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...in a bounded system



Statistical Models at Criticality

Ising model

H({si}) = Z SiSj

<ij>

> si==xland i= (i1,io,...,04), J = (1,42, --

> < j,j > nearest neighbors

,jq) € 29

» weight of a configuration {s;}: p({s;}) = %e‘fm({sf})

Averages of observables O({s;}) are calculated as

_ 3" 0({s))e D
{si}



Symmetries in the continuum description

In the continuum limit (lattice spacing < correlation length &)
si = ¢(x) with x = (x1,x2, ..., xg) € RY for infinite system.
We highly expect good properties under:
» Translations 7, x — x + a (d)
(@(x)o(y)) = f(x—y)
A little less trivial
> Rotations R, x — Rx with RTR =1 (4<-1))

(p(x)o(y)) = f(lx = ¥I)

for spinless operators. In general (spinful operators) we have
covariance
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BONUS SYMMETRY!: what if we manage to construct
transformations that locally is a scaling?

» Inversion Z, x — ﬁ
» Special conformal transformations (SCT) K =ZT77Z, (d)

The conformal symmetry group {7, R,S,K}
(1+d+ 90 4 g = (@),



How do SCT look like?




How do SCT look like?

o 5 = = E DA



What can be gained from conformal symmetry?

Structure of correlators

1
Ix — y|Be

((x)8(y)) =

Cizs
<¢1(X)¢2(y)¢3(2)> - ‘X — y|A1+A2_A3Iy — Z|A2+A3_A1 ‘Z — X|A3+A1_A2

If we build a Field Theory with such a symmetry we obtain very
nice objects, CFT. Recently (CFT + unitarity):

» Conformal Bootstrap: good basis of operators yield
exceptionally good results for Ising Critical Exponents
A, = 0.5181489(10)".

L Precision Islands in the Ising and O(N) Models, Kos, Filip; Poland, David,;
Simmons-Duffin, David; Vichi, Alessandro; Journal of High Energy Physics.
2016 (8) 36.
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The d=2 case

Every holomorphic function z — f(z) with z = x; + i x2 is locally a
scaling.
Infinite dimensional symmetry group!

> Any z — z" with n € Z will do
However: for example z — z? map is not one-to-one in R2,
The ones mapping R? into itself in a one-to-one fashion are just
the Mobius transformations (6)

az+b

p— with ad — cb # 0

f(z) =



Criticality in bounded domains

Take a (simply connected domain) Q in RY. Put a critical system
in it with “respectful” boundary conditions

> Extremely useful setting for experiments
» Structure of correlators (smaller symmetry group)

» SCT look more natural
Classical results?. In semiinfinite system x4 > 0 defining

Ix—yl3 = S X — i)
(B(x)) o x; °°

Ix —yl5_ +x3+3
2XqYd

(@(x)B(y)) ox x5 20y B F (

For the 2d case
» Extremely powerful setting (2dBCFT) a wealth of results
known®

2 Conformal invariance and surface critical behavior, Cardy, John L.; Nuclear
Physics B 240, 514 (1984).

3Boundary conformal field theory Cardy, John L.; arXiv:hep-th/0411189,
in Encyclopedia of Mathematical Physics, Elsevier (2006).
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Uniformisation

A system at criticality in a bounded domain will try to modify its
(flat euclidean) metric in order to be “as uniform as possible”.
Otherwise stated it will try to forget the boundaries.

Looking for a geometric description We start with ds®> = g,-J-dX"dxf

gij = 0jj

Allowed modifications of the metric: conformal changes

8ij =

the two metric are said to belong to the same conformal class.



Riemannian geometry

(General Relativity) reminder

: 1 .
= Eg'l (Okgij + Oigic — 01gjk)
Ricj = O/} — 0T} + T1a5 — rjl',\rﬁ
Ry = Ric,-jgji
where
> I'J"-k Schwarz-Christoffel symbols

» Ric Ricci tensor curvature

» Rg Ricci scalar curvature



Implementing uniformisation

Intrinsic geometric quantity should be constant. Find ~(x) such
that

Rorixpe =
Yamabe problem# stated in the '60s. Still of interest to people

doing differential geometry.
Possible values for k:

» x>0 “spherical’ (SY special example). Problem: no
boundary

> x =0 “flat” the one we started with

> x < 0 “hyperbolic’ (HY special example). Looks promising:
(infinitely distant) boundary.

For our case Yamabe equation reads:

2 2

1= V()" + v

*On a deformation of Riemannian structures on compact manifolds,
Yamabe, Hidehiko; Osaka Journal of Mathematics 12, 21 (1960).

