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Kardar-Parisi-Zhang[•] (1986):

Velocity field                   evolves under the (noisy) Burgers equation:

Describes flat-to-rough transition in growing surfaces

[•] Kardar, Parisi and Zhang, PRL 56 (1986), [*] Takeuchi, JSTAT 1 (2013)

       as the Free-Energy of directed polymer in random media

with random noise

The Kardar-Parisi-Zhang Equation

[*] 

δh



  

In a finite system of size L fluctuations 
will saturate to a value             
in a time 

[*]

[*]Halpin-Healy & Zhang, Physics Reports 254,  (1995)

→ Roughness Exponent

→ Dyamical Exponent

Self-organized criticality             No fine-tuning needed 

Universal Features of KPZ Equation

Family-Vicsek scaling ansatz

are universal



  

Beyond Scaling in d=1: Predictions

➢ The scaling of      suggests

depends on the initial condition

Flat Curved Stationary

Calabrese and Le Doussal 
(2011,2012)

Imamura and Sasamoto
(2012,2013)

Amir et al. (2011)
Sasamoto and Spohn (2010)

Calabrese et al.(2010)

➢ ...not only scaling for     but also for 

Prähofer and Spohn (2004)



  

Experimental observation in turbulent liquid crystals (Takeuchi and Sano 2010,2012) 

Beyond Scaling in d=1: Evidences

➢ Geometry dependent sub-classes
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➢ Scaling function related to      :
Non-perturbative RG (Canet et al. )

Numerical evidence in Exciton-Polaritons (DS, Canet and Minguzzi 2018)

[Prähofer and Spohn (2004)]



  

Symmetries

i) Symmetry under infinitesimal tilt: exact, holds in all dimensions

ii) Time-reversal symmetry: accidental, holds only in one dimension

i) + ii) in one dimension

does not renormalize

Fluctuation-Dissipation Theorem (FDT)



  

One-loop perturbative RG flow of               :

Change in the stability at           : in            two possible fixed point

...however the rough phase is not reachable at any order of perturbation[•]

[•]K. J. Wiese, PRE 56 (1997)

Need for non-perturbative techniques

The Strong-Coupling KPZ Fixed Point:

Flat to rough out-of-equilibrium phase transition
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Non-Perturbative RG (NPRG) and KPZ equation

Exact RG equation for the Effective Average Action     :

allows for smooth integration of the d.o.f 

The Local Potential Approximation for KPZ,

is already enough to find good qualitative results...

...but fails to give good quantitative predictions for           [+]

[+]L. Canet, arXiv0509541 (2006)



  

The Full Quadratic Ansatz[*]

Derivative non-linearity           Important to be functional in the momenta

with

[*]L.Canet et al., PRE 84 (2011)

Quadratic in  Linear in Functional in++

Very good results in d=1:

and

[Prähofer and Spohn (2004)]
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Time-Correlation in the KPZ Equation

Real life spoils delta correlation in space and time:

If                                                            

renormalizes and

Galilean Invariance is broken

Fluctuation-Dissipation is 
violated in d=1

Does KPZ universality survive to an 
infinitesimal correlation in time?



  

It is particularly interesting to compare this one- 
dimensional result to the DRG result that was presented in 
the Introduction [10], and plotted for convenience in Fig. 2. 
Generally speaking, the two methods disagree on the values 
of the critical exponents signif cantly over most of the
range. Three substantial differences can be observed between 
the two methods. First, using the self-consistent approach we 

found no “threshold behavior.” That is, we found a continu- 
ous variation of the scaling exponents and z as a function 
of over the whole range of possible ’s, rather than no 
variation of these exponents up to a critical value of c and 
a quasilinear behavior from that point on. 

Second, we found a solution for the exponents for every
, while the DRG approach found no solution above

=0.46 (claiming that no stable surface can grow under the 
condition 0.46⬍ ⬍0.5). Interestingly, the threshold c (the 
crossover point) that was predicted using DRG in d=1
(namely 0.167) is the same as the lower bound we found 
above ( c=1/6 for d=1). Our exact statement was that for
⬎1/6 the second strong-coupling KPZ solution becomes 

possible in principle (but not in practice). Therefore, the 
DRG result might ref ect this exact statement. 

Third, we found that z is a decreasing function of , while 
the DRG approach predicts an increasing value of z. The 
reason for this difference is not clear, but it might stem from 
the def nition of the typical decay rate, which was actually 
def ned using the scaling form (24), rather than a more “tra- 
ditional” def nition such as Eq. (19). The reason for using 
this def nition is that the integral over the scaling function
f共u兲does not converge, because of its power-law tail. Actu- 
ally, in the case of the linear theory, where everything can be 
calculated exactly, the only possible def nition is the one we 
used. Now, since the introduction of temporally correlated 
noise certainly slows down the relaxations in the system, this 
might have caused an artifact of increasing z, because larger
z’s are interpreted as longer relaxation times. However, in 
our approach, we do see this slowing down clearly, but it 
does not come from a larger dynamic exponent z in an ex- 
ponential decaying scaling function, but rather from a very 
slowly decaying scaling function, which does not decay ex- 
ponentially. Thus, this difference might ref ect a better under- 
standing of the time-dependent dynamics in such driven sys- 
tems. 

