) + ghosts$$

Manifest BRST invariance is certainly lost. For having a BRST symmetric RG flow:

- Starting with a gauge symmetric regularized effective action
- Compatibility of the flow equation with the gauge symmetry

- Exact Renormalization Group Equation, ERGE (Wetterich version)
- lacktriangle The special way of regularization \longrightarrow Breaking of gauge symmetry
- ► Recovering the symmetry: (4-d gauge-fixed Yang-Mills theory)

- Faddeev-Popov quantization with Fourier noise
- ► BRST symmetry and master equation
- Modified master equation
- flow equations and gauge invariance
- Non-linear gauge and mass-like regularization
- flow of the effective average action and compatibility with the master equation

Faddeev-Popov Quantization (Off-shell formulation)

(Zinn-Justin'74)

$$\begin{split} \mathcal{Z} &= \int \mathcal{D}A \, e^{-S_{YM}[A]} \\ \mathcal{Z} &= \int \mathcal{D}A e^{-S_{YM}[A]} \delta\Big(F[A] - \textit{n}(x)\Big) \, \Delta_\textit{FP}^\textit{ab} \end{split}$$

Using Fourier transform of $\delta\left(F[A]-n(x)\right)$, introducing Nakanishi-Lautrup field and writing $\Delta_{FP}^{ab}=\left.\frac{\delta F^a[A]}{\delta A_\mu^c}\right|_{\omega=0}=\frac{\delta F^a[A]}{\delta A_\mu^c}D_\mu^{cb}$ in terms of ghosts:

$$\mathcal{Z} = \int \mathcal{D}A\mathcal{D}b\mathcal{D}\bar{c}\mathcal{D}c \, e^{-S_{YM}[A] - b^{a}(x) \left(F^{a}[A] - n^{a}(x)\right) - S_{gh}[\bar{c},c,A]}$$

Choosing a Gaussian weight for the Choosing a Fourier weight for the noise noise field $e^{\frac{-n^an^a}{2\xi}}$ results in:

$$S_{NL}=rac{\xi}{2}b^ab^a$$
 $e^{-S_{NL}}=\delta(b^a-v^a)$

$$S_{gf} = \frac{1}{2\xi} F^{a}[A] F^{a}[A] \qquad \qquad S_{gf} = v^{a} F^{a}[A]$$

- Exact Renormalization Group Equation, ERGE (Wetterich version)
- lacktriangle The special way of regularization \longrightarrow Breaking of gauge symmetry
- ► Recovering the symmetry: (4-d gauge-fixed Yang-Mills theory)

- Faddeev-Popov quantization with Fourier noise
- BRST symmetry and master equation
- Modified master equation
- flow equations and gauge invariance
- ► Non-linear gauge and mass-like regularization
- flow of the effective average action and compatibility with the master equation

For any S_{NL} , the action, is invariant under the following BRST symmetry:

$$S_{YM}[A]+S_{gf}[A,b]+S_{NL}[b]+S_{gh}[A,\bar{c},c]$$
 where $S_{gf}[A,b]=b^aF^a[A]$.

$$sA^a_\mu = D^{ab}_\mu c^b$$

 $sc^a = \frac{g}{2} f^{abc} c^b c^c$
 $s\bar{c}^a = b^a$
 $sb^a = 0$.

In the case of Fourier noise after integration over b^a , we'll left with:

$$sA^a_\mu = D_\mu c^a$$
, $sc^a = \frac{g}{2} f^{abc} c^b c^c$, $S_{gf}[A, v] = v^a F^a[A]$ $s\bar{c}^a = v^a$, S_{gf} remains linear in $F^a[A]$ $sv^a = 0$.

