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Brief reminder of 2D turbulence
Turbulent 2D phenomena describe (a first approximation of):

large scale motion of the atmosphere and oceans;

geostrophic turbulence;

stratified atmosphere;

and are applied in many context (e.g. MHD turbulence).

Typical experimental setup via soap films.

ently absent.16 The enstrophy transfer rate � �� per unit
time� in the direct cascade leads dimensionally to �v(r)
�(�)1/3r . Although this picture seems to be confirmed by
numerical simulations4,17–20 �but see Ref. 21�, the experi-
mental situation is still evolving.22–24

The measurements reported here were made in a 2.4 m
high soap film apparatus developed in our laboratory.6,25 A
solution of soap and water �2% commercial liquid detergent
by volume� is introduced at a constant rate between two ny-
lon wires and allowed to fall under its own weight as a film
approximately 3 �m in thickness. The width of the channel
is W�6.2 cm over a distance of 120 cm. Nearly isotropic
turbulence7 is produced in this region by a comb inserted
perpendicularly into the film, having a 1 mm tooth diameter
and a spacing M�3.8mm. An interferometric image of the
turbulence thus produced is shown in Fig. 1.

To measure the time variation of the film velocity, we
use laser Doppler velocimetry.26 The commercial apparatus
�TSI Inc.� produces a patch of fringes roughly 35 �m in size.
The flow is seeded with 1 �m polystyrene spheres, and the
average data rate is about 8 kHz. At a distance Y�8 cm
below the comb, where most of our measurements were
made, the mean and rms velocities were typically U0
�180 cm/sec and v rms��v�2�1/2�24 cm/sec, where
v��v�U0 . The actual value of the viscosity for soap film
flows is not completely clear; in this paper we use �
�0.1 cm2/sec.27 The Reynolds number of the channel is
ReW�U0W/��11 000, and for the comb ReM�U0M/��700.
These numbers are comparable to those obtained in experi-
ments on 3-D grid turbulence,8,28 and thus we consider our
flow to be turbulent in some generic sense. The deviations
from two-dimensionality due to air friction25 appear not to
affect the turbulence for the scales of interest here.7

III. RESULTS

We measure the longitudinal velocity difference
�v(r ,t)�„v(x�r,t)�v(x ,t)…•r/r , with r in the direction of
the flow y. Because v rms /U0 is only about 0.14, we are jus-
tified in using Taylor’s hypothesis, and accordingly use y
�U0t to relate time correlation functions to spatial ones.3 It
has been verified that Taylor’s hypothesis holds in our soap

film for moments out to S6(r);29 we have also taken into
account the weak variation of U0 and v rms with Y in applying
this hypothesis.

Figure 2�a� is a semi-log plot of the normalized probabil-
ity density functions �PDFs� of �v for several different spa-
tial separations r, at Y�8 cm. Note that as r decreases,
P„�v(r)… changes shape from Gaussian at large scales
(r�2 mm) to double-sided exponential at small scales
(r�0.1mm). The development of extended tails at small r
indicates the intermittency3 of the fluctuations, similar to 3-D
turbulence.30,31

Figure 2�b� shows the power spectrum E(k) for the same
data. Over a little less than a decade E(k)�k�3.3, in agree-
ment with previous measurements;5–7,23 this exponent does
not change measurably with Y. This observation is consistent
with the expected scaling for an enstrophy cascade,
E(k)�k�3.15,16 The absence of a k�5/3 portion at small k is
consistent with the current understanding of decaying 2-D
turbulence.16,32

It should be noted here that a k�3 scaling has been ob-
served in numerical simulations of forced 2-D turbulence in
the inverse energy cascade range as well.18,21 This deviation
from the expected k�5/3 scaling is attributed to the presence
of large, long-lived coherent structures and finite-size effects

FIG. 1. The central region of the turbulent soap film, Y�8 cm behind comb.
The image is about 4 cm across, and the flow is from right to left. The mean
flow speed is 180 cm/sec.

FIG. 2. �a� The PDFs of �v(r) at the three indicated values of r. �b� Energy
spectrum obtained from the time series of the longitudinal velocity, showing
an interval where E(k)�k�3.3. The data in both plots are taken at Y
�8 cm.

1197Phys. Fluids, Vol. 11, No. 5, May 1999 Belmonte et al.

(From Belmonte et al., Physics of fluids (1999).)
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2D dynamics

We consider incompressible flows:

∂iv
i = 0 .

