β Functions as Gradients (Potential Flows)

U. Ellwanger (LPT Orsay)

Trento, September 17, 2019

Motivation for Potential Flows:

- A-Theorem
- Relation to AdS/QFT correspondence (not considered here)
- ullet Possible relations between coefficients of different eta functions

Potential flows for dimensionless couplings g_i with β functions $\beta_i \equiv \mu \frac{\partial}{\partial u} g_i(\mu)$:

$$\eta^{ij}(g)\beta_j = \frac{\partial}{\partial g_i}\Phi(g)$$

 $\eta^{ij}(g)$: Metric in the space of couplings, guarantees covariance under redefinitions $g_i \to g_i(g_i')$

 $\Phi(g)$: "Potential"

Contract with β_i :

$$\beta_i \eta^{ij}(g) \beta_j = \beta_i \frac{\partial}{\partial g_i} \Phi(g) \equiv \mu \frac{d}{d\mu} \Phi(g)$$

(if $\Phi(g)$ has no explicit μ dependence)

 \rightarrow If the symmetric part of η^{ij} is positive definite:

$$\mu \frac{d}{d\mu} \Phi(g) > 0 \leftrightarrow A - \mathsf{Theorem} \ (A(g) \equiv \Phi(g))$$

Similar to Zamolodchikov's C-Theorem in d=2, the RG flow is irreversible. Nowadays: proven by Komorgodski-Schwimmer via unitarity of the dilaton S-Matrix

Does a potential flow lead to relations among coefficients of β functions via $(\partial_{g_i}\partial_{g_i}-\partial_{g_i}\partial_{g_i})\Phi(g)=0$?

Yes if $\eta^{ij}(g)$ can be deduced independently from β_i , e.g. $\eta^{ij}(g) = c^{ij} + \mathcal{O}(g)$

U.E., 1812.06751:

But not in general: For any set of β_i a metric $\eta^{ij}(g)$ can be constructed such that a potential flow exists!

Moreover: Any potential $\Phi(g)$ which can be written as

$$\Phi(g) = \beta_i \frac{\partial}{\partial g_i} P(g)$$

in terms of an arbitrary prepotential P(g) does the job!

Construction of $\eta^{ij}(g)$:

First: Consider the system of coupled RG equations $\mu \frac{\partial}{\partial \mu} g_i = \beta_i(g), i = 1 \dots n$, where $\beta_i(g)$ may depend on all n g_i .

To each (dim.-less) coupling g_i corresponds a dimensionful integration constant Λ_i . E.g. QCD:

$$\mu \frac{\partial}{\partial \mu} \alpha_{QCD} = b_1 \alpha_{QCD}^2 + \dots \qquad \rightarrow \qquad \alpha_{QCD} = \frac{1}{b_1 \ln \left(\frac{\Lambda_{QCD}}{\mu} \right) + \dots}$$

Trivial remark: $\Lambda_{QCD} \frac{\partial}{\partial \Lambda_{QCD}} |_{\mu} \alpha_{QCD} = -b_1 \alpha_{QCD}^2$

Consider two couplings g_1 , g_2 (a truncated scalar-Yukawa system) with

$$\begin{split} \mu \frac{\partial g_1}{\partial \mu} &\equiv \beta_1 = a_1 g_1^2 + a_2 g_1 g_2, \quad \mu \frac{\partial g_2}{\partial \mu} \equiv \beta_2 = b_1 g_2^2 \\ &\rightarrow g_1(\mu, \Lambda_1, \Lambda_2) = \frac{a_2 - b_1}{a_1 b_1 \ln \left(\frac{\mu}{\Lambda_2}\right) + (a_2 - b_1) \left[\ln \left(\frac{\mu}{\Lambda_2}\right)\right]^{a_2/b_1} \cdot C_1 \left(\frac{\Lambda_1}{\Lambda_2}\right)} \\ &g_2(\mu, \Lambda_2) = \frac{1}{b_1 \ln \left(\frac{\Lambda_2}{\mu}\right)} \end{split}$$