(Zinn-Justin'74)

Zinn-Justin Master Equation:

$$\begin{split} e^{W[J,\eta,\bar{\eta},\nu,K,L]} &= \int \!\! \mathcal{D}A\mathcal{D}c\mathcal{D}\bar{c}\, e^{-S[A,c,\bar{c},\nu]-S_{\rm so}} \;. \\ S_{\rm so} &= -J^\mu_a A^a_\mu - \bar{\eta}^a c^a - \bar{c}^a \eta^a \\ &+ K^a_\mu \left(D^\mu c\right)^a + L^a \frac{1}{2} g f^{abc} c^b c^c \;. \end{split}$$

Using $s^2 = 0$ and the Legendre transform:

$$\begin{split} \Gamma[A,c,\bar{c},b,K,L] &= \sup_{J,\eta,\bar{\eta}} \left\{ J_a^\mu A_\mu^a + \bar{\eta}^a c^a + \bar{c}^a \eta^a - W[J,\eta,\bar{\eta},K,L] \right\}, \\ &\frac{\delta \Gamma}{\delta A_a^\mu} \frac{\delta \Gamma}{\delta K_a^a} + \frac{\delta \Gamma}{\delta c^a} \frac{\delta \Gamma}{\delta L^a} + v^a \frac{\delta \Gamma}{\delta \bar{c}^a} = 0 \,. \end{split}$$

- Exact Renormalization Group Equation, ERGE (Wetterich version)
- lacktriangle The special way of regularization \longrightarrow Breaking of gauge symmetry
- ▶ Recovering the symmetry: (4-d gauge-fixed Yang-Mills theory)

- Faddeev-Popov quantization with Fourier noise
- BRST symmetry and master equation
- Modified master equation
- flow equations and gauge invariance
- ► Non-linear gauge and mass-like regularization
- flow of the effective average action and compatibility with the master equation

Modified Master Equation

(Ellwanger'94; Reuter, Wetterich'94)

By adding the mass-like regulator term:

$$\tilde{\Gamma}_k = \Gamma_k + \Delta S_k, \qquad \qquad \Delta S_k = \frac{1}{2} \int A_\mu^a \, R_{\mu\nu} \, A_
u^a + {
m ghosts}$$

$$\frac{\delta \tilde{\Gamma}_k}{\delta A_a^\mu} \frac{\delta \tilde{\Gamma}_k}{\delta K_\mu^a} + \frac{\delta \tilde{\Gamma}_k}{\delta c^a} \frac{\delta \tilde{\Gamma}_k}{\delta L^a} + b^a \frac{\delta \tilde{\Gamma}_k}{\delta \bar{c}^a} - \mathrm{Tr} R_{\mu\nu} \Big(\frac{\delta^2 \tilde{\Gamma}_k}{\delta A_\mu^a \delta \Phi} \Big)^{-1} \frac{\delta^2 \tilde{\Gamma}_k}{\delta \Phi^\dagger \delta K^{a\mu}} + \cdots = 0 \,.$$

where:

$$\Phi^i = \begin{pmatrix} A^{a\mu} \\ c^a \\ -\bar{c}^a \end{pmatrix}$$

concrete calculations possible but tedious

(Ellwanger, Hirsch, Weber'96'98) (Gies, Jaeckel, Wetterich'04)

modified master equation preserve under the flow.

(Ellwanger'94; Litim, Pawlowski'99; Pawlowski'95)

- Exact Renormalization Group Equation, ERGE (Wetterich version)
- lacktriangle The special way of regularization \longrightarrow Breaking of gauge symmetry
- Recovering the symmetry: (4-d gauge-fixed Yang-Mills theory)

- Faddeev-Popov quantization with Fourier noise
- BRST symmetry and master equation
- Modified master equation
- flow equations and gauge invariance
- ► Non-linear gauge and mass-like regularization
- flow of the effective average action and compatibility with the master equation

Flow equations and gauge invariance

▶ Use of background field methods

True quantum gauge invariance encoded in modified symmetry identities (Nielsen identities, Shift-Ward identity) (...)

► Manifestly gauge invariant RG

(Morris'98)

(Arnone, Gatti, Morris'02; Morris, Rosten'06)

Embedding into $SU(N \mid N)$ gauge theory, no gauge fixing, no ghosts

► Geometric effective action and Wilsonian flows

(Pawlowski'03)

(Branchina, Meissner, Veneziano'03; Donkin, Pawlowski'12)

Vilkovisky-DeWitt framework, modified Nielsen identities

Gauge invariant flow equation

(Wetterich'16'17)

Projection onto physical modes, bootstrap construction of action and fields

BRST Symmetry:

ightharpoonup Quantum BRST transformation which is scale dependent $BRST_k$

(Sonoda'07)