From 3D Navier-Stokes equation

∂tv
i + v j∂jv

i = −∂ip + ν∂2v i + f i .

Taking v z ≈ 0 and v x ,y ∼ z2

⇒ ν∂2
z v

x ,y ≈ −αv x ,y ,

one obtains the 2D Ekman-Navier-Stokes equation:

∂tv
i + v j∂jv

i = −∂ ip + ν∂2v i − αv i + f i ,

where α is the so called Ekman friction.
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Basics of 2D turbulence

Turbulence in 2D is characterized by a completely different phenomenology
from the 3D case. In particular there are two cascades

a direct (enstrophy) cascade (towards smaller scales),

an inverse (energy) cascade (towards larger scales).

A crucial role is play by the vorticity ω:

ω ≡ εij∂ivj .

Considering α ≈ 0 the vorticity dynamics is given by

∂tω + uj∂jω − ν∂2ω = fω .

(Similar to the equation for transport of scalar quantities.)
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The two cascades
Consider the enstrophy ζ ≡

∫
x ω

2/2 for zero forcing. We have

∂t

∫

~p

ω (p)ω (−p)

2
= − ν

∫

~p
p2ω (p)ω (−p)

︸ ︷︷ ︸
>0

< 0 ,

implying that the enstrophy ζ decreases with time.

Moreover

∂t

∫

~p

vi (p) v i (−p)

2
= −ν

∫

~p
ω (p)ω (−p)

︸ ︷︷ ︸
≤#

≥ −ν# .

Therefore in the inviscid limit (ν → 0)

lim
ν→0

∂t

∫
v2 ≥ lim

ν→0
−ν# = 0 .

⇒ no energy dissipative anomaly is possible in 2D!
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The two cascades

However,

enstrophy has a dissipative anomaly (limν→0 ζ 6= 0):

∂t〈ζ〉 = −ν〈∂iω∂iω〉+ 〈fωω〉 ,

like energy for the 3D Navier-Stokes case. (Direct enstrophy cascade.)

energy is dynamically transferred to larger scales. (Inverse energy
cascade.)

⇒ Kolmogorov-type of arguments leads to two different spectra in the two
cascades.
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The two cascades

Summarizing

enstrophy has a dissipative anomaly,

energy is dynamically transferred to larger scales.

(Possible to give a “stochastic calculus based” derivation.)

Let E (p) = πp〈v i (p) v i (−p)〉 (taken from Lesieur (1983)):
Turbulence in Fluids 325

Figure 8.5. Schematic double cascading spectrum of forced two-dimensional tur-
bulence (from Lesieur [417]).

8.6 Inverse energy transfers

8.6.1 Inverse energy cascade

This concept is from Kraichnan [350], and holds only when turbulence is forced
at a fixed wave number ki. Fjortoft’s theorem has shown that kinetic en-
ergy could be transferred more easily towards large scales than towards small
scales. In fact it will be shown below that, within the E.D.Q.N.M. model, the
kinetic-energy flux through the enstrophy cascade is zero. So the kinetic energy
injected at the rate ε at ki can only cascade backwards towards small wave
numbers. Kraichnan’s argument is then the same as for the three-dimensional
Kolmogorov kinetic energy cascade, except for the sign of the kinetic energy
flux Π(k) which is now negative. In this range (k < ki) the kinetic energy
spectrum is

E(k) = C′
Kε2/3k−5/3. (8.29)

Figure 8.5 shows schematically the kinetic energy spectrum obtained with
such a forcing.

We will call this range Kolmogorov inverse energy cascade. It is not sta-
tionary at low wave numbers, since kinetic energy is continuously supplied at
a rate ε, without any dissipation. Writing that the kinetic energy contained
under the Kolmogorov spectrum is proportional to εt, it is then easy to show

(Possible log-corrections (Kraichnan 1971).)
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Functional formulation of 2D turbulence
In order to keep the fluid in a steady state we need to consider the forced
equation of motion:

∂tv
i + v j∂jv

i = −∂ip + ν∂2v i − αv i + f i .

