Functional renormalization group approach to 2D turbulence

C. Pagani¹

¹Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, D–55099 Mainz, Germany.

24/04/2019

Functional and Renormalization Group Methods

ECT* – European Centre for Theoretical studies in nuclear physics and related areas, Trento

Based on 1809.00909 with Tarpin, Canet, and Wschebor.

Outline

- 1 Introduction to 2D turbulence
- 2 Functional formulation of 2D turbulence
- 3 Functional renormalization group approach
- 4 Summary

Brief reminder of 2D turbulence

Turbulent 2D phenomena describe (a first approximation of):

- large scale motion of the atmosphere and oceans;
- geostrophic turbulence;
- stratified atmosphere;

and are applied in many context (e.g. MHD turbulence).

Typical experimental setup via soap films.

2D dynamics

We consider incompressible flows:

$$\partial_i v^i = 0$$
.

From 3D Navier-Stokes equation

$$\partial_t v^i + v^j \partial_j v^i = -\partial^i p + \nu \partial^2 v^i + f^i.$$

Taking $v^z \approx 0$ and $v^{x,y} \sim z^2$

$$\Rightarrow \nu \partial_z^2 v^{x,y} \approx -\alpha v^{x,y} \,,$$

one obtains the 2D Ekman-Navier-Stokes equation:

$$\partial_t v^i + v^j \partial_j v^i = -\partial^i p + \nu \partial^2 v^i - \alpha v^i + f^i,$$

where α is the so called Ekman friction.

Basics of 2D turbulence

Turbulence in 2D is characterized by a completely different phenomenology from the 3D case. In particular there are *two cascades*

- a direct (enstrophy) cascade (towards smaller scales),
- an inverse (energy) cascade (towards larger scales).

A crucial role is play by the *vorticity* ω :

$$\omega \equiv \epsilon^{ij} \partial_i \mathbf{v}_j \,.$$

Considering $\alpha \approx$ 0 the vorticity dynamics is given by

$$\partial_t \omega + u^j \partial_j \omega - \nu \partial^2 \omega = f_\omega.$$

(Similar to the equation for transport of scalar quantities.)

The two cascades

Consider the enstrophy $\zeta \equiv \int_x \omega^2/2$ for zero forcing. We have

$$\partial_{t} \int_{\vec{p}} \frac{\omega(p)\omega(-p)}{2} = -\underbrace{\nu \int_{\vec{p}} p^{2}\omega(p)\omega(-p)}_{>0} < 0,$$

implying that the enstrophy ζ decreases with time.

Moreover

$$\partial_{t} \int_{\vec{p}} \frac{v_{i}(p) v^{i}(-p)}{2} = -\nu \underbrace{\int_{\vec{p}} \omega(p) \omega(-p)}_{\leq \#} \geq -\nu \#.$$

Therefore in the inviscid limit (
u o 0)

$$\lim_{\nu \to 0} \partial_t \int v^2 \ge \lim_{\nu \to 0} -\nu \# = 0.$$

 \Rightarrow no energy dissipative anomaly is possible in $2D_{\square}^{!}$

The two cascades

However,

• enstrophy has a dissipative anomaly ($\lim_{\nu\to 0} \zeta \neq 0$):

$$\partial_t \langle \zeta \rangle = -\nu \langle \partial_i \omega \partial_i \omega \rangle + \langle f_\omega \omega \rangle \,,$$

like energy for the 3D Navier-Stokes case. (Direct enstrophy cascade.)

- energy is dynamically transferred to larger scales. (*Inverse energy cascade*.)
- \Rightarrow Kolmogorov-type of arguments leads to two different spectra in the two cascades.

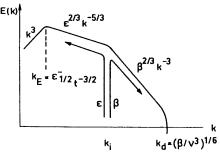
The two cascades

Summarizing

- enstrophy has a dissipative anomaly,
- energy is dynamically transferred to larger scales.

(Possible to give a "stochastic calculus based" derivation.)

Let $E(p) = \pi p \langle v^i(p) v^i(-p) \rangle$ (taken from Lesieur (1983)):



(Possible log-corrections (Kraichnan 1971).)