(Igarashi, Itoh, Sonoda' 07' 08' 10; Igarashi, Itoh, Morris' 19)

the regulator as a part of gauge fixing

$$\Delta S_k + S_{gf} \rightarrow S_{gf,k}$$

- Exact Renormalization Group Equation, ERGE (Wetterich version)
- lacktriangle The special way of regularization \longrightarrow Breaking of gauge symmetry
- ► Recovering the symmetry: (4-d gauge-fixed Yang-Mills theory)

- Faddeev-Popov quantization with Fourier noise
- BRST symmetry and master equation
- Modified master equation
- flow equations and gauge invariance
- Non-linear gauge and mass-like regularization
- flow of the effective average action and compatibility with the master equation

Non-Linear gauge and mass-like regularization

(Sh.A, Gies, Zambelli'19)

In the case of Fourier weight for the noise field, $S_{gf} = v^a F^a[A]$; we choose a non-linear gauge:

$$\mathsf{F}^{\mathsf{a}}[\mathsf{A}] = \mathsf{A}^{\mathsf{b}\mu} \mathsf{Q}^{\mathsf{a}\mathsf{b}\mathsf{c}}_{\mu\nu} \mathsf{A}^{\mathsf{c}\nu} + \mathsf{L}^{\mathsf{a}\mathsf{b}}_{\mu} \mathsf{A}^{\mathsf{a}\mu}$$

$$\begin{split} \mathsf{Q}_{\mu\nu}^{abc} &= \frac{v^a}{2|v|^2} \mathsf{Q}_{\mu\nu} \delta^{bc} \,, \\ \mathsf{L}_{\mu}^{ab} &= \left(1 + r_{\mathrm{gh}}(-\partial^2)\right) \partial_{\mu} \delta^{ab} \,, \\ \mathsf{R}_{\mu\nu}^{\mu\nu}(\partial) &= R_{\mathrm{L}}(-\partial^2) \mathsf{\Pi}_{\mathrm{L}}^{\mu\nu} + R_{\mathrm{T}}(-\partial^2) \mathsf{\Pi}_{\mathrm{T}}^{\mu\nu} \\ \mathsf{R}_{\mathrm{gh}}(\partial) &= (-\partial^2) r_{\mathrm{gh}}(-\partial^2) \\ \mathsf{S}_{gf} &= \frac{1}{2} A_{\mu}^a \mathsf{Q}^{\mu\nu} A_{\nu}^a + v^a (1 + r_{\mathrm{gh}}(-\partial^2)) \partial^{\mu} A_{\mu}^a, \\ \mathsf{S}_{gh} &= -\bar{c}^a (1 + r_{\mathrm{gh}}(-\partial^2)) \left(\partial^{\mu} D_{\mu} c\right)^a \\ &- \frac{v^a}{2|v|^2} \bar{c}^a \left(\left(\mathsf{Q}^{\mu\nu} A_{\nu}^b \right) (D_{\mu} c)^b + A_{\mu}^b \left(\mathsf{Q}^{\mu\nu} D_{\nu} c\right)^b \right) \end{split}$$

Breaking of global color symmetry, non-local vertex, new and *v*-dependent ghost-gluon vertices.

BRST-symmetric and regularized effective action

- Exact Renormalization Group Equation, ERGE (Wetterich version)
- lacktriangle The special way of regularization \longrightarrow Breaking of gauge symmetry
- Recovering the symmetry: (4-d gauge-fixed Yang-Mills theory)

- Faddeev-Popov quantization with Fourier noise
- BRST symmetry and master equation
- Modified master equation
- flow equations and gauge invariance
- ▶ Non-linear gauge and mass-like regularization
- flow of the effective average action and compatibility with the master equation

