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I Robin C. Graham (Washington U, Seattle)

Thanks to physics people

I Jacopo Viti (UFRN & IIP, Natal)
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Statistical Models at Criticality

Ising model

H({si}) = −
∑

<i ,j>

si sj

I si = ±1 and i = (i1, i2, . . . , id), j = (j1, j2, . . . , jd) ∈ Zd

I < i , j > nearest neighbors

I weight of a configuration {si}: p({si}) = 1
Z e
−βH({si})

Averages of observables O({si}) are calculated as

〈O〉 =
∑

{si}
O({si})e−βH({si})



Symmetries in the continuum description

In the continuum limit (lattice spacing � correlation length ξ)
si ⇒ φ(x) with x = (x1, x2, . . . , xd) ∈ Rd for infinite system.
We highly expect good properties under:

I Translations T , x → x + a (d)

〈φ(x)φ(y)〉 = f (x − y)

A little less trivial

I Rotations R, x → R x with RTR = 1 (d(d−1)
2 )

〈φ(x)φ(y)〉 = f (|x − y |)
for spinless operators. In general (spinful operators) we have
covariance



Symmetries at criticality

At the critical point ξ diverges. Continuum description becomes
THE description. The system forgets about the lattice spacing and
becomes scale invariant,

well covariant.

I Scaling S, x → λx (1)

〈φ(0)φ(λx)〉 = λ−∆φ〈φ(0)φ(x)〉
this is the defining property of the critical point (RG approach).
BONUS SYMMETRY!: what if we manage to construct
transformations that locally is a scaling?

I Inversion I, x → x
|x |2

I Special conformal transformations (SCT) K = IT I, (d)

The conformal symmetry group {T ,R,S,K}
(1 + d + d(d−1)

2 + d = (d+1)(d+2)
2 )
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How do SCT look like?

K
=⇒



How do SCT look like?

K
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What can be gained from conformal symmetry?

Structure of correlators

〈φ(x)φ(y)〉 =
1

|x − y |∆φ

〈φ1(x)φ2(y)φ3(z)〉 =
C123

|x − y |∆1+∆2−∆3 |y − z|∆2+∆3−∆1 |z − x |∆3+∆1−∆2

If we build a Field Theory with such a symmetry we obtain very
nice objects, CFT. Recently (CFT + unitarity):

I Conformal Bootstrap: good basis of operators yield
exceptionally good results for Ising Critical Exponents
∆φ = 0.5181489(10)1.

1Precision Islands in the Ising and O(N) Models, Kos, Filip; Poland, David;
Simmons-Duffin, David; Vichi, Alessandro; Journal of High Energy Physics.
2016 (8) 36.



The d=2 case

Every holomorphic function z → f (z) with z = x1 + i x2 is locally a
scaling.
Infinite dimensional symmetry group!

I Any z → zn with n ∈ Z will do

However: for example z → z2 map is not one-to-one in R2.
The ones mapping R2 into itself in a one-to-one fashion are just
the Möbius transformations (6)

f (z) =
az + b

cz + d
with ad − cb 6= 0
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Criticality in bounded domains
Take a (simply connected domain) Ω in Rd . Put a critical system
in it with “respectful” boundary conditions

I Extremely useful setting for experiments

I Structure of correlators (smaller symmetry group)

I SCT look more natural
Classical results2. In semiinfinite system xd > 0 defining
|x − y |2d−1 =

∑d−1
i=1 (xi − yi )

2:

〈φ(x)〉 ∝ x
−∆φ

d

〈φ(x)φ(y)〉 ∝ x
−∆φ

d y
−∆φ

d F

(
|x − y |2d−1 + x2

d + y2
d

2xdyd

)

For the 2d case
I Extremely powerful setting (2dBCFT) a wealth of results

known3

2Conformal invariance and surface critical behavior, Cardy, John L.; Nuclear
Physics B 240, 514 (1984).

3Boundary conformal field theory Cardy, John L.; arXiv:hep-th/0411189,
in Encyclopedia of Mathematical Physics, Elsevier (2006).
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Uniformisation

A system at criticality in a bounded domain will try to modify its
(flat euclidean) metric in order to be “as uniform as possible”.
Otherwise stated it will try to forget the boundaries.
Looking for a geometric description We start with ds2 = gijdx

idx j

gij = δij

Allowed modifications of the metric: conformal changes

gij =
δij

γ(x)2

the two metric are said to belong to the same conformal class.



