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Within the standard model of particle physics, strong interactions are described by

Quantum Chromodynamics (QCD), the theory of quark and gluons:

LQCD =
∑

f

ψ̄fi
(

Dµ
ijγ

E
µ +mfδij

)

ψfj +
1

4
Ga
µνG

µν
a

HIGH ENERGIES =⇒ The coupling is small,

asymptotically vanishing. Perturbation theory

works well.

LOW ENERGIES =⇒ The coupling is large,

perturbation theory fails, QCD is non-perturbative.

=⇒ confinement, chiral symmetry breaking, ...



Many non-perturbative properties related to the presence in the path-integral of configurations

with non-trivial topology, labelled by an integer winding number Q =
∫

d4x q(x)

q(x) =
g2

64π2
Ga

µν(x)G̃
a
µν(x) =

g2

64π2
ǫµνρσG

a
µν(x)G

a
ρσ(x)

GG ∝ ~Ea · ~Ea + ~Ba · ~Ba ; GG̃ ∝ ~Ea · ~Ba

GG̃ is renormalizable and a possibile coupling to it is a free parameter of QCD

Z(θ) =

∫

[DA][Dψ̄][Dψ] e−SQCD eiθQ

the theory at θ 6= 0 is well defined, but presents explicit breaking of CP symmetry.

|θ| < 10−10 (strong CP-problem)

however θ-dependence is related to essential aspects of strong interactions anyway

and to BSM physics too (axion cosmology)



Path integrals with a topological structure are common to many quantum systems

The symplest example: The free particle on a circle

R

m

In the standard approach Z is written a sum over

energy/angular momentum eigenstates

Z =
∞
∑

n=−∞

exp

(

−β
~
2n2

2mR2

)

in the path integral approach

Z = N
∫

x(0)=x(β~)

Dx(τ) exp

(−SE [x(τ)]

~

)

; SE [x(τ)] =

∫ β~

0

dτ
1

2
m

(

dx

dτ

)2

Paths divide into homotopy classes

Boundary conditions in space =⇒ each path x(τ) contributing toZ is a continuous

application from the temporal circle to the spatial circle.

how many times does the path wind around the circle before closing in eucl. time?



Q = 0

x

τ
Q = 1

x

τ Paths are divided into homotopy classes

according to their winding number Q

which cannot be changed but cutting

the path. Discontinuous paths have

zero measure in the path integral.The

homotopy group is π1(S
1) = Z

• In this simple case, the path integral over each sector can be done exactly, yielding

a result proportional to exp(−SQ/~) where SQ is the action of the classical path

SQ =
1

2
m
(2πRQ)2

β~

• We have therefore an expression for the weight of each sector, which is nothing

but the probability distribution P (Q) over the winding number Q

P (Q) ∝ exp

(

− Q2

2β~χ

)

; χ ≡ ~

4π2mR2



Low and high T limits

Z =

∞
∑

n=−∞

exp
(

−π2β2~χn2
)

=
1√

2πβ~χ

∞
∑

Q=−∞

exp

(

− 1

β

Q2

2~χ

)

the partition function can be written in terms of two different series, which are sort

of dual to each other (β vs 1/β in the exponential)

• low T (ground state physics) (β~2/(mR2) ∼ ~βχ ≫ 1)

- only lowest energy levels (lowest |n|) contribute

- all Q values contribute, they are ∼ Gaussian distributed with σ2 = ~βχ

• high T : (β~2/(mR2) ∼ ~βχ ≪ 1)

- all n contribute, they are ∼ Gaussian distributed with σ2 = 1/(4π2β~χ)

- only lowest winding numbers contribute

introduction of a θ-term ⇐⇒ introduction of a magnetic flux through the circle

Z(θ) = e−βV f(θ) =
1√

2πβ~χ

∞
∑

Q=−∞

exp

(

− 1

β

Q2

2~χ

)

exp (i θ Q) θ = qΦB



QCD at non-zero θ

The free energy density f(θ) = −T logZ/V is a periodic even function of θ

It is connected to the probability distribution P (Q) at θ = 0 via Taylor expansion:

f(θ)− f(0) =
1

2
f (2)θ2 +

1

4!
f (4)θ4 + ... ; f (2n) =

d2nf

dθ2n

∣

∣

∣

∣

θ=0

= −(−1)n
〈Q2n〉c
V

A common parametrization is the following

f(θ, T )− f(0, T ) =
1

2
χ(T )θ2

(

1 + b2(T )θ
2 + b4(T )θ

4 + · · ·
)