Obtaining the Exact RG flow equation:

$$\begin{split} e^{W_k[J,\eta,\bar{\eta},\mathbf{v},K,L]} &= \int \!\! \mathcal{D}A\mathcal{D}c\mathcal{D}\bar{c} \, e^{-S[A,c,\bar{c},\mathbf{v}] - S_{\mathrm{so}}} \\ S_{\mathrm{so}} &= -J^{a\mu}A_{\mu}^a - \bar{\eta}^ac^a - \bar{c}^a\eta^a + K_{\mu}^a(D^{\mu}c)^a + L^a\frac{g}{2}f^{abc}c^bc^c - \frac{v^a}{|v|^2}\bar{c}^aA_{\mu}^bI^{b\mu} - \frac{v^a}{|v|^2}\bar{c}^a(D_{\mu}c)^bM^{b\mu} \,. \\ \mathcal{J}_i &= \begin{pmatrix} J_{\mu}^a \\ \bar{\eta}^a \end{pmatrix}, \, \Phi^i &= \begin{pmatrix} A^{a\mu} \\ c^a \\ -\bar{c}^a \end{pmatrix}, \, \mathcal{I}_i &= \begin{pmatrix} K_{\mu}^a \\ L^a \\ M_{\mu}^a \\ I_{\mu}^a \end{pmatrix} \,. \, \, \widetilde{\Gamma}[\Phi,v,\mathcal{I}] = \sup_{\mathcal{J}_i} \left\{ \mathcal{J}_i^{\dagger}\Phi^i - W[\mathcal{J},v,\mathcal{I}] \right\} \\ \partial_t \widetilde{\Gamma} &= \frac{1}{2} \left(\partial_t R_{\mu\nu}\delta^{ab} \right) \left((\widetilde{\Gamma}^{(2)-1})_{A_{\mu}^a A_{\nu}^b} + \widetilde{\Gamma}^{(2)}_{M_{\mu}^a \Phi^j} (\widetilde{\Gamma}^{(2)-1})_{\Phi^j A_{\nu}^b} + \widetilde{\Gamma}^{(2)}_{K_{\nu}^b I_{\mu}^a} + \frac{\delta \widetilde{\Gamma}}{\delta M_{\mu}^a} A^{b\nu} - \left(\frac{\delta}{\delta K_{\nu}^b} \widetilde{\Gamma} \right) \left(\widetilde{\Gamma} \frac{\delta}{\delta I_{\mu}^a} \right) \right) \\ &+ \left(\partial_t r_{\mathrm{gh}} \partial_{\mu} \delta^{ab} \right) \left(\widetilde{\Gamma}^{(2)}_{K_{\mu}^a \Phi^j} (\widetilde{\Gamma}^{(2)-1})_{\Phi^j (-\bar{c}^b)} - \bar{c}^b \left(\frac{\delta}{\delta K_{\mu}^a} \widetilde{\Gamma} \right) \right) + \partial_t \Delta S_{gf} \,, \\ \partial_t \Delta S_{gf} &= \left(\partial_t r_{\mathrm{gh}} \partial_{\mu} \delta^{ab} \right) v^b A^{a\mu} + \frac{1}{2} \left(\partial_t R_{\mu\nu} \delta^{ab} \right) A^{a\mu} A^{b\nu} \,, \end{split}$$

$$\Gamma[\Phi, v, \mathcal{I}] = \widetilde{\Gamma}[\Phi, v, \mathcal{I}] - \Delta S[\Phi, v]$$

For a family of truncations:

$$\Gamma_k[\Phi, \nu, \mathcal{I}] = \Gamma[\Phi, \nu] + S_{\mathrm{so}}^{\mathrm{brst}}[\Phi, \nu, \mathcal{I}]$$

$$\begin{split} S_{gf} &= \frac{1}{2} A^{a}_{\mu} Q^{\mu\nu} A^{a}_{\nu} + v^{a} (1 + r_{\mathrm{gh}} (-\partial^{2})) \partial^{\mu} A^{a}_{\mu}, \\ S_{gh} &= -\bar{c}^{a} (1 + r_{\mathrm{gh}} (-\partial^{2})) \left(\partial^{\mu} D_{\mu} c \right)^{a} - \frac{v^{a}}{2|v|^{2}} \bar{c}^{a} \left(\left(Q^{\mu\nu} A^{b}_{\nu} \right) \left(D_{\mu} c \right)^{b} + A^{b}_{\mu} \left(Q^{\mu\nu} D_{\nu} c \right)^{b} \right) \\ \partial_{t} \Gamma[\Phi, v] &= \frac{1}{2} \left(\partial_{t} R_{\mu\nu} \delta^{ab} \right) \left(\widetilde{\Gamma}^{(2)-1} \right)_{A^{a}_{\mu} A^{b}_{\nu}} + \frac{1}{2} \left(\partial_{t} R_{\mu\nu} \delta^{ab} \right) \widetilde{\Gamma}^{(2)}_{M^{a}_{\mu} \Phi j} \left(\widetilde{\Gamma}^{(2)-1} \right)_{\Phi^{j} A^{b}_{\nu}} \end{split}$$