where $C_1\left(\frac{\Lambda_1}{\Lambda_2}\right)$ is arbitrary

→ One can define

$$\Lambda_1 \frac{\partial g_1}{\partial \Lambda_1} \equiv -\hat{\beta}_1^{\ 1}, \quad \Lambda_2 \frac{\partial g_1}{\partial \Lambda_2} \equiv -\hat{\beta}_1^{\ 2},
\Lambda_1 \frac{\partial g_2}{\partial \Lambda_1} \equiv -\hat{\beta}_2^{\ 1} \ (=0), \quad \Lambda_2 \frac{\partial g_2}{\partial \Lambda_2} \equiv -\hat{\beta}_2^{\ 2}$$

where $\hat{\beta}_1^{\ 1}+\hat{\beta}_1^{\ 2}=\beta_1$, $\hat{\beta}_2^{\ 1}+\hat{\beta}_2^{\ 2}=\beta_2$ (the arbitrary function $C_1\left(\frac{\Lambda_1}{\Lambda_2}\right)$ drops out).

6 / 18

Next: Switch variables from

$$g_1(\Lambda_1,\Lambda_2),\ g_2(\Lambda_1,\Lambda_2) \rightarrow \Lambda_1(g_1,g_2),\ \Lambda_2(g_1,g_2)$$

or, better, to $\tau_i(g) = -\ln(\Lambda_i(g))$.

General case: n couplings g_a , β_a (not degenerate), scales Λ_i or τ_i

Define $\frac{\partial \tau_i}{\partial \sigma}$; its inverse $\frac{\partial g_a}{\partial \tau}$ satisfies

$$\sum_{i} \frac{\partial g_{a}}{\partial \tau_{i}} = \sum_{i} \hat{\beta}_{a}^{i} = \beta_{a}$$

hence we obtain for any i

$$\sum_{a} \frac{\partial \tau_{i}}{\partial g_{a}} \beta_{a} = \sum_{a} \frac{\partial \tau_{i}}{\partial g_{a}} \sum_{j} \frac{\partial g_{a}}{\partial \tau_{j}} = \sum_{j} \delta^{j}_{i} = 1$$
 (Eq.1)

Given all β_a : Solve Eq.(1) for *n* independent $\tau_i(g_a)$

$$\rightarrow \qquad \tau_i = \tau_0(g) + F_i(g)$$
 where

 au_0 solves the inhomogenous Eq.(1), F_i solve the homogenous eq. $\sum_a \frac{\partial F_i}{\partial \mathbf{g}_a} \beta_a = 0$

this is the hard part

7 / 18

Next:

- Introduce an arbitrary prepotential P(g) or $P(\tau(g))$
- Define a potential $\Phi(g) = \mu \frac{dP}{d\mu} = \frac{\partial P}{\partial g_a} \beta_a = \frac{\partial P}{\partial \tau_i} \frac{\partial \tau_i}{\partial g_b} \beta_b$
- Consider

$$\frac{\partial \Phi}{\partial g_{a}} = \left(\frac{\partial}{\partial g_{a}} \frac{\partial P}{\partial \tau_{i}}\right) \frac{\partial \tau_{i}}{\partial g_{b}} \beta_{b} + \frac{\partial P}{\partial \tau_{i}} \underbrace{\frac{\partial}{\partial g_{a}} \underbrace{\left(\frac{\partial \tau_{i}}{\partial g_{b}} \beta_{b}\right)}_{=1 \text{ from Eq.(1)}}}_{=0}$$

$$= \frac{\partial^2 P}{\partial \tau_i \partial \tau_j} \frac{\partial \tau_j}{\partial g_a} \frac{\partial \tau_i}{\partial g_b} \beta_b = \eta^{ab} \beta_b \text{ with } \eta^{ab} = \frac{\partial^2 P}{\partial \tau_i \partial \tau_j} \frac{\partial \tau_j}{\partial g_a} \frac{\partial \tau_i}{\partial g_b}$$

