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Brief reminder of 2D turbulence

Turbulent 2D phenomena describe (a first approximation of):

@ large scale motion of the atmosphere and oceans;
@ geostrophic turbulence;

@ stratified atmosphere;
and are applied in many context (e.g. MHD turbulence).

Typical experimental setup via soap films.

(From Belmonte et al., Physics of fluids (1999).)
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2D dynamics
We consider incompressible flows:
ovi=0.
From 3D Navier-Stokes equation
v + vjajvi =9 p+ vV +f.
Taking v ~ 0 and v ~ 22
= V02V & —avY
one obtains the 2D Ekman-Navier-Stokes equation:

eV’ + vjajvi =9 p+vdv —av +f,

where « is the so called Ekman friction.
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Basics of 2D turbulence

Turbulence in 2D is characterized by a completely different phenomenology

from the 3D case. In particular there are two cascades

@ a direct (enstrophy) cascade (towards smaller scales),

@ an inverse (energy) cascade (towards larger scales).

A crucial role is play by the vorticity w:
w= e’ja,-\/j .
Considering o &~ 0 the vorticity dynamics is given by
O + WO — vdPw =1,

(Similar to the equation for transport of scalar quantities.)
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The two cascades
Consider the enstrophy ¢ = fx w? /2 for zero forcing. We have

8t[W=—V[p2w(p)w(—p) <0,

P P

-~

>0

implying that the enstrophy ( decreases with time.

Moreover
O: L/C; \/i(/))ig(__Ei)) = —v L/C; w (IJ) w ("'l’) > —vi#
~—

<#
Therefore in the inviscid limit (v — 0)
lim at/\ﬂ > lim —v# = 0.
v—0 v—0

= no energy dissipative anomaly is possible in 2D!
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The two cascades

However,

@ enstrophy has a dissipative anomaly (lim,_,o ¢ # 0):
0t{¢) = —v{Qjwiiw) + (f,w),

like energy for the 3D Navier-Stokes case. (Direct enstrophy cascade.)

e energy is dynamically transferred to larger scales. (Inverse energy
cascade.)

= Kolmogorov-type of arguments leads to two different spectra in the two
cascades.
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The two cascades
Summarizing

@ enstrophy has a dissipative anomaly,
@ energy is dynamically transferred to larger scales.

(Possible to give a “stochastic calculus based” derivation.)

Let E (p) = mp(v' (p) v/ (—p)) (taken from Lesieur (1983)):

\\ l\a
ke = €172 -312

ki kg=(B/v3)VE
(Possible log-corrections (Kraichnan 1971).)

E(k)
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Functional formulation of 2D turbulence

In order to keep the fluid in a steady state we need to consider the forced
equation of motion:

RVARE vjajvi =9 p+vd* —av +f

We construct the partion function via (Martin-Siggia-Rose PRA 1973,
Janssen Z.Phys. 1976, deDominicis J.Phys. 1976)

Z = /Dva P d (va - V§SOI)>

= /’DvaDf Ps o (6tvi + vjajvi +0'p—vd*V +av — fi) ,

where Pg implements a stochastic forcing with Gaussian distribution of
variance

(AR X)) = 2005 8(t = )N (1% = %)
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Functional formulation of 2D turbulence

One can exponentiate the Dirac delta and integrate out the Gaussian
forcing:

S = / {Va [8tva — vV, + Vg0 Ve + ;%p} + b@ava}
AS = / {VQRLEJI Vo — VQNL.IVQ} :

where R, implements a non-local generalization of the Ekman friction
term.

By integrating over the pressure fields we retrieve that the velocity field
and the velocity response field are divergenceless:

aoz Voo, =

aOé VO&
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Incompressibility in 2D
We consider incompressible fluids:

a,'V,' =0.

Helmoltz theorem:
Va = €ap0pt) — Oagp
=0
where the scalar 9 is called stream function.

Relation to vorticity
W = €ap0avp = —01).

The action reads
Sylv, ¢] = / Do) [ataaz/z — U001 + €5y Oy aﬁaaw]
ASlv. 9] = [ {uiRgol0 - 04,5}
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FRG approach to 2D turbulence

The action

8,071 = [

t,X,X

{Dad(t. 2R3 (% = %02, %)
— 0Dt RN (I = K1) B(E R |

/

is characterised by Fourier transforms that are smooth functions, which
vanish exponentially for wave-numbers large compared to Lgl or L7%, and
which regularize the fluctuating fields for small wave-numbers.

Et 513

=€12 312

T
ki kg=(B/v3)V/E
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FRG approach to the direct cascade

We take Lal = L7! = k and study the momenta p >> &, i.e.