()27(x) = 0




Properties & Simple solutions of Yamabe Equation

v(x) =0 if x € 9Q
v(x) ~ dist(x, 9Q) if x is close to IQ
Scaling Y (\x) = M(x)

Semi-infinite system x4 > 0

1(x) = x4

v

Inside balls x4 > 0
_ 1 |xP

v(x) 5

In these two examples actually a model of H is built that is a fully
homogeneous space with all sectional curvatures negative and
constant
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Uniformisation in 2d

Unit disk: |x| <1

Unit strip: -1 <x3 <1

Can't tell one point from another: Complete uniformisation.
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Conjectures®

Given the scaling properties of (it has dimensions of a length) we
are lead to:

Conjecture* for one-point correlators (Clpt*)

(6(x)) = const. x ~(x)~42,

Conjecture* for two-point correlators (C2pt*)

(@()(y)) = 1)~ 221(y) B¢ F(Dg/12(x, ¥))-
Ds/42(x, y) is the distance between points x and y calculated with

the metric 6/v2. These Conjectures* will be soon corrected to
account for anomalous dimensions.



Yamabe equation

Yamabe equation

1= 910 + S9(x)d(x) =0

can also be cast in the form (nonlinear eigenvalue problem)

d—2 _d(d— 2)

(FANG)" 2 = ————(x)

_d+2
2

we recognize scaling dimensions of the magnetization % and the

conjugate magnetic field —% for a free field theory. In real life

we have Ay # % = 0.5181... (Ising 3D).



Gaussian reasoning

Action of a theory at most quadratic in the fields

Salo(] = - [ ax50(:)(A0)(x) [ axblx)ol).

Relation between applied field and magnetization

A($(x))q = b(x).

Assuming A = (—A) and that both field and magnetization can be
related to a yg we get Yamabe equation:

d—2 d+2

(—A)y(x)” 2 = const. x yg(x)™ 2

How to account for anomalous dimensions?

Y

(—A)$ 2 [’Y(A¢)(X)} A const. X [’Y(A¢)(X)]_d+A¢

Fractional Yamabe problem °

®Fractional Laplacian in conformal geometry Chang, Sun-Yung Alice;
Gonzélez, Maria del Mar; Advances in Mathematics 226, 1410 (2011).




Conjectures

Conjecture for one-point correlators (Clpt)

(¢(x)) = const. x 7(A¢)()<)—A<z57

Conjecture for two-point correlators (C2pt)

(©(00)) = 10002 a0 F(@yz, (1))

Where y(a,,)(x) is the solution of FYE in €.

(_A)%—A¢ [’Y(Ad))(x)} A = const. X [V(Ad))(x)] e



Conformally covariant operator

Conformal change: g — g’ = g/w? for a “good" operator A we
want Ag(wPyp) = wIAg(yp).
Conformal laplacian:

@ _ ., d—2
Lg” = ( Ag)+44(d_1) g
with p = 9=, g = M and (—Ag) Laplace-Beltrami operator.
d_
If we manage to construct Eéz ) EYE readsS:
-A —d+A
300 (W)X T(Ag)  (an() ¢
§/w? w(x) T(d—2Ay) \ w(x) ’

Choosing w(x) = y(a,)(x):

T(Ay)

£ = 5= e

6/7(A

8T (x) = (1 — x) cos(mx/2)



What's it all about?

For domains where complete uniformisation can be achieved:
» Semi-infinite systems (x4 > 0)
» Balls (|x] < 1)
» Any domain in 2d

we recover what is known from the group approach.

x = yl3_1 + X5+ Y3
2X4Yd

D52 (x,y) = arccosh



What's it all about?

For domains where complete uniformisation can be achieved:
» Semi-infinite systems (x4 > 0)
» Balls (|x] < 1)
» Any domain in 2d

we recover what is known from the group approach.

x = yl5 1+ x5+ 3

D = h
5/ (x,y) = arccos xaya

New predictions:

any domain in d > 2 differing semi-infinite and balls.
Our work will be aimed to the slab domain —1 < x; = x < 1in
d = 3. Ideal geometry for confronting with experiments!
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Fractional laplacian (in RY)

Given a function f(x) compute (—A)*f =g

> Singular integral g(x) = const. | ddx%

> Fourier transform g(k) = const.f(k)|k|?

— d,_ &(x)
> Inverse operator f(x) = const. [ d Xy ==

Heat semigroup g(x) = const. [;* dt(em;%

vwvyy

» PDE Extension (wait for next slide)

They are all (under conditions) equivalent ’

" Ten equivalent definitions of the fractional Laplace operator, M. Kwasnicki,
Fract. Calc. Appl. Anal., 20, (2017), p. 7-51



The square root of the laplacian

Set up this PDE in d 4 1 dimensions (x, y)
(-A)2f =g

Axu(x,y) + 0yyu(x,y) =0, fory >0
u(x,0) = f(x)

Impose Dirichlet BC, read off Neumann BC

g(x) = (—2)?f(x) = — dyu(x.y)|,—



The fractional laplacian: scattering theory?®

» Extension the space R? to R, (x,y): when y — 0 we
retrieve the base space RY.
dx?