 \rightarrow Potential flow with a metric η^{ab} which is manifestly symmetric and covariant under $g \rightarrow g(g')$, but depends on P(g) and the solutions $\tau_i(g_a)$ or $g_a(\tau_i)$

Previous toy model: Take the simplest prepotential $P(g) = p_1g_1 + p_2g_2$

→ Metric

$$\eta^{11} = \frac{p_1(2a_1g_1 + a_2g_2 - 2b_1g_2)}{a_1g_1^2 + a_2g_1g_2 - b_1g_1g_2}$$

$$\eta^{12} = \eta^{21} = \frac{p_1a_2g_1}{a_1g_1^2 + a_2g_1g_2 - b_1g_1g_2}$$

$$\eta^{22} = \frac{-p_1a_2g_1^2}{g_2(a_1g_1^2 + a_2g_1g_2 - b_1g_1g_2)} + \frac{2p_2}{g_2}$$

- Not manifestly positive
- Singular for $g_a \rightarrow 0$
- More solvable examples with similar properties exist, e.g. a coupled system of three 2-loop gauge couplings (see Eur.Phys.J. C79 (2019) 198)

9 / 18

Lesson:

— Given $n \beta$ functions β_a for n dim.-less couplings g_a : A gradient flow can always be constructed, but n solutions of Eq.(1) for the scales $\tau_i(g) = -\ln(\Lambda_i(g))$ have to be found.

— No relations among coefficients of different β functions emerge

Predictive Potential Flows

In 1974 Wallace and Zia observed in a multi-scalar theory with different couplings $\lambda^a_{ijkl}\phi^i\phi^j\phi^k\phi^l$, in dim. reg. + min. substraction (DRMS) to 3 loop order, a potential flow with a metric $\eta^{ab}=c\delta^{ab}+\ldots$ which implies relations among the coefficients of β^a

In a series of papers Jack and Osborn (JO) studied the renormalizability of theories with local couplings $g_i(x)$ (scalar + Yukawa + gauge couplings) in a gravitational background, i.e. with a Lagrangian including terms like

$$\mathcal{L} \simeq \mathcal{F}_{ij}(g)\partial_{\mu}g_{i}\partial^{\mu}g_{j}\cdot R + \mathcal{G}_{ij}(g)\partial^{\mu}g_{i}\partial^{\nu}g_{j}\cdot (R_{\mu\nu} - \frac{1}{2}\gamma_{\mu\nu}R) + \dots$$

In Nucl.Phys.B343 (1990) 647 they studied the β functions for the "coupling functions" $\mathcal{F}_{ij}(g)$, $\mathcal{G}_{ij}(g)$ explicitely in perturbation theory in g_i in DRMS.

 \longrightarrow The absence of $\frac{1}{\varepsilon}$ poles in the β functions implies a potential flow, with η^{ij} symmetric up to 2 loop order, explaining the result of Wallace and Zia.

Osborn 1991: A potential flow follows from "Weyl consistency conditions", i.e. the fact that Weyl rescalings of local couplings $g_i(x)$ (anomalous if $\beta_i \neq 0$) must commute since these are Abelian \leftrightarrow Wess-Zumino consistency conditions.

 \rightarrow The same potential flow and relations between β functions follow, valid also for the Standard Model with Higgs⁴ coupling λ , Higgs-top Yukawa coupling h_t and gauge couplings α_i :

```
1 loop terms in \beta_{\lambda} related to 2 loop terms in \beta_{h_t} and to 3 loop terms in \beta_{\alpha_i} 1 loop terms in \beta_{h_t} related to 2 loop terms in \beta_{\alpha_i} 2 loop terms in \beta_{\alpha_i} related to 2 loop terms in \beta_{\alpha_i}
```

→ Have to reorganize the orders of perturbation theory? (See e.g. Antipin et al., 1306.3234; Bond, Litim et al., 1710.07615)

