Geometry of Bounded Critical Phenomena

Giacomo Gori
CNR-IOM, Università degli studi di Padova

FRGIM, Trento, 16/09/2019

The people

- Andrea Trombettoni (CNR-IOM, Trieste)

Thanks to math people

- María del Mar González (UAM Madrid)
- Robin C. Graham (Washington U, Seattle)

Thanks to physics people

- Jacopo Viti (UFRN \& IIP, Natal)
- Nicolò Defenu (U Heidelberg)

The paper

arXiv:1904. 08919
Geometry of bounded critical phenomena Giacomo Gori, Andrea Trombettoni
... joint mathematical work is coming soon

Outline

(Bounded) Criticality and Conformal invariance
Symmetries at criticality...
....in a bounded system
Uniformisation
Yamabe Equation
Anomalous dimension incluson
Fractional Yamabe Equation
Conformally covariant formulation
Interesting technicalities
Conformal fractional laplacian...
... in bounded domains
Fractional Yamabe in a slab

Results

Monte Carlo simulations
One-point correlations
Two-point correlations
Conclusions \& Perspectives
(Bounded) Criticality and Conformal invariance
Symmetries at criticality. . .
... in a bounded system

Uniformisation

Interesting technicalities

Results

Conclusions \& Perspectives

Statistical Models at Criticality

Ising model

$$
\mathcal{H}\left(\left\{s_{i}\right\}\right)=-\sum_{<i, j\rangle} s_{i} s_{j}
$$

- $s_{i}= \pm 1$ and $i=\left(i_{1}, i_{2}, \ldots, i_{d}\right), j=\left(j_{1}, j_{2}, \ldots, j_{d}\right) \in \mathbb{Z}^{d}$
- $\langle i, j\rangle$ nearest neighbors
- weight of a configuration $\left\{s_{i}\right\}: p\left(\left\{s_{i}\right\}\right)=\frac{1}{\mathcal{Z}} e^{-\beta \mathcal{H}\left(\left\{s_{i}\right\}\right)}$

Averages of observables $\mathcal{O}\left(\left\{s_{i}\right\}\right)$ are calculated as

$$
\langle\mathcal{O}\rangle=\sum_{\left\{s_{i}\right\}} \mathcal{O}\left(\left\{s_{i}\right\}\right) e^{-\beta \mathcal{H}\left(\left\{s_{i}\right\}\right)}
$$

Symmetries in the continuum description

In the continuum limit (lattice spacing \ll correlation length ξ) $s_{i} \Rightarrow \phi(x)$ with $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ for infinite system. We highly expect good properties under:

- Translations $\mathcal{T}, x \rightarrow x+a(d)$

$$
\langle\phi(x) \phi(y)\rangle=f(x-y)
$$

A little less trivial

- Rotations $\mathcal{R}, x \rightarrow R x$ with $R^{T} R=\mathbb{1}\left(\frac{d(d-1)}{2}\right)$

$$
\langle\phi(x) \phi(y)\rangle=f(|x-y|)
$$

for spinless operators. In general (spinful operators) we have covariance

Symmetries at criticality

At the critical point ξ diverges. Continuum description becomes THE description. The system forgets about the lattice spacing and becomes scale invariant,

Symmetries at criticality

At the critical point ξ diverges. Continuum description becomes THE description. The system forgets about the lattice spacing and becomes scale invariant, well covariant.

- Scaling $\mathcal{S}, x \rightarrow \lambda x(1)$

$$
\langle\phi(0) \phi(\lambda x)\rangle=\lambda^{-\Delta_{\phi}}\langle\phi(0) \phi(x)\rangle
$$

this is the defining property of the critical point (RG approach).

Symmetries at criticality

At the critical point ξ diverges. Continuum description becomes THE description. The system forgets about the lattice spacing and becomes scale invariant, well covariant.

- Scaling $\mathcal{S}, x \rightarrow \lambda x(1)$

$$
\langle\phi(0) \phi(\lambda x)\rangle=\lambda^{-\Delta_{\phi}}\langle\phi(0) \phi(x)\rangle
$$

this is the defining property of the critical point (RG approach). BONUS SYMMETRY!: what if we manage to construct transformations that locally is a scaling?

- Inversion $\mathcal{I}, x \rightarrow \frac{x}{|x|^{2}}$
- Special conformal transformations (SCT) $\mathcal{K}=\mathcal{I T} \mathcal{I}$, (d)

The conformal symmetry group $\{\mathcal{T}, \mathcal{R}, \mathcal{S}, \mathcal{K}\}$
$\left(1+d+\frac{d(d-1)}{2}+d=\frac{(d+1)(d+2)}{2}\right)$

How do SCT look like?

How do SCT look like?

What can be gained from conformal symmetry?

Structure of correlators

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\frac{1}{|x-y|^{\Delta_{\phi}}} \\
\left\langle\phi_{1}(x) \phi_{2}(y) \phi_{3}(z)\right\rangle=\frac{C_{123}}{|x-y|^{\Delta_{1}+\Delta_{2}-\Delta_{3}}|y-z|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}|z-x|^{\Delta_{3}+\Delta_{1}-\Delta_{2}}}
\end{gathered}
$$

If we build a Field Theory with such a symmetry we obtain very nice objects, CFT. Recently (CFT + unitarity):

- Conformal Bootstrap: good basis of operators yield exceptionally good results for Ising Critical Exponents $\Delta_{\phi}=0.5181489(10)^{1}$.