Riemannian geometry

(General Relativity) reminder

Γi
jk =

1

2
g il (∂kglj + ∂jglk − ∂lgjk)

Ricij = ∂lΓ
l
ji − ∂jΓl

li + Γl
lλΓλji − Γl

jλΓλli

Rg = Ricijg
ji

where

I Γi
jk Schwarz-Christoffel symbols

I Ric Ricci tensor curvature

I Rg Ricci scalar curvature



Implementing uniformisation
Intrinsic geometric quantity should be constant. Find γ(x) such
that

Rδ/γ(x)2 = κ

Yamabe problem4 stated in the ’60s. Still of interest to people
doing differential geometry.
Possible values for κ:

I κ > 0 “spherical” (Sd special example). Problem: no
boundary

I κ = 0 “flat” the one we started with

I κ < 0 “hyperbolic” (Hd special example). Looks promising:
(infinitely distant) boundary.

For our case Yamabe equation reads:

1− |∇γ(x)|2 +
2

d
γ(x)∆γ(x) = 0

4On a deformation of Riemannian structures on compact manifolds,
Yamabe, Hidehiko; Osaka Journal of Mathematics 12, 21 (1960).



Properties & Simple solutions of Yamabe Equation

I γ(x) = 0 if x ∈ ∂Ω

I γ(x) ' dist(x , ∂Ω) if x is close to ∂Ω

I Scaling γλΩ(λx) = λγΩ(x)

I Semi-infinite system xd > 0

γ(x) = xd

I Inside balls xd > 0

γ(x) =
1− |x |2

2

In these two examples actually a model of Hd is built that is a fully
homogeneous space with all sectional curvatures negative and
constant
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Uniformisation in 2d

Unit disk: |x | < 1

γ(x) = 1−|x |2
2

Unit strip: −1 < x1 < 1

γ(x) = 2
π cos πx1

2

Can’t tell one point from another: Complete uniformisation.



Conjectures∗

Given the scaling properties of γ (it has dimensions of a length) we
are lead to:

Conjecture∗ for one-point correlators (C1pt∗)

〈φ(x)〉 = const.× γ(x)−∆φ ,

Conjecture∗ for two-point correlators (C2pt∗)

〈φ(x)φ(y)〉 = γ(x)−∆φγ(y)−∆φF (Dδ/γ2(x , y)).

Dδ/γ2(x , y) is the distance between points x and y calculated with

the metric δ/γ2. These Conjectures∗ will be soon corrected to
account for anomalous dimensions.
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Yamabe equation

Yamabe equation

1− |∇γ(x)|2 +
2

d
γ(x)∆γ(x) = 0

can also be cast in the form (nonlinear eigenvalue problem)

(−∆)γ(x)−
d−2

2 = −d(d − 2)

4
γ(x)−

d+2
2 .

we recognize scaling dimensions of the magnetization d−2
2 and the

conjugate magnetic field −d+2
2 for a free field theory. In real life

we have ∆φ 6= d−2
2 = 0.5181 . . . (Ising 3D).



Gaussian reasoning
Action of a theory at most quadratic in the fields

SQ [φ(x)] = −
∫

ddx
1

2
φ(x)(Aφ)(x)−

∫
ddxb(x)φ(x),

Relation between applied field and magnetization
A〈φ(x)〉Q = b(x).
Assuming A = (−∆) and that both field and magnetization can be
related to a γQ we get Yamabe equation:

(−∆)γQ(x)−
d−2

2 = const.× γQ(x)−
d+2

2

How to account for anomalous dimensions?

(−∆)
d
2
−∆φ

[
γ(∆φ)(x)

]−∆φ

= const.×
[
γ(∆φ)(x)

]−d+∆φ

,

Fractional Yamabe problem 5

5Fractional Laplacian in conformal geometry Chang, Sun-Yung Alice;
González, Maŕıa del Mar; Advances in Mathematics 226, 1410 (2011).



Conjectures

Conjecture for one-point correlators (C1pt)

〈φ(x)〉 = const.× γ(∆φ)(x)−∆φ ,

Conjecture for two-point correlators (C2pt)

〈φ(x)φ(y)〉 = γ(∆φ)(x)−∆φγ(∆φ)(y)−∆φF (Dδ/γ2
(∆φ)

(x , y)).

Where γ(∆φ)(x) is the solution of FYE in Ω.