We construct the partion function via (Martin-Siggia-Rose PRA 1973,
Janssen Z.Phys. 1976, deDominicis J.Phys. 1976)

Z =

∫
DvDf Pff δ

(
va − v

(sol)
a

)

=

∫
DvDpDf Pff δ

(
∂tv

i + v j∂jv
i + ∂ip − ν∂2v i + αv i − f i

)
,

where Pff implements a stochastic forcing with Gaussian distribution of
variance

〈
f injα (t,~x)f injβ (t ′,~x ′)

〉
= 2 δαβ δ(t − t ′)NL-1(|~x − ~x ′|) .
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Functional formulation of 2D turbulence

One can exponentiate the Dirac delta and integrate out the Gaussian
forcing:

S =

∫ {
v̄α
[
∂tvα − ν∇2vα + vβ∂βvα +

1

ρ
∂αp

]
+ p̄ ∂αvα

}

∆S =

∫ {
v̄αRL-1

0
vα − v̄αNL-1 v̄α

}
,

where RL-1
0

implements a non-local generalization of the Ekman friction
term.

By integrating over the pressure fields we retrieve that the velocity field
and the velocity response field are divergenceless:

∂αvα = 0

∂αv̄α = 0 .
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Incompressibility in 2D
We consider incompressible fluids:

∂ivi = 0 .

Helmoltz theorem:
va = εab∂bψ − ∂aϕ︸︷︷︸

=0

,

where the scalar ψ is called stream function.

Relation to vorticity
ω = εab∂avb = −∂2ψ .

The action reads

Sψ[ψ, ψ̄] =

∫
∂αψ̄

[
∂t∂αψ − ν∇2∂αψ + εβγ ∂γψ ∂β∂αψ

]

∆Sψ[ψ, ψ̄] =

∫ {
∂αψ̄RL-1

0
∂′αψ − ∂αψ̄NL-1∂′αψ̄

}
,
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FRG approach to 2D turbulence
The action

∆Sψ[ψ, ψ̄] =

∫

t,~x ,~x ′

{
∂αψ̄(t,~x)RL-1

0
(|~x − ~x ′|)∂′αψ(t,~x ′)

− ∂αψ̄(t,~x)NL-1(|~x − ~x ′|)∂′αψ̄(t,~x ′)
}
,

is characterised by Fourier transforms that are smooth functions, which
vanish exponentially for wave-numbers large compared to L−1

0 or L−1, and
which regularize the fluctuating fields for small wave-numbers.

Turbulence in Fluids 325

Figure 8.5. Schematic double cascading spectrum of forced two-dimensional tur-
bulence (from Lesieur [417]).

8.6 Inverse energy transfers

8.6.1 Inverse energy cascade

This concept is from Kraichnan [350], and holds only when turbulence is forced
at a fixed wave number ki. Fjortoft’s theorem has shown that kinetic en-
ergy could be transferred more easily towards large scales than towards small
scales. In fact it will be shown below that, within the E.D.Q.N.M. model, the
kinetic-energy flux through the enstrophy cascade is zero. So the kinetic energy
injected at the rate ε at ki can only cascade backwards towards small wave
numbers. Kraichnan’s argument is then the same as for the three-dimensional
Kolmogorov kinetic energy cascade, except for the sign of the kinetic energy
flux Π(k) which is now negative. In this range (k < ki) the kinetic energy
spectrum is

E(k) = C′
Kε2/3k−5/3. (8.29)

Figure 8.5 shows schematically the kinetic energy spectrum obtained with
such a forcing.

We will call this range Kolmogorov inverse energy cascade. It is not sta-
tionary at low wave numbers, since kinetic energy is continuously supplied at
a rate ε, without any dissipation. Writing that the kinetic energy contained
under the Kolmogorov spectrum is proportional to εt, it is then easy to show
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FRG approach to the direct cascade

We take L−1
0 = L−1 = κ and study the momenta p � κ, i.e.

the inertial range, between the energy injection scale and the
dissipation scale;

the direct enstrophy cascade.

The ideal limit (L0, L)→∞ corresponds to κ→ 0. To reconstruct this
limit we consider the EAA dependence on κ (Wetterich 1993):

∂κΓκ =
1

2

∫

x,y
∂κ[Rκ]ij (|x− y|)

[
Γ(2)
κ +Rκ

]−1

ji
(y, x) .