[^0]
The $d=2$ case

Every holomorphic function $z \rightarrow f(z)$ with $z=x_{1}+i x_{2}$ is locally a scaling.
Infinite dimensional symmetry group!

- Any $z \rightarrow z^{n}$ with $n \in \mathbb{Z}$ will do

The $d=2$ case

Every holomorphic function $z \rightarrow f(z)$ with $z=x_{1}+i x_{2}$ is locally a scaling.
Infinite dimensional symmetry group!

- Any $z \rightarrow z^{n}$ with $n \in \mathbb{Z}$ will do

However: for example $z \rightarrow z^{2}$ map is not one-to-one in \mathbb{R}^{2}.
The ones mapping \mathbb{R}^{2} into itself in a one-to-one fashion are just the Möbius transformations (6)

$$
f(z)=\frac{a z+b}{c z+d} \text { with } a d-c b \neq 0
$$

Criticality in bounded domains

Take a (simply connected domain) Ω in \mathbb{R}^{d}. Put a critical system in it with "respectful" boundary conditions

- Extremely useful setting for experiments
- Structure of correlators (smaller symmetry group)
- SCT look more natural

Classical results ${ }^{2}$. In semiinfinite system $x_{d}>0$ defining $|x-y|_{d-1}^{2}=\sum_{i=1}^{d-1}\left(x_{i}-y_{i}\right)^{2}:$

$$
\begin{gathered}
\langle\phi(x)\rangle \propto x_{d}^{-\Delta_{\phi}} \\
\langle\phi(x) \phi(y)\rangle \propto x_{d}^{-\Delta_{\phi}} y_{d}^{-\Delta_{\phi}} F\left(\frac{|x-y|_{d-1}^{2}+x_{d}^{2}+y_{d}^{2}}{2 x_{d} y_{d}}\right)
\end{gathered}
$$

For the 2d case

- Extremely powerful setting (2dBCFT) a wealth of results known ${ }^{3}$

[^1]
(Bounded) Criticality and Conformal invariance

Uniformisation
Yamabe Equation
Anomalous dimension incluson
Fractional Yamabe Equation
Conformally covariant formulation

Interesting technicalities

Results

Conclusions \& Perspectives

Uniformisation

A system at criticality in a bounded domain will try to modify its (flat euclidean) metric in order to be "as uniform as possible". Otherwise stated it will try to forget the boundaries.
Looking for a geometric description We start with $d s^{2}=g_{i j} d x^{i} d x^{j}$

$$
g_{i j}=\delta_{i j}
$$

Allowed modifications of the metric: conformal changes

$$
g_{i j}=\frac{\delta_{i j}}{\gamma(x)^{2}}
$$

the two metric are said to belong to the same conformal class.

Riemannian geometry

(General Relativity) reminder

$$
\begin{aligned}
\Gamma_{j k}^{i} & =\frac{1}{2} g^{i l}\left(\partial_{k} g_{l j}+\partial_{j} g_{l k}-\partial_{l} g_{j k}\right) \\
\operatorname{Ric}_{i j} & =\partial_{l} \Gamma_{j i}^{\prime}-\partial_{j} \Gamma_{l i}^{\prime}+\Gamma_{l \lambda}^{\prime} \Gamma_{j i}^{\lambda}-\Gamma_{j \lambda}^{\prime} \Gamma_{l i}^{\lambda} \\
R_{g} & =\operatorname{Ric}_{i j} g^{j i}
\end{aligned}
$$

where

- $\Gamma_{j k}^{i}$ Schwarz-Christoffel symbols
- Ric Ricci tensor curvature
- R_{g} Ricci scalar curvature

Implementing uniformisation

Intrinsic geometric quantity should be constant. Find $\gamma(x)$ such that

$$
R_{\delta / \gamma(x)^{2}}=\kappa
$$

Yamabe problem ${ }^{4}$ stated in the '60s. Still of interest to people doing differential geometry.
Possible values for κ :

- $\kappa>0$ "spherical" (\mathbb{S}^{d} special example). Problem: no boundary
- $\kappa=0$ "flat" the one we started with
- $\kappa<0$ "hyperbolic" (\mathbb{H}^{d} special example). Looks promising: (infinitely distant) boundary.
For our case Yamabe equation reads:

$$
1-|\nabla \gamma(x)|^{2}+\frac{2}{d} \gamma(x) \Delta \gamma(x)=0
$$

[^2]
Properties \& Simple solutions of Yamabe Equation

- $\gamma(x)=0$ if $x \in \partial \Omega$
- $\gamma(x) \simeq \operatorname{dist}(x, \partial \Omega)$ if x is close to $\partial \Omega$
- Scaling $\gamma^{\lambda \Omega}(\lambda x)=\lambda \gamma^{\Omega}(x)$
- Semi-infinite system $x_{d}>0$

$$
\gamma(x)=x_{d}
$$

- Inside balls $x_{d}>0$

$$
\gamma(x)=\frac{1-|x|^{2}}{2}
$$

In these two examples actually a model of \mathbb{H}^{d} is built that is a fully homogeneous space with all sectional curvatures negative and constant