Functional formulation of 2D turbulence

In order to keep the fluid in a steady state we need to consider the forced equation of motion:

$$\partial_t v^i + v^j \partial_j v^i = -\partial^i p + \nu \partial^2 v^i - \alpha v^i + f^i.$$

We construct the partion function via (Martin-Siggia-Rose PRA 1973, Janssen Z.Phys. 1976, deDominicis J.Phys. 1976)

$$\begin{split} Z &= \int \mathcal{D} v \mathcal{D} f \, P_{ff} \, \delta \left(v_a - v_a^{(\mathrm{sol})} \right) \\ &= \int \mathcal{D} v \mathcal{D} p \mathcal{D} f \, P_{ff} \, \delta \left(\partial_t v^i + v^j \partial_j v^i + \partial^i p - \nu \partial^2 v^i + \alpha v^i - f^i \right) \,, \end{split}$$

where P_{ff} implements a stochastic forcing with Gaussian distribution of variance

$$\left\langle f_{\alpha}^{\rm inj}(t,\vec{x})f_{\beta}^{\rm inj}(t',\vec{x}^{\,\prime})\right\rangle = 2\,\delta_{\alpha\beta}\,\delta(t-t')N_{L^{-1}}(|\vec{x}-\vec{x}^{\,\prime}|)\,.$$

Functional formulation of 2D turbulence

One can exponentiate the Dirac delta and integrate out the Gaussian forcing:

$$\begin{split} S &= \int \left\{ \bar{\mathbf{v}}_{\alpha} \Big[\partial_t \mathbf{v}_{\alpha} - \nu \nabla^2 \mathbf{v}_{\alpha} + \mathbf{v}_{\beta} \partial_{\beta} \mathbf{v}_{\alpha} + \frac{1}{\rho} \partial_{\alpha} \mathbf{p} \Big] + \bar{\mathbf{p}} \, \partial_{\alpha} \mathbf{v}_{\alpha} \right\} \\ \Delta S &= \int \left\{ \bar{\mathbf{v}}_{\alpha} R_{L_0^{-1}} \mathbf{v}_{\alpha} - \bar{\mathbf{v}}_{\alpha} \mathbf{N}_{L^{-1}} \bar{\mathbf{v}}_{\alpha} \right\}, \end{split}$$

where $R_{L_0^{-1}}$ implements a non-local generalization of the Ekman friction term.

By integrating over the pressure fields we retrieve that the velocity field and the velocity response field are divergenceless:

$$\partial_{\alpha} v_{\alpha} = 0$$

 $\partial_{\alpha} \bar{v}_{\alpha} = 0$.

Incompressibility in 2D

We consider incompressible fluids:

$$\partial_i v_i = 0$$
.

Helmoltz theorem:

$$v_{a} = \epsilon_{ab}\partial_{b}\psi - \underbrace{\partial_{a}\varphi}_{=0},$$

where the scalar ψ is called *stream function*.

Relation to vorticity

$$\omega = \epsilon_{ab} \partial_a v_b = -\partial^2 \psi .$$

The action reads

$$S_{\psi}[\psi, \bar{\psi}] = \int \partial_{\alpha} \bar{\psi} \Big[\partial_{t} \partial_{\alpha} \psi - \nu \nabla^{2} \partial_{\alpha} \psi + \epsilon_{\beta \gamma} \partial_{\gamma} \psi \, \partial_{\beta} \partial_{\alpha} \psi \Big]$$

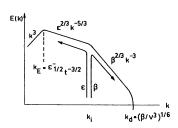
$$\Delta S_{\psi}[\psi, \bar{\psi}] = \int \Big\{ \partial_{\alpha} \bar{\psi} R_{L_{0}^{-1}} \partial_{\alpha}' \psi - \partial_{\alpha} \bar{\psi} N_{L^{-1}} \partial_{\alpha}' \bar{\psi} \Big\},$$

FRG approach to 2D turbulence

The action

$$\begin{split} \Delta \mathcal{S}_{\psi}[\psi,\bar{\psi}] &= \int_{t,\vec{x},\vec{x}'} \left\{ \partial_{\alpha} \bar{\psi}(t,\vec{x}) R_{L_{0}^{-1}}(|\vec{x}-\vec{x}'|) \partial_{\alpha}' \psi(t,\vec{x}') \right. \\ &\left. - \partial_{\alpha} \bar{\psi}(t,\vec{x}) N_{L^{-1}}(|\vec{x}-\vec{x}'|) \partial_{\alpha}' \bar{\psi}(t,\vec{x}') \right\}, \end{split}$$

is characterised by Fourier transforms that are smooth functions, which vanish exponentially for wave-numbers large compared to L_0^{-1} or L^{-1} , and which regularize the fluctuating fields for small wave-numbers.