⇒ look for IR fixed point corresponding to κ→ 0.
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(Extended) symmetries

Extended symmetries ≡ transformation that leaves the action invariant up
to terms linear in the field.

time-gauged shift symmetries (v ∼ ∂ψ and v̄ ∼ ∂ψ̄)

a) δψ = η(t) , ā) δψ̄ = η̄(t)

time-gauged shift of the (velocity) response field (present also in the
velocity formulation)

b) δψ = 0 , δψ̄ = xαη̄α(t)

new time-gauged shift of the response field

c) δψ = 0 , δψ̄ =
x2

2
η̄(t)
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(Extended) symmetries

Extended symmetries ≡ transformation that leaves the action invariant up
to terms linear in the field.

time-gauged Galilean symmetry

d) δψ = εαβxαη̇β(t) + ηα(t)∂αψ , δψ̄ = ηα(t)∂αψ̄

time-gauged rotation

e) δψ = −η̇(t)
x2

2
+ η(t)εαβxβ∂αψ , δψ̄ = η(t)εαβxβ∂αψ̄

(Present in the velocity formulation at the price of considering
non-local shift in the pressure fields.)
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Symmetries and Ward identities

The extended symmetries a),...,e) encode exact, non-perturbative
information regarding the RG of the theory.

a)

∫

~x

δΓκ
δΨ(x)

= 0, ā)

∫

~x

δΓκ

δΨ̄(x)
= 0

b)

∫

~x
xα

δΓκ

δΨ̄(x)
= 0

c)

∫

~x

x2

2

δΓκ

δΨ̄(x)
= −2

∫

~x
∂tΨ

d)

∫

~x

{(
− εβαxβ∂t + ∂αΨ

) δΓκ
δΨ(x)

+ ∂αΨ̄
δΓκ

δΨ̄(x)

}
= 0

e)

∫

~x

{(x2

2
∂t + εαβxβ∂αΨ

) δΓκ
δΨ(x)

+ εαβxβ∂αΨ̄
δΓκ

δΨ̄(x)

}
= 2

∫

~x
∂2

t Ψ̄ .
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Ward identities in momentum space

The momentum space version can be employed in the flow equation.
(δnΓ = (2π)dδ (

∑
p) Γ̄(n).)

a), ā) Γ̄(m,m̄)
κ (. . . , $,~q, . . . )

∣∣∣
~q=0

= 0

b)
∂

∂qi
Γ̄(m,m̄+1)
κ ({p`}1≤`≤m, $,~q, {p`}1≤`≤m̄−1)

∣∣∣
~q=0

= 0

c)
∂2

∂q2
Γ̄(m,m̄+1)
κ ({p`}1≤`≤m, $,~q, {p`}1≤`≤m̄−1)

∣∣∣
~q=0

= 0

except
∂2

∂q2
Γ̄(1,1)
κ ($,~q)

∣∣∣
~q=0

= −4i$

d)
∂

∂qi
Γ̄(m+1,m̄)
κ ($,~q, {p`}1≤`≤m+m̄−1)

∣∣∣
~q=0

= iεαβD̃β($)Γ̄(m,m̄)
κ ({p`})

e)
∂2

∂q2
Γ̄(m+1,m̄)
κ ($,~q, {p`}1≤`≤m+m̄−1)

∣∣∣
~q=0

= R̃($)Γ̄(m,m̄)
κ ({p`}) ,
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where we have introduced the two operators D̃α($) and R̃($) defined as:

D̃α($)F ({p`}1≤`≤n) ≡

−
n∑

k=1

pαk

[
F ({p`}1≤`≤k−1, ωk +$,~pk , {p`}k+1≤`≤n)− F ({p`})

$

]

R̃($)F ({p`}1≤`≤n) ≡

2iεαβ

n∑

k=1

pαk
∂

∂pβk

[
F ({p`}1≤`≤k−1, ωk +$,~pk , {p`}k+1≤`≤n)− F ({p`})

$

]
.
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Fixed point scaling
We consider the fixed point (scaling) behaviour by introducing

the anomalous dimensions:

ηD(κ) = −κ∂κ lnDκ , ην(κ) = −κ∂κ ln νκ ,

where Nκ (q) = Dκ (q/κ)2 n̂κ (q/κ)2;

the dimensionless momentum and frequency are defined by p̂ = p/κ
and ω̂ ≡ ωκ−2ν−2

κ ;

one finds the dynamical scaling exponent ω ∼ pz

z = 2− η∗ν ;

fixed point and non-renormalization of the “Galilei covariant
derivative”:

∂t + v i∂i → ∂t + λkv
i∂i

⇒ κ∂κλ̂κ = −1

2
λ̂κ (2 + η∗D − 3η∗ν)

!
= 0 .
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Fixed point scaling

We consider the fixed point (scaling) behaviour by introducing

The fixed point anomalous dimension

η∗ν =
2 + η∗D

3
;

ηD is fixed by requiring the presence of the enstrophy cascade

εω = 〈fωω〉 =

∫

ω,q
N (q)G (ω̄,ω) (ω, q)

= Dκκ
4

∫

ω̂,q̂
q̂6n̂ (q̂) Ĝ

(1,1)
ψ (ω̂, q̂) .