@ the inertial range, between the energy injection scale and the
dissipation scale;

@ the direct enstrophy cascade.

The ideal limit (Lo, L) — oo corresponds to x — 0. To reconstruct this
limit we consider the EAA dependence on x (Wetterich 1993):

1 -1
or =5 [ aR(x—y) [P+ R ).
2 Jxy /!

= look for IR fixed point corresponding to x — 0.
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(Extended) symmetries

Extended symmetries = transformation that leaves the action invariant up

to terms linear in the field.
o time-gauged shift symmetries (v ~ 9% and v ~ 9))

a) ov=n(t), 3) o) =ift)

@ time-gauged shift of the (velocity) response field (present also in the

velocity formulation)

b) 5¢ =0, &Z = Xaﬁa(t)

@ new time-gauged shift of the response field
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(Extended) symmetries

Extended symmetries = transformation that leaves the action invariant up
to terms linear in the field.

@ time-gauged Galilean symmetry

d) o = Gaﬁxaﬁﬁ(t) + Ua(t)aoﬂﬁ, &Z = na(t)aoﬂz

@ time-gauged rotation

2

€) 0b = —i(t) 5 +u(t)eapxOat, 0% = n(t)easxadal

(Present in the velocity formulation at the price of considering
non-local shift in the pressure fields.)
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Symmetries and Ward identities

The extended symmetries a),...,e) encode exact, non-perturbative
information regarding the RG of the theory.

5T [ ST,
=0 _ =0
2) LoW(x) ) 2 00 (x)

b) /ané‘g(“):o
2 /Xzzair /at

d) A{(—eﬁaxﬁat+a w)éir( )+aaw5ir( )}—o

x? ol ol —
x v v =2 [ 9%V.
) L{( 3 Oe - capxp0aV) sy + CapXola W(x)} /;f%
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Ward identities in momentum space

The momentum space version can be employed in the flow equation.
(67T = (2m)96 (X p) T(7).)

a),a) Tm™M( . wg,.. ) =0
§=0
by 2 plmi)

oq " ({pe}1<i<m, @, 4, {Pz}lﬂgﬁv—l)‘azo =0

0 )

c) aicﬂr,({m’m+l)({p€}1§£§myw7 G, {pet1<e<m-1) a0 0
0% =11 :
except 8—(72&’ (w, §) . —4iw

J = m+1,m = : B r(m,m
d) aT;ir’(* i )(qua{pf}lﬁfgm-i—m—l))azo = ieapDa(@)T ™™ ({p,})

82 r(m+1,m = », r(m,m
e) aiq2rl(c o )(W7 G, {Pet1<e<mim—1) 40 = R(w)rf(g ’ )({Pe}),
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where we have introduced the two operators Do (w) and R(w) defined as:

ﬁa(w)’:({m}lggn) =
n o [F({pé}lﬁﬂﬁk—l, wk + @, Pk, {pe}k+1S€§n) _ F({Pe})]
k=1 w
7é(w)"_({ll‘e}1<z<n) =
Dicus Z o [F({Pe}1<z<k 1, Wk + @, ;:;, {Pe}krice<n) — F({pg})] .
k
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Fixed point scaling
We consider the fixed point (scaling) behaviour by introducing
@ the anomalous dimensions:

np(k) = —kOy In Dy, (k) = —kOx Inv ,

where N (q) = D, (q/k)? fx (q/5)%;

@ the dimensionless momentum and frequency are defined by p = p/k
-2 -2,

and @ = wk™ V%
@ one finds the dynamical scaling exponent w ~ p?
z=2-n,;

o fixed point and non-renormalization of the “Galilei covariant
derivative”:

O + V'O — 0y + M\ V' O;

o 1.
= K&AH:—ENA2+HB—3ﬁ)$0.
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Fixed point scaling

We consider the fixed point (scaling) behaviour by introducing

@ The fixed point anomalous dimension

«  2+np.
771/_ 3 !

@ np is fixed by requiring the presence of the enstrophy cascade

o = (fu) = / N (q) 6@ (w, q)
w,q

Imposing a non-trivial €, in the inertial limit £ — 0 implies

=np==4.
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Scaling and sub-leading logarithmic corrections

The dynamical scaling exponent reads

2 *
z=2—y=2-=tb _gq
3
= We look for subleading corrections
Ve ~ K~ (In(k/N)" D, ~ k7" (In(k/N))D .