Simple examples for $\mathcal{L} \sim \lambda \phi^4 + (h\phi\Psi\Psi + h.c.) + \dots$

1) The only 1 loop contribution to $\beta_{\lambda} \sim \lambda h^2$ originates from

The only 2 loop contribution to $\beta_h \sim h \lambda^2$ originates from

One finds $\eta^{ab}\beta_b=\partial_a\Phi$ $(g_{a,b}\equiv\lambda,h)$ with $\Phi\sim h^2\lambda^2+\ldots$, $\eta^{ab}\sim\delta^{ab}$ depending on the number of scalars/Fermions

Origin

Absence of $\frac{1}{\varepsilon}$ poles in the β function for $\mathcal{A}_{ij}(g)$ in $\mathcal{L} \sim \mathcal{A}_{ij}(g) \square g_i \square g_j$ from the 4 loop vacuum diagram $\sim h^2 \lambda^2$:

The fat dots denote local couplings $\lambda(x)$, h(x) which allow for inflow/outflow of momenta q; $\beta_{A_{ii}}$ follows from $\mathcal{O}(q^4)$. (JO calculated $\beta_{A_{ii}}$ in coordinate space.)

2) The only 1 loop contribution to $\beta_{\lambda} \sim h^4$ originates from

The only 2 loop contribution to $\beta_h \sim h^3 \lambda$ originates from

One finds $\eta^{ab}\beta_b=\partial_a\Phi$ $(g_{a,b}\equiv\lambda,h)$ with $\Phi\sim h^4\lambda+\dots$, $\eta^{ab}\sim\delta^{ab}$ depending on the number of scalars/Fermions

Origin

Absence of $\frac{1}{\varepsilon}$ poles in $eta_{\mathcal{A}_{ij}}$ from the 4 loop vacuum diagram $\sim h^4 \lambda \sim q^4$:

Overlapping subdivergences are indicated by dotted boxes.

Lesson

- Relations between β functions β_i follow from vacuum diagrams with local couplings $g_i(x)$ including vertices $\sim \partial_\mu g_i, \Box g_i \ldots$ which contribute to β functions like $\beta_{\mathcal{A}_{ij}}$.
- Local couplings $g_i(x) \equiv$ sources $J_i(x)$ for composite operators ϕ^4 , $\phi\Psi\Psi$ etc. \to Relations between β functions β_i follow from the consistent renormalization of correlation functions $\sim J_i^n(x)$ of composite operators. These play a central rôle for the AdS_5/QFT_4 correspondence where $J_i(x)$ are interpreted as fields on AdS_5 .
- \bullet The origin of relations between different loop orders of different β functions is the fact that
 - gauge β functions follow from 2 point functions of gauge fields (+ Slavnov-Taylor identities),
 - ullet Yukawa eta functions follow from 3 point functions,
 - $\lambda \phi^4 \beta$ functions follow from 4 point functions.
- These relations are missed in standard calculations of perturbative β functions!

Open Questions

• The above results are obtained in DRMS. Other regulators?

E.g. a (Wilsonian-type) UV cutoff of propagators in terms of Schwinger parameters α :

$$\frac{1}{p^2 + m^2} = \int_0^\infty e^{-\alpha(p^2 + m^2)} \to \int_{1/\Lambda^2}^\infty e^{-\alpha(p^2 + m^2)}$$

Already used by BPHZ (in intermediate steps) for proof of renormalizability

- \rightarrow Allows for a general proof of a potential flow?
- In DRMS dimensionful couplings like masses get only multiplicatively renormalized \rightarrow no hierarchy problem in the absence of heavy fields. With a cutoff for Schwinger parameters the hierarchy problem $\Delta m^2 \sim \Lambda^2$ becomes manifest.
 - \rightarrow Constraints from a potential flow including masses within a Schwinger cutoff scheme?
 - $\rightarrow \mbox{Constraints from a consistent AdS/QFT correspondence?}$

. . .