FRG approach to the direct cascade

We take $L_0^{-1}=L^{-1}=\kappa$ and study the momenta $p\gg \kappa$, i.e.

- the inertial range, between the energy injection scale and the dissipation scale;
- the direct enstrophy cascade.

The ideal limit $(L_0, L) \to \infty$ corresponds to $\kappa \to 0$. To reconstruct this limit we consider the EAA dependence on κ (Wetterich 1993):

$$\partial_{\kappa} \Gamma_{\kappa} = \frac{1}{2} \int_{\mathbf{x}, \mathbf{y}} \partial_{\kappa} [\mathcal{R}_{\kappa}]_{ij} (|\mathbf{x} - \mathbf{y}|) \Big[\Gamma_{\kappa}^{(2)} + \mathcal{R}_{\kappa} \Big]_{ji}^{-1} (\mathbf{y}, \mathbf{x}) \,.$$

 \Rightarrow look for IR fixed point corresponding to $\kappa \to 0$.

(Extended) symmetries

Extended symmetries \equiv transformation that leaves the action invariant up to terms linear in the field.

ullet time-gauged shift symmetries ($v\sim\partial\psi$ and $ar{v}\sim\partialar{\psi}$)

a)
$$\delta\psi=\eta(t)\,,$$
 $ar{a})$ $\deltaar{\psi}=ar{\eta}(t)$

 time-gauged shift of the (velocity) response field (present also in the velocity formulation)

b)
$$\delta \psi = 0$$
, $\delta \bar{\psi} = x_{\alpha} \bar{\eta}_{\alpha}(t)$

new time-gauged shift of the response field

c)
$$\delta \psi = 0$$
, $\delta \bar{\psi} = \frac{x^2}{2} \bar{\eta}(t)$

(Extended) symmetries

Extended symmetries \equiv transformation that leaves the action invariant up to terms linear in the field.

• time-gauged Galilean symmetry

d)
$$\delta \psi = \epsilon_{\alpha\beta} x_{\alpha} \dot{\eta}_{\beta}(t) + \eta_{\alpha}(t) \partial_{\alpha} \psi$$
, $\delta \bar{\psi} = \eta_{\alpha}(t) \partial_{\alpha} \bar{\psi}$

time-gauged rotation

$$e) \quad \delta \psi = -\dot{\eta}(t) \frac{x^2}{2} + \eta(t) \epsilon_{\alpha\beta} x_{\beta} \partial_{\alpha} \psi \,, \qquad \quad \delta \bar{\psi} = \eta(t) \epsilon_{\alpha\beta} x_{\beta} \partial_{\alpha} \bar{\psi}$$

(Present in the velocity formulation at the price of considering non-local shift in the pressure fields.)

Symmetries and Ward identities

The extended symmetries a),...,e) encode exact, non-perturbative information regarding the RG of the theory.

a)
$$\int_{\vec{x}} \frac{\delta \Gamma_{\kappa}}{\delta \Psi(\mathbf{x})} = 0, \qquad \bar{\mathbf{a}}) \int_{\vec{x}} \frac{\delta \Gamma_{\kappa}}{\delta \bar{\Psi}(\mathbf{x})} = 0$$
b)
$$\int_{\vec{x}} x_{\alpha} \frac{\delta \Gamma_{\kappa}}{\delta \bar{\Psi}(\mathbf{x})} = 0$$

c)
$$\int_{\vec{x}} \frac{x^2}{2} \frac{\delta \Gamma_{\kappa}}{\delta \bar{\Psi}(\mathbf{x})} = -2 \int_{\vec{x}} \partial_t \Psi$$

$$d) \int_{\vec{x}} \left\{ \left(-\epsilon_{\beta\alpha} x_{\beta} \partial_{t} + \partial_{\alpha} \Psi \right) \frac{\delta \Gamma_{\kappa}}{\delta \Psi(\mathbf{x})} + \partial_{\alpha} \bar{\Psi} \frac{\delta \Gamma_{\kappa}}{\delta \bar{\Psi}(\mathbf{x})} \right\} = 0$$