This sub-leading behaviour modifies the equation for np and 7,

N 1q * * 1 * * -13
KOk = _5)‘5 (2 +nNp — 3771/) + E(’YD - 3'71/)(|n(’%//\)) ! A -

The new term holds

vp =37, =37.
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Closure of the flow equation
Consider the flow equation for the two-point function of the EAA

a 4
2.0 (p) = -
p -p

P+dq

@ approximation in the EAA vertices for soft momenta

r® (q,p) ~ TP (0,p)
@ use the Ward identities!

F20.p) ~ TP (p)

= closure of the flow equation!
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Closure of the flow equation

@ After implementing these approximations, the flow equation for the
n-point function can be written as

n 1 ~
Or Gé“)l wPchicesn) = 5/ .G, (—a1, —a2)
q1,92

XDy (w1)Dy(@2)G) ., ({pe}) -

@ The velocity correlation function are retrieved by using

Gv Jki-kn ({wkv Pk}) (i)n ekl‘elpfl T 6knfnpnn G1§J .. l,,({wkv Pk})
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The two-point function in the limit xk — 0 (direct cascade)

In the stream function formulation we denote C = GQEJQ’O)

cos(wt) — 1

. 1 -
/Qancw(ta P) = _2P2C¢(t7p)/ >

o w

(@),

where J,(w) can be expressed as

q

Jp(w) = -2 [{K@NNn(ﬁ) |G(w, §)|? — kDR.(g) C(w, G)Re[G(w, )] } .

The equation can be simplified in the large and small time limits:

22 2 0 _
RORCH(8.5) = Cult B) x AL P, e = Je (@)t <l
==t p* 1 = Jc(0) > 1
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The two-point function in the limit xk — 0 (direct cascade)
We denote s = log x

2 A P
[as —6+ ?'7 — PO + %t@;] (2, B)

= G,

TP

S

) AR t<1
APt t>1 7

The (dimensionful) solution is
22/3 X
Co(t,B) = Co™g- In(pL) > Foyoe (70=l/* tn(pl) )
exp(—f t? fopLx In(x)*7dx) t<1
exp(—B7° [t] [P xIn(x)Tdx) t>1
The parameter « should be determined by a direct integration of the flow

equation. Following a self-consistency argument by Kraichnan (1971) one
has v = —%.
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Vorticity two-point function at equal times

From
Cy(0,B) ~ |BI° (In(|BIL))*"
and obtains for the energy spectrum

E(p) = 2mp® Cy(0,B) ~ p~3(In(pL)) /3.

(Logarithmic correction are difficult to assess experimentally and
numerically Boffetta & Ecke 2012.)

The vorticity two-point function is given by
C.(0,5) = p*Cy(0,5) ~ p~2In(pL) /3.

Going to real space

= " 1 —1/3_.ilB||F cos 8 171\
C.(0,7) = do dp; In(pL)~"/>€'lP ~ | log T .
0
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Generalization to other correlation functions

At equal time the limit kK — 0 gives

2n—1
n s o | ~@2n0)
—4n+2+§— E pkapk]G =0.

w,il...i,,
k=1

The general solution of this equation reads

2n—1
~(2n,0 5 2 5=2(In B.)~
G0 (0. P10, Pan 1) = (H pic>(In px) 1/6>
k=1

xIn [Py + -+ + Pan-a | HOFCY,

where F(2M) s 3 scaling function.

(Compatible with the logarithmic corrections proposed by Falkovich &
Lebedev 1994.)
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Used all the symmetries?
Not yet:

P+dq

@ approximation in the EAA vertices for soft momenta
% (q,p) ~ TP (0, p) + q0sTP (0, p)

@ use the Ward identities from rotations.

@ not enough to fully close the equation at equal times in the
g-expansion.

@ the terms under control vanish at equal times = hint that possible
anomalous correction are very weak if any?
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Summary

We studied the direct cascade for 2D turbulent flows via functional
methods.

@ We studied and unveiled new symmetries of the functional formalism.

@ We showed that the FRG framework is a suitable non-perturbative
framework to study 2D turbulence in its functional formulation thanks
to the symmetries of the formalism.

We computed the vorticity two-point function and studied its time
dependence.
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Outlook

@ Extension of the present study to the explicit solution of the n-point
function.

o Numerical integration of the flow equation

e Extension to other system, e.g. passive scalar (underway).

C. Pagani (Univ. of Mainz) Functional renormalization group approach to 24/04/2019 30 /31



THANK YOU!!

C. Pagani (Univ. of Mainz) Functional renormalization g



	Introduction to 2D turbulence
	Functional formulation of 2D turbulence
	Functional renormalization group approach
	Summary

