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Motivation for Potential Flows:

@ A-Theorem
@ Relation to AdS/QFT correspondence (not considered here)
@ Possible relations between coefficients of different 5 functions
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Potential flows for dimensionless couplings g; with 3 functions 3; = udug,(u)

0

n(g)Bj = 9%

®(g)

nY(g): Metric in the space of couplings, guarantees covariance under redefinitions
g — gi(g))
®(g): “Potential”

Contract with j;:
. d
B (g)B; = B, -d(g) = e —(g)

(if ®(g) has no explicit p depe:ndence)
— If the symmetric part of n¥ is positive definite:

“d%q)(g) > 0 <> A — Theorem (A(g) = ®(g))

Similar to Zamolodchikov's C—Theorem in d = 2, the RG flow is irreversible.
Nowadays: proven by Komorgodski-Schwimmer via unitarity of the dilaton
S-Matrix
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Does a potential flow lead to relations among coefficients of S functions via
(agiagj - agj&gi)(b(g) =07

Yes if n(g) can be deduced independently from 3;, e.g. n/(g) = ¢/ + O(g)

U.E., 1812.06751: )
But not in general: For any set of 8; a metric nY(g) can be constructed such that
a potential flow exists!

Moreover: Any potential ®(g) which can be written as
o(&) = B P(z)
8)= '8g; 8

in terms of an arbitrary prepotential P(g) does the job!

Ulrich Ellwanger B Functions as Gradients 4 /18



Construction of n?(g):

First: Consider the system of coupled RG equations ,u%g; =Bi(g), i=1...n,
where §;(g) may depend on all n g;.

To each (dim.-less) coupling g; corresponds a dimensionful integration constant A;.
E.g. QCD:

0 5 1
,u,afOzQCD = blaQCD + ... — aQcp = A
" buln (o2 ) +
- . ) 2
Trivial remark: AQCDm‘anCD = —blaQCD
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Consider two couplings g1, g» (a truncated scalar-Yukawa system) with

og1 0g>
u(‘)iu = B = a1g] + 28182, ﬂa = =bg
ay — b1
= g1(p, N, \2) = =/ b1
aiby In ( ) + (32 ) [ln (/%)] -G (%)
1

&1, N2) = m

where (3 (%) is arbitrary
— One can define
og1 — 21 og1 — A2
Al%:_lgl ’ A2ng\1:_ﬂ1 )
og — o0g —
Mg = _521 (=0), A a*ii = _/822

8/\1 -

where @11 + 312 = B, 321 + 32 = [, (the arbitrary function G (/Tl> drops out).
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Next: Switch variables from

81(A,N2), g2(A1, o) = Mg, 82), No(g1.82)
or, better, to 7;(g) = — In(Ai(g)).

General case: n couplings g,, 8, (not degenerate), scales A; or 7;

Define 2% : its inverse 28 satisfies
Bga 87—;

e =33 =

hence we obtain for any i
87‘, 87',' 8ga
6J = Eq.1
Z Z 6ga . Z (Ea.1)

Given all 8,: Solve Eq.(1) for n independent 7;(g,)

— 7 = 10(g) + Fi(g) where

7o solves the inhomogenous Eq. (1) this is the hard part
F; solve the homogenous eq. Ea o Fig, =0
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Next:

— Introduce an arbitrary prepotential P(g) or P(7(g))

— Define a potential ®(g) = pdﬂ = agaﬁa = g: g;ﬂb

— Consider

oo 0 0P\ 0T oP 0 ot
= < > ™ By + ( i 5b>
—_——

08a 082 01i ) Ogb Ot 0ga  \ 0o
=1 from Eq.(1)
——————
=0
0?P 91 Or; b 0?P 91 Ot
_ ! — A th J !
5 0, 08 > T = G e, O

—> Potential flow with a metric 7?” which is manifestly symmetric and covariant
under g — g(g’), but depends on P(g) and the solutions 7;(g,) or ga(7;)
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Previous toy model: Take the simplest prepotential P(g) = p1g1 + p2&»

— ®(g) = p1B1 + P22

— Metric

- p1(2a181 + 2282 — 2b1g2)

2187 + 2818 — bigig

7]12 _ n21 _ p1a281
a187 + a2818> — h1g81g»
2
—p1a 2

"722 _ P1 2g1 + ﬂ

g (ar8f + axg18 — b1g1g2) &

— Not manifestly positive
— Singular for g, — 0

— More solvable examples with similar properties exist, e.g. a coupled system of
three 2-loop gauge couplings (see Eur.Phys.J. C79 (2019) 198)
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Lesson:

— Given n 8 functions B, for n dim.-less couplings g,: A gradient flow can always
be constructed, but n solutions of Eq.(1) for the scales 7;(g) = — In(Ai(g)) have
to be found.