Comparison of the two theoretical predictions with the 
only numerical study of this problem (taken from Ref. [17], 
and plotted in Fig. 2) is inconclusive as well. It can be seen 
that the numerical simulation predicts a continuous variation 
of the scaling exponents with , rather than threshold behav- 
ior, and thus supports our predictions. In addition, when 
comparing the actual values of the exponents one can f nd 
good agreement between our results and the simulation for 
small ⬘s (up to ⬃1/4). However, for larger ⬘s the simu- 
lation found much larger exponents, and a better numerical 
agreement with the DRG prediction. Still, there is some ad- 
ditional disagreement between the two, as the simulation 
found a stable surface for all ’s while the DRG predicts a 
stable surface only up to =0.46. The last point concerns the 
value of the dynamic exponent z for various values of . 
Strictly speaking z was not given in Ref. [17], but we recon- 
structed it using the well known scaling relation z= / that 
is valid under very general conditions [it comes from the 
Family-Vicsek scaling relation [3]—see Eq. (2)]. The result- 
ing z [see Fig. 2] is very confusing. z has no clear 
tendency—it just f uctuates around z=3/2. Therefore, the 
numerical data does not resolve the question of decreasing/ 
increasing z. Certainly, future numerical results will be of 
great interest to clarify these issues.

FIG. 2. (a) The roughness exponent , (b) the growth exponent
, and (c) the dynamic exponent z as a function of the exponent
for decay of temporal correlations in d=1. Note that the dynamic 

exponent z was inferred for the numerical results of Ref. [17] from
and using the scaling relation z= / . Second, note that the 

DRG result is possible only up to =0.46. Third, the dashed line 
shows our second possible solution (using SCE) that turns out to be 
irrelevant here, since it is smaller than the SCE for all ’s. 

E. KATZAV AND M. SCHWARTZ PHYSICAL REVIEW E 70, 011601 (2004)

011601-10

Persistence of pure-KPZ 
up to  

Line of LR fixed-points for any 

?

?

Medina et al. (1989), Dynamical RG
Fedorenko (2008), Perturbative FRG

Ma and Ma (1993), Flory scaling
Katzav and Schwartz (2004), Self-consistent Expansion
Lam et al. (1992),Song and Xia (2016), Ales et al. (2019), Numerics

Time-Correlation in the KPZ Equation:
State of the Art in d=1

Controversial results in the literature for long-range(LR) correlations:
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Breaking GI in the NPRG ansatz for KPZ

The price to pay is an artificial breaking of Galilean Invariance

even if

Need for time-dependent      … ...but is too heavy!



  

Short Range (SR) Correlation:



  

Short Range (SR) Correlation:



  

Time reversal symmetry and Galilean invariance are restored for all  

Coming from             in  

Short Range (SR) Correlation:



  

The pure KPZ regime is 
robust to long-range 

correlations in time, up 
to            

bounds predicted by Fedorenko (2008)

Long-Range Correlation (LR):



  

Long-Range Correlation (LR):



  

Pure KPZ

LR

Gal. Inv.

non-GI

Long-Range Correlation (LR):



  

The pure KPZ regime is 
robust to long-range 

correlations in time, up 
to            

Long-Range Correlation (LR):



  

Long-Range Correlation (LR):



  

Pure KPZ

LR

Gal. Inv.

non GI

Long-Range Correlation (LR):



  

Decoupling between high- and low- energy sectors

In general,

In pure KPZ                        for big enough frequency and/or momentum

Decoupling between high- and low-energy sectors



  

Intermittency?

Non-decoupling has been addressed as a key feature 
of intermittent systems

Canet et al. (2016), Tarpin et al. (2018)

If                        ,     is not enough to predict the scaling of



  

Intermittency?



  

Intermittency?

Alés and López (2019)

Faceting, new critical exponent inaccessible from scaling argument



  

Conclusions

➢ NPRG allows to study both short- and long-time correlations in 
the KPZ equation

➢ KPZ universality is not affected by a short-range correlated 
noise in d=1.

➢ In the case of long-range correlations, the pure KPZ universality 
is recovered up to a critical value of the power-law exponent, in 
both d=1 and d=2. 

➢ For strong enough correlations, the decoupling of high- and low-
momentum sectors seems to cease

Perspectives

➢ Study the full quadratic ansatz in order to properly tackle short-
range correlations in d>1.

➢ Understand the mechanism leading to the non-decoupling of 
momenta sectors for strong long-range correlations
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