χ =
1

V
〈Q2〉0 = f (2) b2 = −〈Q4〉 − 3〈Q2〉2

12〈Q2〉

∣

∣

∣

∣

θ=0

b4 =
〈Q6〉 − 15〈Q4〉〈Q2〉+ 30〈Q2〉3

360〈Q2〉

∣

∣

∣

∣

θ=0

P (Q) is non-perturbative: a lattice investigation is the ideal first-principle approach



θ-dependence from Lattice QCD simulations

(n’)U (n)µ
n n+µ ψ

Gauge fields are 3 × 3 unitary complex matrixes living on

lattice links (link variables)

Uµ(n) ≃ P exp

(

ig

∫ n+µ

n

Aµdxµ

)

Fermion fields live on lattice sites, fermion matrix written in

terms of gauge fields

M [U ] = Dµγµ +mq

Z(V, T ) = Tr
(

e−
HQCD

T

)

⇒
∫

DUDψDψ̄e−(SG[U ]+ψ̄M [U ]ψ) =

∫

DUe−SG[U ] detM [U ]

1
T T =

1

τ
=

1

Nta(β,m)

τ is the extension of the compactified time



Main Technical and Numerical Problems in Lattice QCD simulations

• topological charge renormalizes, naive lattice discretizations are non-integer valued

– gluonic definitions standard lattice discretization of GG̃

– fermionic definitions from the index theorem: Q = Tr{γ5} = Index(D) = n+ − n−

– renormalize or smooth gauge fields: compute multiplicative an additive renormalizations to

cumulants, or make use of various techniques to smooth gauge fields and recover integer Q

All methods lead to consistent results in the continuum limit.

The impact of O(a2) corrections can change.

• Sign problem at θ 6= 0

Taylor expansion from cumulants at θ = 0, in principle θ 6= 0 not needed

but explicit source improves signal/noise ratio =⇒ simulations at imaginary θ

• Finally, various algorithmic problems can affect:

– Loss of ergodicity (freezing) in the continuum limit

– Need to sample very rare events when χV = 〈Q2〉 ≪ 1



Evolution of Q in Monte-Carlo time for decreasing lattice spacings (from left to right)

C. Bonati et al., JHEP 1603 (2016) 155 Nf = 2 + 1 QCD with physical quark masses
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In presence of light fermions, the impact of O(a2) corrections to the continuum limit

can be much worse

Z(V, T ) = Tr
(

e−
HQCD

T

)

⇒
∫

DUe−SG[U ] detM [U ]

M ∼ D +mq

Q 6= 0 =⇒ zero modes of D =⇒ detM suppresses topological fluctuations

and θ-dependence as mq → 0

However, if the lattice discretization of M has poor chiral properties, detM will fail

its task and let many more Q 6= 0 configurations in than it should.

Options: make use of almost chirally perfect but expensive fermion discretizations

stemming from RG arguments (Ginsparg-Wilson) or deal with large UV cutoff corrections



Lattice computations vs analytic predictions

Lattice computations can be useful by themselves, by they are especially useful when

compared to analytic predictions valid in particular approximation schemes:

Large-N expansion, Dilute Instanton Gas Approximation (DIGA), Chiral Perturbation

Theory (χPT), ...