 $+ \left(\partial_t r_{\mathrm{gh}} \partial_\mu \delta^{ab}\right) \widetilde{\Gamma}_{K^a, \Phi^j}^{(2)} (\widetilde{\Gamma}^{(2)-1})_{\Phi^j(-\bar{c}^b)}.$

Master equation and BRST symmetry through the RG flow

(Sh.A,Gies,Zambelli'19)

$$\begin{split} \Sigma[\widetilde{\Gamma}] &= \frac{\delta \widetilde{\Gamma}}{\delta A_{\mu}^{a}} \frac{\delta \widetilde{\Gamma}}{\delta K^{a\mu}} + \frac{\delta \widetilde{\Gamma}}{\delta c^{a}} \frac{\delta \widetilde{\Gamma}}{\delta L^{a}} + v^{a} \frac{\delta \widetilde{\Gamma}}{\delta \overline{c}^{a}} \\ &+ M_{\mu}^{a} \frac{\delta \widetilde{\Gamma}}{\delta K_{\mu}^{a}} + A_{\mu}^{a} I^{a\mu} + \frac{\delta \widetilde{\Gamma}}{\delta M_{\mu}^{a}} I_{\mu}^{a}. \end{split}$$

 $\Sigma=0$ is the master equation. We will have BRST-symmetry through the flow if the master equation and flow equation are compatible with each other:

$$\partial_t \mathcal{Z} = \mathcal{G}_t \mathcal{Z}$$

$$\begin{split} \mathcal{G}_t &= \left(\partial_t r_{\mathrm{gh}} \partial_\mu \delta^{ab}\right) \left(v^b \frac{\delta}{\delta J_\mu^a} - \frac{\delta^2}{\delta \eta^b \delta K_\mu^a} \right) - \frac{1}{2} \left(\partial_t R_{\mu\nu} \delta^{ab} \right) \left(\frac{\delta^2}{\delta J_\mu^a \delta J_\nu^b} - \frac{\delta^2}{\delta M_\mu^a \delta J_\nu^b} - \frac{\delta^2}{\delta I_\mu^a \delta K_\nu^b} \right). \\ \mathcal{D} &= -J_\mu^a \frac{\delta}{\delta K_\sigma^a} + \bar{\eta}^a \frac{\delta}{\delta L^a} + v^a \eta^a - M_a^\mu \frac{\delta}{\delta K_\sigma^a} + I_\mu^a \frac{\delta}{\delta J_\mu^a} - I_a^\mu \frac{\delta}{\delta M_\mu^a} \,, \end{split}$$

$$[\mathcal{D},\mathcal{G}_t]=0.$$

Summary

- Wetterich Exact Renormalization Group Equation
- Breaking gauge symmetry and modified master equation(non-linear and second-order master equation)
- Regularized and BRST symmetric effective action (bilinear master equation)
 - Fourier noise and Nonlinear gauge fixing
 - Breaking of the global color symmetry, an external Nakanishi-Lautrup field, a non-local vertex, new regulator-dependent ghost-gluon vertices
- ► Compatibility of the flow equation with the master equation

BRST symmetric RG flow

Future Works

- Simplest perturbatively renormalizable truncation
- ▶ Proper-time regulator Renormalization Group flow

Thanks for Your Attention

Backup

For any gauge-fixing functional $F^a[A]$:

$$S[A, c, \bar{c}, v] = S_{YM}[A] + S_{gf}[A, v] + S_{gh}[A, c, \bar{c}, v]$$

can be written as usual:

$$S[A,c,\bar{c},\nu] = S_{YM}[A] + s\Psi\,,$$

where

$$\Psi = \bar{c}^a F^a [A] \,.$$