— No relations among coefficients of different 3 functions emerge
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Predictive Potential Flows

In 1974 Wallace and Zia observed in a multi-scalar theory with different couplings
A7d' @ ¢* ¢!, in dim. reg. + min. substraction (DRMS) to 3 loop order, a
potential flow with a metric 7?” = c¢§?® + ... which implies relations among the
coefficients of 3¢

In a series of papers Jack and Osborn (JO) studied the renormalizability of
theories with local couplings g;(x) (scalar + Yukawa + gauge couplings) in a
gravitational background, i.e. with a Lagrangian including terms like

1
L~ -/—'.ij(g)a,ugia#gj R+ gij(g)augiaygj . (R,ul/ - E’Y,LLDR) +.

In Nucl.Phys.B343 (1990) 647 they studied the 3 functions for the “coupling
functions” Fj;(g), Gij(g) explicitely in perturbation theory in g; in DRMS.

— The absence of % poles in the 3 functions implies a potential flow, with n?
symmetric up to 2 loop order, explaining the result of Wallace and Zia.
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Osborn 1991: A potential flow follows from “Weyl consistency conditions”, i.e.
the fact that Weyl rescalings of local couplings g;(x) (anomalous if 8; # 0) must
commute since these are Abelian <> Wess-Zumino consistency conditions.

— The same potential flow and relations between S functions follow,
valid also for the Standard Model with Higgs* coupling A, Higgs-top Yukawa
coupling h; and gauge couplings «;:

1 loop terms in 35 related to 2 loop terms in B,
and to 3 loop terms in f3,,
1 loop terms in B, related to 2 loop terms in B,

2 loop terms in 3., related to 2 loop terms in [y,

— Have to reorganize the orders of perturbation theory?
(See e.g. Antipin et al., 1306.3234; Bond, Litim et al., 1710.07615)
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Simple examples for £ ~ A\¢* + (h¢pWW + h.c.)+. ..

1) The only 1 loop contribution to 3y ~ Ah? originates from

One finds 3, = 0, (ga,p = A, h) with @ ~ RPA2 4+ ...
n?® ~ 62> depending on the number of scalars/Fermions
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Origin

Absence of 1 poles in the /3 function for A;(g) in £ ~ A;(g)0gi0g; from the
4 loop vacuum diagram ~ h?\?:

The fat dots denote local couplings A(x), h(x) which allow for inflow/outflow of
momenta q; (.4, follows from 0O(q*). (JO calculated B, in coordinate space.)
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2) The only 1 loop contribution to 3\ ~ h* originates from

U
b
() h L )
T
¢
The only 2 loop contribution to 3, ~ h3\ originates from
v
0 2 N
!

One finds 7?28, = 0,® (ga.6 = A, h) with ® ~ h*X + ..., n? ~ 6 depending
on the number of scalars/Fermions
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Origin

Absence of X poles in 34, from the 4 loop vacuum diagram ~ h*\ ~ g*:

Overlapping subdivergences are indicated by dotted boxes.
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Lesson

@ Relations between 3 functions g; follow from vacuum diagrams with local
couplings gi(x) including vertices ~ 0,,g;,0g;i ... which contribute to
8 functions like 4.

@ Local couplings gi(x) = sources J;(x) for composite operators ¢*, ¢WW etc.
— Relations between 3 functions 3; follow from the consistent
renormalization of correlation functions ~ J(x) of composite operators.
These play a central réle for the AdSs/QFT,4 correspondence where J;(x) are
interpreted as fields on AdSs.

@ The origin of relations between different loop orders of different 8 functions
is the fact that
e gauge [ functions follow from 2 point functions of gauge fields
(+ Slavnov-Taylor identities),
e Yukawa [ functions follow from 3 point functions,
o \¢* B functions follow from 4 point functions.

e These relations are missed in standard calculations of perturbative
5 functions!
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Open Questions

@ The above results are obtained in DRMS.
Other regulators?
E.g. a (Wilsonian-type) UV cutoff of propagators in terms of Schwinger

parameters «:
1 & —af 2+m2) > —af 2+m2)
- = e—alp N e—alp
p°+m 0 1/A2

Already used by BPHZ (in intermediate steps) for proof of renormalizability
— Allows for a general proof of a potential flow?

@ In DRMS dimensionful couplings like masses get only multiplicatively
renormalized — no hierarchy problem in the absence of heavy fields.
With a cutoff for Schwinger parameters the hierarchy problem Am? ~ A2
becomes manifest.

— Constraints from a potential flow including masses within a Schwinger
cutoff scheme?
— Constraints from a consistent AdS/QFT correspondence?
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