(−∆)
d
2
−∆φ

[
γ(∆φ)(x)

]−∆φ

= const.×
[
γ(∆φ)(x)

]−d+∆φ

,



Conformally covariant operator
Conformal change: g → g ′ = g/w2 for a “good” operator A we
want Ag ′(w

pϕ) = wqAg (ϕ).
Conformal laplacian:

L(1)
g = (−∆g ) +

d − 2

4(d − 1)
Rg

with p = d−2
2 , q = d+2

2 , and (−∆g ) Laplace-Beltrami operator.

If we manage to construct L( d
2
−∆φ)

g FYE reads6:

L( d
2
−∆φ)

δ/w2

(
γ(∆φ)(x)

w(x)

)−∆φ

=
Υ(∆φ)

Υ(d −∆φ)

(
γ(∆φ)(x)

w(x)

)−d+∆φ

.

Choosing w(x) = γ(∆φ)(x):

L( d
2
−∆φ)

δ/γ2
(∆φ)

(1) =
Υ(∆φ)

Υ(d −∆φ)
(1)

6Υ(x) = Γ(1 − x) cos(πx/2)



What’s it all about?

For domains where complete uniformisation can be achieved:

I Semi-infinite systems (xd > 0)

I Balls (|x | < 1)

I Any domain in 2d

we recover what is known from the group approach.

Dδ/x2
d
(x , y) = arccosh

[
|x − y |2d−1 + x2

d + y2
d

2xdyd

]

New predictions:

any domain in d > 2 differing semi-infinite and balls.
Our work will be aimed to the slab domain −1 < x1 = x < 1 in
d = 3. Ideal geometry for confronting with experiments!
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Fractional laplacian (in Rd)

Given a function f (x) compute (−∆)s f = g

I Singular integral g(x) = const.
∫
ddx f (x)−f (y)

|x−y |d+2s

I Fourier transform ĝ(k) = const.f̂ (k)|k |2s
I Inverse operator f (x) = const.

∫
ddx g(x)

|x−y |d−2s

I Heat semigroup g(x) = const.
∫∞

0 dt (et∆−1)f (x)
t1+s

I . . .

I . . .

I PDE Extension (wait for next slide)

They are all (under conditions) equivalent 7

7Ten equivalent definitions of the fractional Laplace operator, M. Kwaśnicki,
Fract. Calc. Appl. Anal., 20, (2017), p. 7-51



The square root of the laplacian

Set up this PDE in d + 1 dimensions (x, y)
(−∆)1/2f = g

{
∆xu(x, y) + ∂yyu(x, y) = 0, for y > 0

u(x, 0) = f (x)

Impose Dirichlet BC, read off Neumann BC

g(x) = (−∆)1/2f (x) = − ∂yu(x, y)|y=0



The fractional laplacian: scattering theory8

I Extension the space Rd to Rd+1, (x, y): when y → 0 we
retrieve the base space Rd .

I Near y = 0, g+ ∼ dx2

y2 .

I g+ solution of Einstein equations in vacuum Ricg+ + dg = 0
{

(−∆g+)U = ∆φ(d −∆φ)U

U = y∆φFI + yd−∆φFO

FI and FO are regular on y = 0 and F |y=0 = f . The fractional
laplacian is (−∆)d/2−∆φf = const.× FO |y=0

I If you change to another variable y → υ eigenfunction stays
the same U = y∆φFI + yd−∆φFO = υ∆φF ′I + υd−∆φF ′O

I y = dy
dυ

∣∣∣
Ω
υ = w(x)−1υ

8Scattering matrix in conformal geometry Graham, C. Robin; Zworski,
Maciej; Inventiones mathematicae 152, 89 (2003).



The extension space for bounded domains

ω (θ = π/2)

id
en
ti
fy

Ω̄ (θ = π)

Ω (θ = 0)

Canonical form of the metric9:

g+ = (sin θ)−2(dθ2 + gθ) = (sin θ)−2(dθ2 + dx2/x2
d )

9Formal theory of cornered asymptotically hyperbolic Einstein metrics,
McKeown, E. Stephen; arXiv:1708.02390 (2017).