$$e) \quad \int_{\vec{x}} \left\{ \left(\frac{x^2}{2} \partial_t + \epsilon_{\alpha\beta} x_\beta \partial_\alpha \Psi \right) \frac{\delta \Gamma_\kappa}{\delta \Psi(\mathbf{x})} + \epsilon_{\alpha\beta} x_\beta \partial_\alpha \bar{\Psi} \frac{\delta \Gamma_\kappa}{\delta \bar{\Psi}(\mathbf{x})} \right\} = 2 \int_{\vec{x}} \partial_t^2 \bar{\Psi} \,.$$

Ward identities in momentum space

The momentum space version can be employed in the flow equation. $(\delta^n \Gamma = (2\pi)^d \delta(\sum p) \bar{\Gamma}^{(n)}.)$

a),
$$\bar{a}$$
) $\bar{\Gamma}_{\kappa}^{(m,\bar{m})}(\ldots,\varpi,\vec{q},\ldots)\Big|_{\vec{q}=0}=0$

$$b) \quad \frac{\partial}{\partial q^{i}} \bar{\Gamma}_{\kappa}^{(m,\bar{m}+1)}(\{\mathbf{p}_{\ell}\}_{1 \leq \ell \leq m}, \varpi, \vec{q}, \{\mathbf{p}_{\ell}\}_{1 \leq \ell \leq \bar{m}-1})\Big|_{\vec{q}=0} = 0$$

c)
$$\frac{\partial^2}{\partial q^2} \bar{\Gamma}_{\kappa}^{(m,\bar{m}+1)}(\{\mathbf{p}_{\ell}\}_{1 \leq \ell \leq m}, \varpi, \vec{q}, \{\mathbf{p}_{\ell}\}_{1 \leq \ell \leq \bar{m}-1})\Big|_{\vec{q}=0} = 0$$

$$\text{except } \frac{\partial^2}{\partial q^2} \bar{\Gamma}_{\kappa}^{(1,1)}(\varpi, \vec{q})\Big|_{\vec{q}=0} = -4i\varpi$$

$$d) \quad \frac{\partial}{\partial q^{i}} \bar{\mathsf{\Gamma}}_{\kappa}^{(m+1,\bar{m})}(\varpi, \vec{q}, \{\mathbf{p}_{\ell}\}_{1 \leq \ell \leq m+\bar{m}-1})\Big|_{\vec{q}=0} = i\epsilon_{\alpha\beta} \tilde{\mathcal{D}}_{\beta}(\varpi) \bar{\mathsf{\Gamma}}_{\kappa}^{(m,\bar{m})}(\{\mathbf{p}_{\ell}\})$$

$$e)\quad \frac{\partial^2}{\partial g^2}\bar{\mathsf{\Gamma}}_{\kappa}^{(m+1,\bar{m})}(\varpi,\vec{q},\{\mathbf{p}_{\ell}\}_{1\leq \ell\leq m+\bar{m}-1})\Big|_{\vec{q}=0}=\tilde{\mathcal{R}}(\varpi)\bar{\mathsf{\Gamma}}_{\kappa}^{(m,\bar{m})}(\{\mathbf{p}_{\ell}\})\,,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ り<0</p>

where we have introduced the two operators $\mathcal{ ilde{D}}_{lpha}(arpi)$ and $\mathcal{ ilde{R}}(arpi)$ defined as:

$$\begin{split} &\tilde{\mathcal{D}}_{\alpha}(\varpi)F(\{\mathbf{p}_{\ell}\}_{1\leq \ell\leq n}) \equiv \\ &-\sum_{k=1}^{n} p_{k}^{\alpha} \left[\frac{F(\{\mathbf{p}_{\ell}\}_{1\leq \ell\leq k-1}, \omega_{k}+\varpi, \vec{p}_{k}, \{\mathbf{p}_{\ell}\}_{k+1\leq \ell\leq n}) - F(\{\mathbf{p}_{\ell}\})}{\varpi} \right] \end{split}$$