That helps understanding the validity of the approximation scheme and, as a consequence,

gives more information about the non-perturbative structure of strong interactions

In the following I will review some recent results in pure gauge and full QCD with a

focus on this aspect



Predictions about θ-dependence - large-N expansion

Large-Nc for low T SU(Nc) gauge theories (Witten, 1980)

g2Nc = λ fixed as Nc → ∞ =⇒ Effective instanton weight e−8π2Nc/g2 → 0

Non-trivial θ-dependence persists only if the dependence is on θ̄ = θ/Nc.

f(θ, T )− f(0, T ) = N2
c f̄(θ̄, T )

f̄(θ̄, T ) =
1

2
χ̄θ̄2

[

1 + b̄2θ̄
2 + b̄4θ̄

4 + · · ·
]

Matching powers of θ̄ and θ we obtain

χ ∼ N0
c ∼ (180MeV)4 (Witten− Veneziano) ; b2 ∼ N−2

c ; b2n ∼ N−2n
c

P (Q) is purely Gaussian in the large Nc limit.

θ)

0 π 2π θ3π−π

F(



Pure gauge lattice results: T = 0 (Yang-Mills vacuum)

Topological susceptibility well known since many years, has a finite large-N limit,

and compatible with the Witten-Veneziano mechanism for mη′ , χ
1/4 ∼ 180 MeV

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

b 2

Del Debbio
Panagopoulos
Vicari ’02

D’Elia ’03

Giusti 
Petrarca
Taglienti ’07

Panagopoulos 
Vicari ’11

Ce’ 
Consonni 
Engel 
Giusti ’15

This work

Determination of b2 more difficult. Most recent

determination for SU(3) (Bonati, MD, Scapellato,

1512.01544) obtained by introducing an external

imaginary θ source to improve signal/noise.
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Clear evidence for the predicted large-Nc

scaling of b2:

b2 ≃
b̄2
N2

with b̄2 = −0.20(2)

(Bonati, MD, Rossi, Vicari, 1607.06360)



In some QCD-like theories, large-N is quantitative: 2d CPN−1 models

χ = χ̄N−1 +O(N−2) and b2n = b̄2nN
−2n +O(N−2n−1).

ξ2χ =
1

2πN
+

e2
N2

+O

(

1

N3

)

, e2 = −0.0605 ; ξ = 2nd moment corr. length

b2 = −27

5

1

N2
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1
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)

, b4 = −25338
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1
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,

LO χ: Luscher, PLB 78, 465 (1978) D’Adda, Luscher, Di Vecchia, NPB 146, 63 (1978), Witten, NPB 149, 285 (1979)

NLO χ (e2): M. Campostrini and P. Rossi, PLB 272, 305 (1991).

LO b2: L. Del Debbio, G. M. Manca, H. Panagopoulos, A. Skouroupathis, E. Vicari, JHEP 0606, 005 (2006)

LO all b2n: P. Rossi, PRD 94, 045013 (2016) C. Bonati, MD, P. Rossi, E. Vicari, PRD 94, 085017 (2016)

Lattice checks till 2017:

LO χ: OK; NLO χ: disagreement even in sign; LO b2: never tried

M. Campostrini, P. Rossi and E. Vicari, PRD 46, 2647 (1992) E. Vicari, PLB 309, 139 (1993) L. Del Debbio,

G. M. Manca and E. Vicari, PLB 594, 315 (2004) J. Flynn, A. Juttner, A. Lawson and F. Sanfilippo, arXiv:1504.06292

M. Hasenbusch, PRD 96, no. 5, 054504 (2017)

MAIN LIMITATION: critical slowing down of Q for large N



This year update: M. Berni, C. Bonanno, MD, in progress ...

, C. Bonanno, C. Bonati, MD, JHEP 1901, 003 (2019)
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• Thanks to a new algorithm (M. Hasenbusch, arXiv:1706.04443): we reach up to N = 51

• results for χ (left): ξ2χ = 1/(2πN) + e2/N
2 + e3/N

3

e2 = −0.066(13) ; e3 = 1.75(20) ; χ̃2 = 0.5

• results for b2 (right): b2 = p2/N
2 + p3/N

3 + p4/N
4 + p5/N

5

p2 = −4.9(1.1) ; p3 = 125(67) ; p4 = −1600(1000) ; p5 = −7700(6000) ; χ̃2 = 1.6

• Conclusions: NLO for χ and LO for b2 successfully checked; NNLO for χ and NLO

for b2 predicted; slow 1/N convergence, due to singularity at N = 2??