Imposing a non-trivial εω in the inertial limit κ→ 0 implies

⇒ ηD = 4 .
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Scaling and sub-leading logarithmic corrections

The dynamical scaling exponent reads

z = 2− η∗ν = 2− 2 + η∗D
3

= 0 .

⇒ We look for subleading corrections

νκ ∼ κ−η
∗
ν (ln(κ/Λ))γ

∗
ν , Dκ ∼ κ−η

∗
D (ln(κ/Λ))γ

∗
D .

This sub-leading behaviour modifies the equation for ηD and ην

κ∂κλ̂κ = −1

2
λ̂κ (2 + η∗D − 3η∗ν) +

1

2
(γ∗D − 3γ∗ν)(ln(κ/Λ))−1 λ̂κ .

The new term holds
γ∗D = 3γ∗ν ≡ 3γ .

C. Pagani (Univ. of Mainz) Functional renormalization group approach to 2D turbulence 24/04/2019 21 / 31



Closure of the flow equation

Consider the flow equation for the two-point function of the EAA

11

The derivation of the identities (d) and (e) is reported in appendices A.2 and A.3 respectively.

3.4. Large wave-number expansion of the !ow equations

Let us explain the principles of the large wave-number expansion. The !ow equation (16) is 
exact. However, the !ow equation for a generic n-point function Γ(n)

κ , which can be deduced 
by taking the corresponding functional derivatives of (16), is not closed as it involves the 
(n + 1) and (n + 2) vertex functions. As such, one has to consider an in#nite hierarchy of !ow 
equations. For example, the !ow equation for the two-point function is given in the Fourier 
space by

∂sΓ̄
(2)
mn (p) =

∫

q
∂sRij(q)Ḡ(2)

jk (q)
[

− 1
2
Γ̄

(4)
klmn(q, −q, p) + Γ̄

(3)
kms(q, p)Ḡ(2)

st (q + p)Γ̄
(3)
tnl (q + p, −p)

]
Ḡ(2)

li (q),

 (26)
which depends on the 3- and 4-point vertices. The right-hand side (rhs) is represented dia-
grammatically in #gure 1, where the dashed circles are the vertex functions, the thick lines 
are propagators and the cross is the derivative of the regulator. The rhs involves the integrated, 
or internal, wave-vector and frequency q circulating in the loops besides the external wave-
vector and frequency p at which the vertex function on the left-hand side (lhs) is evaluated.

In most applications, this hierarchy is closed by simply truncating higher-order vertices, or 
proposing an ansatz for Γκ [37]. An alternative strategy, pioneered in [41, 56] and called the 
BMW approximation scheme, consists in expanding these vertices in the internal wave-vector 
!q . This approximation relies on the two following properties of the regulator: on the one hand, 
its insertion in the integration loop on the rhs of (16) cuts off the internal wave-number |!q| to 
values |!q| ! κ. As a consequence, if the system is probed at a wave-number scale |!p| much 
larger than the renormalization scale, p ! κ, there is a clear separation of scales in the !ow 
equations: q/p ! 1. On the other hand, the presence of the regulator ensures that the vertex 
functions are smooth at any #nite scale κ > 0, which allows one to perform a Taylor expan-
sion in powers of !q . The underlying idea is that, close to a #xed point, the vertex functions 
are expected to depend on the internal wave-number only through ratio of the type q/p , which 
means that the expansion at q ! 0 is expected to be equivalent to an expansion at p → ∞. 
This expansion becomes exact in the limit of in#nite wave-numbers, and the error at #nite but 
large p  is small. In fact, this expansion was found to be a reliable approximation for arbitrary 
momenta [41, 56].

The BMW strategy has turned out to be very successful in the context of turbulence, since 
the expanded !ow equations can be closed at zero #elds thanks to the Ward identities, whereas 
it generically requires to keep a whole dependence in background #elds. This was #rst noticed 

Figure 1. Diagrammatic representation of the !ow of Γ(2)
κ .