EE solution for the slab geometry

Solutions of Einstein equations

Ricg+ = −d g+

can be chosen in a diagonal form (for any d > 2):

g+ = (sin θ)−2
[
dθ2 + dx2

1/γx(x1, θ)2 + (dx2
2 + dx2

3 )/γ‖(x1, θ)2
]

0.0 0.2 0.4 0.6 0.8 1.0
x

0

π/4

π/2

θ

γx(x, θ)/
(

2
π cos

(
πx
2

))

0.0 0.2 0.4 0.6 0.8 1.0
x

0

π/4

π/2

θ

γ‖(x, θ)/
(

2
π cos

(
πx
2

))

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5



Fractional Yamabe solution

−1.0 −0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
γd=2(x)

γd=3(x)

w(x)

−1.0 −0.5 0.0 0.5 1.0
x

0.50

0.51

0.52

0.53

0.54

∆
φ

γ(∆φ)(x)− γ(∆φ=1/2)(x)

0

0.0005

0.0010

0.0015

0.0020

Ansatz for solution

U = sin(θ)∆φ

 Nθ∑
i=0, i even

Fi (x) sin(θ)2i +

Nθ∑
i=1, i odd

Fi (x) sin(θ)2s+i−1


eigenvalue problem solved by Chebyshev spectral methods yields a

matrix operator J (inverse of the fractional laplacian).
Nonlinear eigenvalue converted in a minimization problem for

E [ρ] = J [ρ]− ρ
∆φ

d−∆φ = 0 where ρ = (γ/w)−d+∆φ .
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Numerical Experiments

Improved Blume-Capel model10 (Ising universality class)

H = −β
∑

<i ,j>

si sj + D
∑

i

s2
i si = ±1, 0

I Best available values for the system to be at the critical point

I In a slab domain of transverse dimension 0 < i1 < L with fixed
boundary conditions si = +1 if i1 = 0 or i1 = L.

I Large transverse dimension i2, i3 = 1, . . . , 6L. Periodic
boundary conditions.

I Cluster + local moves, ∼ 107 samples, largest size L = 192.

Recorded observables:

I One-point function: 〈si 〉
I Two-point function: 〈si sj〉
10Finite size scaling study of lattice models in the three-dimensional Ising

universality class, M. Hasenbush, Phys. Rev. B 82, 174433 (2010).



One-point functions I

0.0 0.2 0.4 0.6 0.8 1.0
x /(1 + a∞/L)

1

2

3

4

5

6

7

8

m
·L

∆
∞ φ

L = 32

L = 48

L = 64

L = 96

L = 128

L = 192
0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

m

From C1pt magnetization profile

mi = αL−∆φ

[
γ(∆φ)

(
Lx

L + a

)]−∆φ

I Fitting parameters: α, a (extrapolation length), ∆φ

I Adaptive windowing in order to have a 0.95 p-value



One-point functions II

50 100 150 200
L

0.518

0.519

0.520

0.521

0.522

0.523

∆
L φ

190 200
L

0.51813

0.51814

0.51815

0.51816

0.51817

∆
L φ

∆φ as a function of L
(blue), Conformal
Bootstrap (red)

Reference Method ∆φ

Hasenbusch (2010) MC 0.518135(50)
Ferrenberg et al. (2018) MC 0.51801(35)
Sheer El-Showk et al. (2014) Conformal Bootstrap 0.518154(15)
Kos et al. (2016) Conformal Bootstrap 0.5181489(10)
This work Critical Geometry 0.518142(8)
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Sheer El-Showk et al. (2014) Conformal Bootstrap 0.518154(15)
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Using η = 2∆φ − (d − 2):

ηMC =0.036270(25)

ηCB =0.0362978(20)

ηDE =0.0358(6)

ηCG =0.036284(16)



Two-point functions I
Correlation ratio

r(x , y) =
〈φ(x)φ(y)〉
〈φ(x)〉〈φ(y)〉

According to C2pt it should depend just on Dg (x , y). r evaluated
for 7672 independent couples of points.
Bad choice (euclidean distance) ⇒ no collapse

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Dg(x, y)
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1.6
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x
,y

)

L = 128 g = δ



Two-point functions II

FYE distance γ(∆CB
φ ):
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Fit with: f (x) = 1 +
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i=1 aie
−bi x

Figure of merit
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√
[r − f (Dg )]2

nd.o.f.
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Conclusions

I Clean separation between geometry/kinematics and
dynamics/interaction

I Solution of geometry/kinematics

⇒ Prediction of critical magnetization profile
⇒ Precise estimate of ∆φ = 0.518142(8)
⇒ Structure of two point functions verified



Perspectives

To do list

I More operators (ε energy operator)

I More models (3D O(2), percolation 3-4-5D)

I More boundary conditions (ordinary, special)

Bolder directions

I Compatibility conditions ⇔ OPE?

I Algebraic counterpart to “critical Geometry”?



Thank you
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