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Motivation for Potential Flows:

A-Theorem

Relation to AdS/QFT correspondence (not considered here)

Possible relations between coefficients of different β functions
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Potential flows for dimensionless couplings gi with β functions βi ≡ µ ∂
∂µgi (µ):

ηij(g)βj =
∂

∂gi
Φ(g)

ηij(g): Metric in the space of couplings, guarantees covariance under redefinitions
gi → gi (g

′
j )

Φ(g): “Potential”
Contract with βi :

βiη
ij(g)βj = βi

∂

∂gi
Φ(g) ≡ µ d

dµ
Φ(g)

(if Φ(g) has no explicit µ dependence)
→ If the symmetric part of ηij is positive definite:

µ
d

dµ
Φ(g) > 0↔ A− Theorem (A(g) ≡ Φ(g))

Similar to Zamolodchikov’s C−Theorem in d = 2, the RG flow is irreversible.
Nowadays: proven by Komorgodski-Schwimmer via unitarity of the dilaton
S-Matrix
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Does a potential flow lead to relations among coefficients of β functions via
(∂gi∂gj − ∂gj∂gi )Φ(g) = 0?

Yes if ηij(g) can be deduced independently from βi , e.g. ηij(g) = c ij +O(g)

U.E., 1812.06751:
But not in general: For any set of βi a metric ηij(g) can be constructed such that
a potential flow exists!

Moreover: Any potential Φ(g) which can be written as

Φ(g) = βi
∂

∂gi
P(g)

in terms of an arbitrary prepotential P(g) does the job!
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Construction of ηij(g):

First: Consider the system of coupled RG equations µ ∂
∂µgi = βi (g), i = 1 . . . n,

where βi (g) may depend on all n gi .

To each (dim.-less) coupling gi corresponds a dimensionful integration constant Λi .
E.g. QCD:

µ
∂

∂µ
αQCD = b1α

2
QCD + ... → αQCD =

1

b1 ln
(

ΛQCD

µ

)
+ . . .

Trivial remark: ΛQCD
∂

∂ΛQCD
|µαQCD = −b1α

2
QCD
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Consider two couplings g1, g2 (a truncated scalar-Yukawa system) with

µ
∂g1

∂µ
≡ β1 = a1g

2
1 + a2g1g2, µ

∂g2

∂µ
≡ β2 = b1g

2
2

→ g1(µ,Λ1,Λ2) =
a2 − b1

a1b1 ln
(
µ
Λ2

)
+ (a2 − b1)

[
ln
(
µ
Λ2

)]a2/b1

· C1

(
Λ1

Λ2

)
g2(µ,Λ2) =

1

b1 ln
(

Λ2

µ

)
where C1

(
Λ1

Λ2

)
is arbitrary

→ One can define

Λ1
∂g1

∂Λ1
≡ −β̂ 1

1 , Λ2
∂g1

∂Λ2
≡ −β̂ 2

1 ,

Λ1
∂g2

∂Λ1
≡ −β̂ 1

2 (= 0), Λ2
∂g2

∂Λ2
≡ −β̂ 2

2

where β̂ 1
1 + β̂ 2

1 = β1, β̂ 1
2 + β̂ 2

2 = β2 (the arbitrary function C1

(
Λ1

Λ2

)
drops out).
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Next: Switch variables from

g1(Λ1,Λ2), g2(Λ1,Λ2)→ Λ1(g1, g2), Λ2(g1, g2)

or, better, to τi (g) = − ln(Λi (g)).

General case: n couplings ga, βa (not degenerate), scales Λi or τi

Define ∂τi
∂ga

; its inverse ∂ga
∂τi

satisfies

∑
i

∂ga
∂τi

=
∑
i

β̂ i
a = βa

hence we obtain for any i∑
a

∂τi
∂ga

βa =
∑
a

∂τi
∂ga

∑
j

∂ga
∂τj

=
∑
j

δj i = 1 (Eq.1)

Given all βa: Solve Eq.(1) for n independent τi (ga)
→ τi = τ0(g) + Fi (g) where
τ0 solves the inhomogenous Eq.(1), this is the hard part
Fi solve the homogenous eq.

∑
a
∂Fi

∂ga
βa = 0
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Next:

— Introduce an arbitrary prepotential P(g) or P(τ(g))

— Define a potential Φ(g) = µ dP
dµ = ∂P

∂ga
βa = ∂P

∂τi
∂τi
∂gb
βb

— Consider

∂Φ

∂ga
=

(
∂

∂ga

∂P

∂τi

)
∂τi
∂gb

βb +
∂P

∂τi

∂

∂ga

(
∂τi
∂gb

βb

)
︸ ︷︷ ︸

=1 from Eq.(1)︸ ︷︷ ︸
=0

=
∂2P

∂τi∂τj

∂τj
∂ga

∂τi
∂gb

βb = ηabβb with ηab =
∂2P

∂τi∂τj

∂τj
∂ga

∂τi
∂gb

→ Potential flow with a metric ηab which is manifestly symmetric and covariant
under g → g(g ′), but depends on P(g) and the solutions τi (ga) or ga(τi )
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Previous toy model: Take the simplest prepotential P(g) = p1g1 + p2g2

→ Φ(g) = p1β1 + p2β2

→ Metric

η11 =
p1(2a1g1 + a2g2 − 2b1g2)

a1g2
1 + a2g1g2 − b1g1g2

η12 = η21 =
p1a2g1

a1g2
1 + a2g1g2 − b1g1g2

η22 =
−p1a2g

2
1

g2(a1g2
1 + a2g1g2 − b1g1g2)

+
2p2

g2

— Not manifestly positive

— Singular for ga → 0

— More solvable examples with similar properties exist, e.g. a coupled system of
three 2-loop gauge couplings (see Eur.Phys.J. C79 (2019) 198)
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Lesson:

— Given n β functions βa for n dim.-less couplings ga: A gradient flow can always
be constructed, but n solutions of Eq.(1) for the scales τi (g) = − ln(Λi (g)) have
to be found.