M Tarpin et alJ. Phys. A: Math. Theor. 00 (2019) 000000

approximation in the EAA vertices for soft momenta

Γ̄(3)
κ (q, p) ≈ Γ̄(3)

κ (0, p)

use the Ward identities!

Γ̄(3)
κ (0, p) ∼ Γ̄(2)

κ (p)

⇒ closure of the flow equation!
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Closure of the flow equation

After implementing these approximations, the flow equation for the
n-point function can be written as

∂κG
(n)
ψ,i1...in

({p`}1≤`≤n) =
1

2

∫

q1,q2

∂̃κG
(2)
vµvν (−q1,−q2)

×Dµ($1)Dν($2)G
(n)
ψ,i1...in

({p`}) .

The velocity correlation function are retrieved by using

G
(n)
v ,k1···kn

({ωk , ~pk}) = (i)n εk1`1p
`1
1 · · · εkn`np

`n
n G

(n)
ψ,i1...in

({ωk , ~pk}) .
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The two-point function in the limit κ→ 0 (direct cascade)

In the stream function formulation we denote Cψ ≡ G
(2,0)
ψ

κ∂κCψ(t, ~p) = −1

2
p2Cψ(t, ~p)

∫

$

cos($t)− 1

$2
Jκ($) ,

where Jκ($) can be expressed as

Jκ($) = −2

∫

~q

{
κ∂κNκ(~q) |Ḡ ($,~q)|2 − κ∂κRκ(~q) C̄ ($,~q)Re

[
Ḡ ($,~q)

]
}
.

The equation can be simplified in the large and small time limits:

κ∂κCψ(t, ~p) = Cψ(t, ~p)×
{

I 0
κ
4 t2 p2 I 0

κ =
∫
$ Jκ($) t � 1

I∞κ
4 |t| p2 I∞κ = Jκ(0) t � 1

.

C. Pagani (Univ. of Mainz) Functional renormalization group approach to 2D turbulence 24/04/2019 24 / 31



The two-point function in the limit κ→ 0 (direct cascade)
We denote s ≡ log κ

[
∂s − 6 +

2γ

s
− p̂∂p̂ +

γ

s
t̂∂t̂

]
Ĉs(t̂, ~̂p)

= Ĉs(t̂, ~̂p)×
{

α̂0
s p̂

2 t̂2 t � 1
α̂∞s p̂2 |t̂| t � 1

,

The (dimensionful) solution is

Cψ(t, ~p) = C0
ε

2/3
ω

p6
ln(pL)−2γF̂0,∞

(
ν̄0ε

1/3
ω t ln(pL)−γ

)

×
{

exp(−β0
L t

2
∫ pL

0 x ln(x)2γdx) t � 1

exp(−β∞L |t|
∫ pL

0 x ln(x)γdx) t � 1
.

The parameter γ should be determined by a direct integration of the flow
equation. Following a self-consistency argument by Kraichnan (1971) one
has γ = −1

6 .
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Vorticity two-point function at equal times
From

Cψ(0, ~p) ∼ |~p|−6 (ln(|~p|L))2γ .

and obtains for the energy spectrum

E (p) = 2πp3 Cψ(0, ~p) ∼ p−3 (ln(pL))−1/3 .

(Logarithmic correction are difficult to assess experimentally and
numerically Boffetta & Ecke 2012.)

The vorticity two-point function is given by

Cω(0, ~p) = p4Cψ(0, ~p) ∼ p−2 ln(pL)−1/3 .

Going to real space

Cω(0,~r) =

∫ π

0
dθ

∫
dp

1

p
ln(pL)−1/3e i |~p||~r | cos θ ∼

(
log
‖~r‖
L

)2/3

.
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Generalization to other correlation functions

At equal time the limit κ→ 0 gives

[
− 4n + 2 +

n

3s
−

2n−1∑

k=1

p̂k∂p̂k

]
Ĝ

(2n,0)
ω,i1...in

= 0 .

The general solution of this equation reads

Ĝ
(2n,0)
ω,i1...i2n

(
0, ~̂p1, · · · , 0, ~̂p2n−1

)
=

(
2n−1∏

k=1

p̂−2
k (ln p̂k )−1/6

)

× ln |~̂p1 + · · ·+ ~̂p2n−1|−1/6F̂ (2n) ,

where F̂ (2n) is a scaling function.
(Compatible with the logarithmic corrections proposed by Falkovich &
Lebedev 1994.)