$$\begin{split} &\tilde{\mathcal{R}}(\varpi)F(\{\mathbf{p}_{\ell}\}_{1\leq \ell\leq n})\equiv\\ &2i\epsilon_{\alpha\beta}\sum_{k=1}^{n}p_{k}^{\alpha}\frac{\partial}{\partial p_{k}^{\beta}}\left[\frac{F(\{\mathbf{p}_{\ell}\}_{1\leq \ell\leq k-1},\omega_{k}+\varpi,\vec{p}_{k},\{\mathbf{p}_{\ell}\}_{k+1\leq \ell\leq n})-F(\{\mathbf{p}_{\ell}\})}{\varpi}\right]. \end{split}$$

Fixed point scaling

We consider the fixed point (scaling) behaviour by introducing

• the anomalous dimensions:

$$\eta_D(\kappa) = -\kappa \partial_\kappa \ln D_\kappa \,, \qquad \quad \eta_\nu(\kappa) = -\kappa \partial_\kappa \ln \nu_\kappa \,,$$
 where $N_\kappa \,(q) = D_\kappa \,(q/\kappa)^2 \,\hat{\eta}_\kappa \,(q/\kappa)^2$:

- the dimensionless momentum and frequency are defined by $\hat{p}=p/\kappa$ and $\hat{\omega}\equiv\omega\kappa^{-2}\nu_{\kappa}^{-2}$;
- ullet one finds the dynamical scaling exponent $\omega \sim p^z$

$$z = 2 - \eta_{\nu}^*$$
;

 fixed point and non-renormalization of the "Galilei covariant derivative":

$$\begin{split} \partial_t + v^i \partial_i &\to \partial_t + \lambda_k v^i \partial_i \\ &\Rightarrow \ \kappa \partial_\kappa \hat{\lambda}_\kappa = -\frac{1}{2} \hat{\lambda}_\kappa \left(2 + \eta_D^* - 3 \eta_\nu^* \right) \stackrel{!}{=} 0 \,. \end{split}$$

Fixed point scaling

We consider the fixed point (scaling) behaviour by introducing

The fixed point anomalous dimension

$$\eta_{\nu}^* = \frac{2 + \eta_D^*}{3};$$

 \bullet η_D is fixed by requiring the presence of the enstrophy cascade

$$egin{array}{lcl} arepsilon_{\omega} &=& \langle f_{\omega}\omega
angle = \int_{\omega,q} \mathsf{N}\left(q
ight) \mathsf{G}^{\left(ar{\omega},\omega
ight)}\left(\omega,q
ight) \ \\ &=& D_{\kappa}\kappa^4 \int_{\hat{\omega},\hat{q}} \hat{q}^6 \hat{n}\left(\hat{q}
ight) \hat{G}_{\psi}^{\left(1,1
ight)}\left(\hat{\omega},\hat{q}
ight). \end{array}$$

Imposing a non-trivial ε_{ω} in the inertial limit $\kappa \to 0$ implies

$$\Rightarrow \eta_D = 4$$
.

Scaling and sub-leading logarithmic corrections

The dynamical scaling exponent reads

$$z = 2 - \eta_{\nu}^* = 2 - \frac{2 + \eta_D^*}{3} = 0.$$

 \Rightarrow We look for subleading corrections

$$u_{\kappa} \sim \kappa^{-\eta_{D}^{*}} \left(\ln(\kappa/\Lambda) \right)^{\gamma_{\nu}^{*}}, \qquad D_{\kappa} \sim \kappa^{-\eta_{D}^{*}} \left(\ln(\kappa/\Lambda) \right)^{\gamma_{D}^{*}}.$$

This sub-leading behaviour modifies the equation for η_D and $\eta_
u$

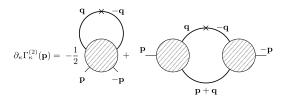
$$\kappa \partial_{\kappa} \hat{\lambda}_{\kappa} = -\frac{1}{2} \hat{\lambda}_{\kappa} \left(2 + \eta_D^* - 3\eta_\nu^* \right) + \frac{1}{2} (\gamma_D^* - 3\gamma_\nu^*) (\ln(\kappa/\Lambda))^{-1} \hat{\lambda}_{\kappa} .$$

The new term holds

$$\gamma_D^* = 3\gamma_\nu^* \equiv 3\gamma$$
 .