> Neary:O,ngN?.

» g solution of Einstein equations in vacuum Ricg, + dg =0
(—8g. )U = Dy(d = Ag)U
U= yBeF; +yd=8eFo
F; and Fo are regular on y =0 and F|,—o = f. The fractional
laplacian is (—A)%/2=2¢ f = const. x Fo|y—o
» If you change to another variable y — v eigenfunction stays

the same U = y2¢ F) + y9=2 Fg = v2s F] 4 vd=Rs F

d —_
Py:d—{jﬂvzw(x) Ly

8Scattering matrix in conformal geometry Graham, C. Robin; Zworski,
Maciej; Inventiones mathematicae 152, 89 (2003).



The extension space for bounded domains

w (0 =m/2)

identify

Canonical form of the metric?:

g+ = (sin0)"2(d6? + gg) = (sin ) 2(d6? + dx?/x3)

° Formal theory of cornered asymptotically hyperbolic Einstein metrics,
McKeown, E. Stephen; arXiv:1708.02390 (2017).



EE solution for the slab geometry
Solutions of Einstein equations
Ricg, = —d gy
can be chosen in a diagonal form (for any d > 2):
g+ = (sin 9)_2 [d02 + dxlz/'yx(xl, 9)2 + (dx22 + dx32)/'y||(x1, 0)2]

O Bes(E) (0 (s (3)

= /4 = /4




Fractional Yamabe solution

a4)(@) = Va,=1/2)(@)

N 7 0.0020
v 0.0015

0.0010

— a=2(z)
— a=3(x)

w(x)

4052

0.0005

5 0
-1.0 —0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0

x T

Ansatz for solution

Ng Ng
U:sin(@)A¢< o FE)sin0) + > f;(x)sin(9)25+i_1)

i=0, i even i=1,iodd

eigenvalue problem solved by Chebyshev spectral methods yields a
matrix operator J (inverse of the fractional laplacian).

Nonlinear eigenvalue converted in a minimization problem for
A
¢

Elpl = Tlp] — p™ 5 = 0 where p = (y/w) I+5%.
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Numerical Experiments

Improved Blume-Capel model'® (Ising universality class)

H——BZS,SJ+DZS si==+1,0

<ij>

» Best available values for the system to be at the critical point

» In a slab domain of transverse dimension 0 < /; < L with fixed
boundary conditions s; = +1 if i =0 or i; = L.

P Large transverse dimension ip, i3 =1,...,6L. Periodic
boundary conditions.

» Cluster + local moves, ~ 107 samples, largest size L = 192.

Recorded observables:
» One-point function: (s;)
» Two-point function: (s;s;)

© Finite size scaling study of lattice models in the three-dimensional Ising
universality class, M. Hasenbush, Phys. Rev. B 82, 174433 (2010).



One-point functions |

8
—— L=32
7 L=43
—— L=64 _04
61 —— L=96
—— L=128 **
G5 —— L=192
"_] 0.00 0.25 0.50 0.75 1.00
g 7

1
0.0 0.2 0.4 0.6 0.8 1.0
z /(14 ax/L)

From Clpt magnetization profile

Lx —As
“A
m =t g (135

» Fitting parameters: «, a (extrapolation length), A,

» Adaptive windowing in order to have a 0.95 p-value



One-point functions Il
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Sheer EI-Showk et al. (2014) | Conformal Bootstrap | 0.518154(15)
Kos et al. (2016) Conformal Bootstrap | 0.5181489(10)
This work Critical Geometry 0.518142(8)

Using n =2A4 — (d — 2):

nMC =0.036270(25)
n“B =0.0362978(20)
nPE =0.0358(6)
n“¢ =0.036284(16)



Two-point functions |
Correlation ratio

_ {(e(x)e(y))
") = 00 60)

According to C2pt it should depend just on D,(x, y). r evaluated
for 7672 independent couples of points.
Bad choice (euclidean distance) = no collapse

L=128 g=4§




Two-point functions Il
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Two-point functions Il

FYE distance Vagey:
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Conclusions & Perspectives



Conclusions

» Clean separation between geometry/kinematics and
dynamics/interaction
» Solution of geometry/kinematics

= Prediction of critical magnetization profile
= Precise estimate of A, = 0.518142(8)
= Structure of two point functions verified



Perspectives

To do list
» More operators (& energy operator)
» More models (3D O(2), percolation 3-4-5D)

» More boundary conditions (ordinary, special)

Bolder directions
» Compatibility conditions < OPE?

» Algebraic counterpart to “critical Geometry"?



Thank you
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