Predictions about θ-dependence - DIGA

Dilute Instanton Gas Approximation (Gross, Pisarski, Yaffe 1981)

IDEA: semi-classical integration around classical solutions with Q 6= 0: instantons

1-loop one-instanton contribution finite for finite N ∝ exp
(

− 8π2

g2(ρ)

)

• ρ is the instanton radius: works well for small ρ, breaks down for ρ−1 . ΛQCD

• Finite-T acts as an IR cut-off to ρ, making the 1-loop result more and more reliable

• top. fluctuations exponentially suppressed =⇒ dilute instanton gas approximation



DIGA predictions

• instantons - antiinstantons treated as uncorrelated (non-interacting) objects

Poisson distribution with an average probability density p per unit volume

Zθ ≃
∑ 1

n+!n−!
(V4p)

n++n−eiθ(n+−n−) = exp [2V4p cos θ]

F (θ, T )− F (0, T ) ≃ χ(T )(1− cos θ) =⇒ b2 = −1/12 ; b4 = 1/360 ; . . .

, independent of N

• The prefactor χ(T ) can also be computed in the 1-loop approximation:

χ(T ) ∼ T 4
(m

T

)Nf

e−8π2/g2(T ) ∼ mNfT 4− 11
3
Nc−

1
3
Nf

At some T one should cross from large-N to DIGA. How high T?

Notice: the (1 − cos θ) prediction is just related to diluteness and might be good

before reaching the asymptotic perturbative behavior



Pure gauge lattice results: Finite T , across and above Tc

χ drops suddenly after Tc, known since many years (B. Alles, MD, A. Di Giacomo, hep-lat/9605013)
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from Bonati, MD, Panagopoulos, Vicari 1301.7640

t = (T − Tc)/Tc reduced temperature

DIGA values for higher cumulants reached

quite soon, already for T & 1.1 Tc

Emerging picture:

• shortly after deconfinement (breaking of center symmetry), topological excitations

behave as a dilute non-interacting gas, DIGA: f(θ) ∝ (1− cos(θ)).

• The change of regime seems quite abrupt, localized around Tc, and sharper and

sharper as N increases



A closer look at the relation between center symmetry and θ-dependence

Is it possible to preserve ZN center symmetry, even with a small compactification

radius (high-T , small coupling), by deforming the pure Yang-Mills action?

M. Unsal and L. Yaffe: PRD 78, (2008) 065035

J.C. Myers and C. Ogilvie: PRD 77, (2008) 125030 (first lattice study)

Sdef = SYM + h
∑

~n

|TrP (~n)|2

SU(3): just one deformation, suppresses large values of |TrP (~n)| locally =⇒
for large enough h, center symmetry is restored even at high-T (small coupling)

QUESTION: what happens to θ dependence?

What is DIGA related to? Small coupling or broken center symmetry?

Lattice results =⇒ C. Bonati, M. Cardinali, MD, PRD 98, 054508 (2018), arXiv:1807.06558



Restoration of Z3 takes place in a non-trivial way
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- T ≃ 1.4 Tc, broken Z3 at h = 0

- Center symmetry recovered by increasing h

- Some differences from the standard confined

phase emerge looking at the adjoint Polyakov loop
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a negative value of P adj means that |TrP | tends

to vanish locally (point by point).

For T < Tc it vanishes by long-range disorder
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θ-dependence seems to be sensible just to the restoration of center symmetry

(either locally or by long-range disorder)

– Left: the topological susceptibility goes back to its T = 0 value

– Right: the same happens for b2.

Notice: semiclassical arguments (Unsal, Yaffe, 2008) predict b2 = −1/(12N2
c )

(Fractional Instanton Gas Approximation) This is still not observed at the exploredL−1

significantly smaller compactification radii are still hard for lattice

Can corrections to leading semiclassical be computed?