Closure of the flow equation

Consider the flow equation for the two-point function of the EAA



approximation in the EAA vertices for soft momenta

$$ar{\Gamma}_{\kappa}^{(3)}\left(q,p
ight)pproxar{\Gamma}_{\kappa}^{(3)}\left(0,p
ight)$$

use the Ward identities!

$$ar{\Gamma}_{\kappa}^{(3)}\left(0,p
ight)\simar{\Gamma}_{\kappa}^{(2)}\left(p
ight)$$

 \Rightarrow closure of the flow equation!

Closure of the flow equation

• After implementing these approximations, the flow equation for the *n*-point function can be written as

$$\partial_{\kappa} G_{\psi,i_{1}...i_{n}}^{(n)}(\{\mathbf{p}_{\ell}\}_{1\leq \ell\leq n}) = \frac{1}{2} \int_{\mathbf{q}_{1},\mathbf{q}_{2}} \tilde{\partial}_{\kappa} G_{\nu_{\mu}\nu_{\nu}}^{(2)}(-\mathbf{q}_{1},-\mathbf{q}_{2}) \times \mathcal{D}_{\mu}(\varpi_{1})\mathcal{D}_{\nu}(\varpi_{2})G_{\psi,i_{1}...i_{n}}^{(n)}(\{\mathbf{p}_{\ell}\}).$$

The velocity correlation function are retrieved by using

$$G_{\nu,k_1\cdots k_n}^{(n)}(\{\omega_k,\vec{p}_k\})=(i)^n\,\epsilon_{k_1\ell_1}p_1^{\ell_1}\cdots\epsilon_{k_n\ell_n}p_n^{\ell_n}G_{\psi,i_1\dots i_n}^{(n)}(\{\omega_k,\vec{p}_k\}).$$

The two-point function in the limit $\kappa \to 0$ (direct cascade)

In the stream function formulation we denote $\mathit{C}_{\psi} \equiv \mathit{G}_{\psi}^{(2,0)}$

$$\kappa \partial_{\kappa} \mathsf{C}_{\psi}(t, ec{p}) = -rac{1}{2} \mathsf{p}^2 \mathsf{C}_{\psi}(t, ec{p}) \int_{arpi} rac{\cos(arpi t) - 1}{arpi^2} \, J_{\kappa}(arpi) \, ,$$

where $J_{\kappa}(\varpi)$ can be expressed as

$$J_{\kappa}(\varpi) = -2 \int_{\vec{q}} \left\{ \kappa \partial_{\kappa} N_{\kappa}(\vec{q}) \, |\bar{G}(\varpi, \vec{q})|^2 - \kappa \partial_{\kappa} R_{\kappa}(\vec{q}) \, \bar{C}(\varpi, \vec{q}) \mathrm{Re} \big[\bar{G}(\varpi, \vec{q}) \big] \right\}.$$

The equation can be simplified in the large and small time limits:

$$\kappa \partial_{\kappa} C_{\psi}(t, \vec{p}) = C_{\psi}(t, \vec{p}) imes \left\{ egin{array}{ll} rac{I_{\kappa}^{0}}{4} t^{2} \, p^{2} & I_{\kappa}^{0} = \int_{arpi} J_{\kappa}(arpi) & t \ll 1 \ rac{I_{\kappa}^{\infty}}{4} |t| \, p^{2} & I_{\kappa}^{\infty} = J_{\kappa}(0) & t \gg 1 \end{array}
ight. .$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

The two-point function in the limit $\kappa \to 0$ (direct cascade)

We denote $s \equiv \log \kappa$

$$\begin{split} \left[\partial_{s}-6+\frac{2\gamma}{s}-\hat{p}\partial_{\hat{p}}+\frac{\gamma}{s}\hat{t}\partial_{\hat{t}}\right]\hat{C}_{s}(\hat{t},\hat{\vec{p}}) \\ &= \hat{C}_{s}(\hat{t},\hat{\vec{p}})\times \left\{ \begin{array}{cc} \hat{\alpha}_{s}^{0}\,\hat{p}^{2}\,\hat{t}^{2} & t\ll 1\\ \hat{\alpha}_{s}^{\infty}\,\hat{p}^{2}\,|\hat{t}| & t\gg 1 \end{array}\right., \end{split}$$