— No relations among coefficients of different β functions emerge
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Predictive Potential Flows

In 1974 Wallace and Zia observed in a multi-scalar theory with different couplings
λaijklφ

iφjφkφl , in dim. reg. + min. substraction (DRMS) to 3 loop order, a

potential flow with a metric ηab = cδab + . . . which implies relations among the
coefficients of βa

In a series of papers Jack and Osborn (JO) studied the renormalizability of
theories with local couplings gi (x) (scalar + Yukawa + gauge couplings) in a
gravitational background, i.e. with a Lagrangian including terms like

L ' Fij(g)∂µgi∂
µgj · R + Gij(g)∂µgi∂

νgj · (Rµν −
1

2
γµνR) + . . .

In Nucl.Phys.B343 (1990) 647 they studied the β functions for the “coupling
functions” Fij(g),Gij(g) explicitely in perturbation theory in gi in DRMS.

→ The absence of 1
ε poles in the β functions implies a potential flow, with ηij

symmetric up to 2 loop order, explaining the result of Wallace and Zia.
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Osborn 1991: A potential flow follows from “Weyl consistency conditions”, i.e.
the fact that Weyl rescalings of local couplings gi (x) (anomalous if βi 6= 0) must
commute since these are Abelian ↔ Wess-Zumino consistency conditions.

→ The same potential flow and relations between β functions follow,
valid also for the Standard Model with Higgs4 coupling λ, Higgs-top Yukawa
coupling ht and gauge couplings αi :

1 loop terms in βλ related to 2 loop terms in βht
and to 3 loop terms in βαi

1 loop terms in βht related to 2 loop terms in βαi

2 loop terms in βαi related to 2 loop terms in βαj

→ Have to reorganize the orders of perturbation theory?
(See e.g. Antipin et al., 1306.3234; Bond, Litim et al., 1710.07615)
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Simple examples for L ∼ λφ4 + (hφΨΨ + h.c .)+. . .

1) The only 1 loop contribution to βλ ∼ λh2 originates from

ϕ h ϕh

ϕ

ϕ

λ

The only 2 loop contribution to βh ∼ hλ2 originates from

ψ

ϕ λ λ
h

ψ

One finds ηabβb = ∂aΦ (ga,b ≡ λ, h) with Φ ∼ h2λ2 + . . . ,
ηab ∼ δab depending on the number of scalars/Fermions
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Origin

Absence of 1
ε poles in the β function for Aij(g) in L ∼ Aij(g)�gi�gj from the

4 loop vacuum diagram ∼ h2λ2:

λλ

h h

The fat dots denote local couplings λ(x), h(x) which allow for inflow/outflow of
momenta q; βAij follows from O(q4). (JO calculated βAij in coordinate space.)
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2) The only 1 loop contribution to βλ ∼ h4 originates from

h

hϕ

ϕ

ϕ

h

h ϕ

The only 2 loop contribution to βh ∼ h3λ originates from

λϕ

ψ

h

h

h

ψ

One finds ηabβb = ∂aΦ (ga,b ≡ λ, h) with Φ ∼ h4λ+ . . . , ηab ∼ δab depending
on the number of scalars/Fermions
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Origin

Absence of 1
ε poles in βAij from the 4 loop vacuum diagram ∼ h4λ ∼ q4:

h h h h

λ

Overlapping subdivergences are indicated by dotted boxes.
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Lesson

Relations between β functions βi follow from vacuum diagrams with local
couplings gi (x) including vertices ∼ ∂µgi ,�gi . . . which contribute to
β functions like βAij .

Local couplings gi (x) ≡ sources Ji (x) for composite operators φ4, φΨΨ etc.
→ Relations between β functions βi follow from the consistent
renormalization of correlation functions ∼ Jni (x) of composite operators.
These play a central rôle for the AdS5/QFT4 correspondence where Ji (x) are
interpreted as fields on AdS5.

The origin of relations between different loop orders of different β functions
is the fact that

gauge β functions follow from 2 point functions of gauge fields
(+ Slavnov-Taylor identities),
Yukawa β functions follow from 3 point functions,
λφ4 β functions follow from 4 point functions.

These relations are missed in standard calculations of perturbative
β functions!
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Open Questions

The above results are obtained in DRMS.
Other regulators?
E.g. a (Wilsonian-type) UV cutoff of propagators in terms of Schwinger
parameters α:

1

p2 + m2
=

∫ ∞
0

e−α(p2+m2) →
∫ ∞

1/Λ2

e−α(p2+m2)

Already used by BPHZ (in intermediate steps) for proof of renormalizability
→ Allows for a general proof of a potential flow?

In DRMS dimensionful couplings like masses get only multiplicatively
renormalized → no hierarchy problem in the absence of heavy fields.
With a cutoff for Schwinger parameters the hierarchy problem ∆m2 ∼ Λ2

becomes manifest.
→ Constraints from a potential flow including masses within a Schwinger
cutoff scheme?
→ Constraints from a consistent AdS/QFT correspondence?
. . .
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