Better insight by going to N > 3
C. Bonati, M. Cardinali, MD, F. Mazziotti, in progress

SU(4): center symmetry has two possible breaking patterns

Z4 → Id ; Z4 → Z2

Complete restoration of Z4 requires the vanishing of two traces: P and P 2

two possible trace deformations to be added to the action

Sdef = SYM + h1
∑

~n

|TrP (~n)|2 + h2
∑

~n

|TrP 2(~n)|2

What about θ-dependence?

Is it sensitive to partial or complete restoration?



ANSWER: θ-dependence back to confined values only for complete restoration
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Predictions about θ-dependence - χPT

Chiral Perturbation Theory for QCD with light quarks at low T

In the presence of quarks, θ can be moved to light quark masses

ψf → eiαγ5ψf and ψ̄f → ψ̄fe
iαγ5 =⇒ θ → θ−2α and mf → mfe

2iα

Then, at low T , χPT can be applied as usual.

Di Vecchia, Veneziano 1980, G. G. di Cortona, E. Hardy, J. P. Vega and G. Villadoro, 1511.02867

Result for the ground state energy

E0(θ) = −m2
πf

2
π

√

1− 4mumd

(mu +md)2
sin2 θ

2

χ =
z

(1 + z)2
m2
πf

2
π , b2 = − 1

12

1 + z3

(1 + z)3
, z =

mu

md

Explicitly

z = 0.48(3) χ1/4 = 75.5(5)MeV b2 = −0.029(2)

z = 1 χ1/4 = 77.8(4)MeV b2 = −0.022(1)



Lattice results for full QCD at T = 0

C. Bonati, MD, M. Mariti, G. Martinelli, M. Mesiti, F. Negro, F. Sanfilippo and G. Villadoro, 1512.06746

Nf = 2 + 1 QCD, physical quark masses, improved staggered fermions
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The approach to the continuum limit is

quite slow and lattice spacing well below

0.1 fm are needed

continuum limit compatible with ChPT

no results yet available for b2

slow approach to continuum ↔ slow approach to chiral properties of fermion fields

zero modes are not exact, detM does not properly suppress Q 6= 0 configurations,

〈Q2〉 is still one order of magnitude larger than expected at a ∼ 0.1 fm



Finite T results for Nf = 2 + 1 QCD

χ is related to the QCD axion mass: m2
a = χ/f 2

a

T -dependence of χ(T ) fixes cosmological axion abundancies, and, by dark matter

bounds, the value of fa and of the axion mass today.
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results from C. Bonati et al., 1512.06746

drop of χ much smoother than DIGA prediction:

χ(T ) ∝ 1/T b with b = 2.90(65) (DIGA: b = 7.66÷ 8)

results in a larger fa, hence a smaller ma ∼ 10 µeV

Finite a corrections seemed under control ...
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Later numerical results, based on finer lattice

spacings, pointed to a much better agreement with

DIGA, hence to higher ma ∼ 100 µeV

Results from S. Borsanyi et al., arXiv:1606.07494



Recently, we managed to reach much smaller lattice spacings (down to a ∼ 0.03 fm)

by means of an improved MC sampling

(multicanonical algorithm, manage to sample 〈Q2〉 ≃ 10−4 − 10−5 )

C. Bonati, MD, G. Martinelli, F. Negro, F. Sanfilippo and A. Todaro, arXiv:1807.07954
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UV corrections still significant, leads

to a continuum extrapolation with large

uncertainties

Continuum value at T = 430 MeV in

agreement with S. Borsanyi et al., arXiv:1606.07494,

where however exact zero modes were forced

by hand by reweighting mf/|mf + iλ|

How to make the approach to the continuum limit smoother?

Maybe resort to a fermionic definition of topological charge? (work in progress ...)



Concluding remarks

– Nowadays, lattice simulations provide an accurate and reliable numerical tool

to study θ-dependence in QCD and QCD-like theories and compare it to various

model and phenomenological predictions and approximation schemes;

– Progress is on the way for the study in QCD with light fermions.

Future goals:

∗ first determination of θ4 corrections to f(θ), i.e. b2, at T = 0

∗ reduction of the impact of UV corrections at high T , improved estimates for

axion cosmology