The (dimensionful) solution is

$$C_{\psi}(t,\vec{p}) = C_0 \frac{\varepsilon_{\omega}^{2/3}}{p^6} \ln(pL)^{-2\gamma} \hat{\mathcal{F}}_{0,\infty} \left(\bar{\nu}_0 \varepsilon_{\omega}^{1/3} t \ln(pL)^{-\gamma} \right)$$

$$\times \begin{cases} \exp(-\beta_L^0 t^2 \int_0^{pL} x \ln(x)^{2\gamma} dx) & t \ll 1 \\ \exp(-\beta_L^\infty |t| \int_0^{pL} x \ln(x)^{\gamma} dx) & t \gg 1 \end{cases}.$$

The parameter γ should be determined by a direct integration of the flow equation. Following a self-consistency argument by Kraichnan (1971) one has $\gamma=-\frac{1}{6}$.

Vorticity two-point function at equal times

From

$$C_{\psi}(0, \vec{p}) \sim |\vec{p}|^{-6} \left(\ln(|\vec{p}|L) \right)^{2\gamma}.$$

and obtains for the energy spectrum

$$E(p) = 2\pi p^3 C_{\psi}(0, \vec{p}) \sim p^{-3} (\ln(pL))^{-1/3}$$
.

(Logarithmic correction are difficult to assess experimentally and numerically Boffetta & Ecke 2012.)

The vorticity two-point function is given by

$$C_{\omega}(0,\vec{p}) = p^4 C_{\psi}(0,\vec{p}) \sim p^{-2} \ln(pL)^{-1/3}$$
.

Going to real space

$$C_{\omega}(0,ec{r}) = \int_0^{\pi} d heta \int dp rac{1}{p} \ln(pL)^{-1/3} e^{i|ec{p}||ec{r}|\cos heta} \sim \left(\lograc{\|ec{r}\|}{L}
ight)^{2/3}\,.$$

Generalization to other correlation functions

At equal time the limit $\kappa \to 0$ gives

$$\left[-4n+2+\frac{n}{3s}-\sum_{k=1}^{2n-1}\hat{p}_k\partial_{\hat{p}_k}\right]\hat{G}_{\omega,i_1...i_n}^{(2n,0)}=0.$$

The general solution of this equation reads

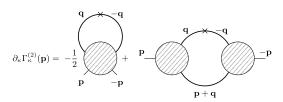
$$\hat{G}_{\omega,i_{1}...i_{2n}}^{(2n,0)}(0,\hat{\vec{p}}_{1},\cdots,0,\hat{\vec{p}}_{2n-1}) = \left(\prod_{k=1}^{2n-1}\hat{p}_{k}^{-2}(\ln\hat{p}_{k})^{-1/6}\right) \times \ln|\hat{\vec{p}}_{1}+\cdots+\hat{\vec{p}}_{2n-1}|^{-1/6}\hat{F}^{(2n)},$$

where $\hat{F}^{(2n)}$ is a scaling function.

(Compatible with the logarithmic corrections proposed by Falkovich & Lebedev 1994.)

Used all the symmetries?

Not yet:



approximation in the EAA vertices for soft momenta

$$ar{\mathsf{\Gamma}}_{\kappa}^{(3)}\left(q,p
ight)pproxar{\mathsf{\Gamma}}_{\kappa}^{(3)}\left(0,p
ight)+q\partial_{q}ar{\mathsf{\Gamma}}_{\kappa}^{(3)}\left(0,p
ight)$$

- use the Ward identities from rotations.
- not enough to fully close the equation at equal times in the q-expansion.
- the terms under control vanish at equal times ⇒ hint that possible anomalous correction are very weak if any?

Summary

- We studied the direct cascade for 2D turbulent flows via functional methods.
- We studied and unveiled new symmetries of the functional formalism.
- We showed that the FRG framework is a suitable non-perturbative framework to study 2D turbulence in its functional formulation thanks to the symmetries of the formalism.
- We computed the vorticity two-point function and studied its time dependence.

Outlook

- Extension of the present study to the explicit solution of the *n*-point function.
- Numerical integration of the flow equation
- Extension to other system, e.g. passive scalar (underway).

THANK YOU!!