C. Pagani (Univ. of Mainz) Functional renormalization group approach to 2D turbulence 24/04/2019 27 / 31



Used all the symmetries?
Not yet:

11

The derivation of the identities (d) and (e) is reported in appendices A.2 and A.3 respectively.

3.4. Large wave-number expansion of the !ow equations

Let us explain the principles of the large wave-number expansion. The !ow equation (16) is 
exact. However, the !ow equation for a generic n-point function Γ(n)

κ , which can be deduced 
by taking the corresponding functional derivatives of (16), is not closed as it involves the 
(n + 1) and (n + 2) vertex functions. As such, one has to consider an in#nite hierarchy of !ow 
equations. For example, the !ow equation for the two-point function is given in the Fourier 
space by

∂sΓ̄
(2)
mn (p) =

∫

q
∂sRij(q)Ḡ(2)

jk (q)
[

− 1
2
Γ̄

(4)
klmn(q, −q, p) + Γ̄

(3)
kms(q, p)Ḡ(2)

st (q + p)Γ̄
(3)
tnl (q + p, −p)

]
Ḡ(2)

li (q),

 (26)
which depends on the 3- and 4-point vertices. The right-hand side (rhs) is represented dia-
grammatically in #gure 1, where the dashed circles are the vertex functions, the thick lines 
are propagators and the cross is the derivative of the regulator. The rhs involves the integrated, 
or internal, wave-vector and frequency q circulating in the loops besides the external wave-
vector and frequency p at which the vertex function on the left-hand side (lhs) is evaluated.

In most applications, this hierarchy is closed by simply truncating higher-order vertices, or 
proposing an ansatz for Γκ [37]. An alternative strategy, pioneered in [41, 56] and called the 
BMW approximation scheme, consists in expanding these vertices in the internal wave-vector 
!q . This approximation relies on the two following properties of the regulator: on the one hand, 
its insertion in the integration loop on the rhs of (16) cuts off the internal wave-number |!q| to 
values |!q| ! κ. As a consequence, if the system is probed at a wave-number scale |!p| much 
larger than the renormalization scale, p ! κ, there is a clear separation of scales in the !ow 
equations: q/p ! 1. On the other hand, the presence of the regulator ensures that the vertex 
functions are smooth at any #nite scale κ > 0, which allows one to perform a Taylor expan-
sion in powers of !q . The underlying idea is that, close to a #xed point, the vertex functions 
are expected to depend on the internal wave-number only through ratio of the type q/p , which 
means that the expansion at q ! 0 is expected to be equivalent to an expansion at p → ∞. 
This expansion becomes exact in the limit of in#nite wave-numbers, and the error at #nite but 
large p  is small. In fact, this expansion was found to be a reliable approximation for arbitrary 
momenta [41, 56].

The BMW strategy has turned out to be very successful in the context of turbulence, since 
the expanded !ow equations can be closed at zero #elds thanks to the Ward identities, whereas 
it generically requires to keep a whole dependence in background #elds. This was #rst noticed 

Figure 1. Diagrammatic representation of the !ow of Γ(2)
κ .

M Tarpin et alJ. Phys. A: Math. Theor. 00 (2019) 000000

approximation in the EAA vertices for soft momenta

Γ̄(3)
κ (q, p) ≈ Γ̄(3)

κ (0, p) + q∂qΓ̄(3)
κ (0, p)

use the Ward identities from rotations.

not enough to fully close the equation at equal times in the
q-expansion.

the terms under control vanish at equal times ⇒ hint that possible
anomalous correction are very weak if any?

C. Pagani (Univ. of Mainz) Functional renormalization group approach to 2D turbulence 24/04/2019 28 / 31



Summary

We studied the direct cascade for 2D turbulent flows via functional
methods.

We studied and unveiled new symmetries of the functional formalism.

We showed that the FRG framework is a suitable non-perturbative
framework to study 2D turbulence in its functional formulation thanks
to the symmetries of the formalism.

We computed the vorticity two-point function and studied its time
dependence.
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Outlook

Extension of the present study to the explicit solution of the n-point
function.

Numerical integration of the flow equation

Extension to other system, e.g. passive scalar (underway).
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THANK YOU!!
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