Properties \& Simple solutions of Yamabe Equation

- $\gamma(x)=0$ if $x \in \partial \Omega$
- $\gamma(x) \simeq \operatorname{dist}(x, \partial \Omega)$ if x is close to $\partial \Omega$
- Scaling $\gamma^{\lambda \Omega}(\lambda x)=\lambda \gamma^{\Omega}(x)$
- Semi-infinite system $x_{d}>0$

$$
\gamma(x)=x_{d}
$$

- Inside balls $x_{d}>0$

$$
\gamma(x)=\frac{1-|x|^{2}}{2}
$$

In these two examples actually a model of \mathbb{H}^{d} is built that is a fully homogeneous space with all sectional curvatures negative and constant

Uniformisation in 2d

Unit disk: $|x|<1$

$$
\text { Unit strip: }-1<x_{1}<1
$$

$$
\gamma(x)=\frac{2}{\pi} \cos \frac{\pi x_{1}}{2}
$$

$$
\gamma(x)=\frac{1-|x|^{2}}{2}
$$

Can't tell one point from another: Complete uniformisation.

Conjectures*

Given the scaling properties of γ (it has dimensions of a length) we are lead to:

Conjecture* for one-point correlators (C1pt*)

$$
\langle\phi(x)\rangle=\text { const. } \times \gamma(x)^{-\Delta_{\phi}},
$$

Conjectures*

Given the scaling properties of γ (it has dimensions of a length) we are lead to:

Conjecture* for one-point correlators (C1pt*)

$$
\langle\phi(x)\rangle=\text { const. } \times \gamma(x)^{-\Delta_{\phi}}
$$

Conjecture* for two-point correlators (C2pt*)

$$
\langle\phi(x) \phi(y)\rangle=\gamma(x)^{-\Delta_{\phi}} \gamma(y)^{-\Delta_{\phi}} F\left(\mathfrak{D}_{\delta / \gamma^{2}}(x, y)\right)
$$

$\mathfrak{D}_{\delta / \gamma^{2}}(x, y)$ is the distance between points x and y calculated with the metric δ / γ^{2}. These Conjectures* will be soon corrected to account for anomalous dimensions.

Yamabe equation

Yamabe equation

$$
1-|\nabla \gamma(x)|^{2}+\frac{2}{d} \gamma(x) \Delta \gamma(x)=0
$$

can also be cast in the form (nonlinear eigenvalue problem)

$$
(-\Delta) \gamma(x)^{-\frac{d-2}{2}}=-\frac{d(d-2)}{4} \gamma(x)^{-\frac{d+2}{2}}
$$

we recognize scaling dimensions of the magnetization $\frac{d-2}{2}$ and the conjugate magnetic field $-\frac{d+2}{2}$ for a free field theory. In real life we have $\Delta_{\phi} \neq \frac{d-2}{2}=0.5181 \ldots$ (lsing 3D).

Gaussian reasoning

Action of a theory at most quadratic in the fields

$$
\mathcal{S}_{Q}[\phi(x)]=-\int \mathrm{d}^{d} x \frac{1}{2} \phi(x)(A \phi)(x)-\int \mathrm{d}^{d} x b(x) \phi(x)
$$

Relation between applied field and magnetization
$A\langle\phi(x)\rangle_{Q}=b(x)$.
Assuming $A=(-\Delta)$ and that both field and magnetization can be related to a γ_{Q} we get Yamabe equation:

$$
(-\Delta) \gamma_{Q}(x)^{-\frac{d-2}{2}}=\text { const. } \times \gamma_{Q}(x)^{-\frac{d+2}{2}}
$$

How to account for anomalous dimensions?

$$
(-\Delta)^{\frac{d}{2}-\Delta_{\phi}}\left[\gamma_{\left(\Delta_{\phi}\right)}(x)\right]^{-\Delta_{\phi}}=\text { const. } \times\left[\gamma_{\left(\Delta_{\phi}\right)}(x)\right]^{-d+\Delta_{\phi}}
$$

Fractional Yamabe problem ${ }^{5}$
${ }^{5}$ Fractional Laplacian in conformal geometry Chang, Sun-Yung Alice; González, María del Mar; Advances in Mathematics 226, 1410 (2011).

Conjectures

Conjecture for one-point correlators (C1pt)

$$
\langle\phi(x)\rangle=\text { const. } \times \gamma_{\left(\Delta_{\phi}\right)}(x)^{-\Delta_{\phi}}
$$

Conjecture for two-point correlators (C2pt)

$$
\langle\phi(x) \phi(y)\rangle=\gamma_{\left(\Delta_{\phi}\right)}(x)^{-\Delta_{\phi}} \gamma_{\left(\Delta_{\phi}\right)}(y)^{-\Delta_{\phi}} F\left(\mathfrak{D}_{\delta / \gamma_{\left(\Delta_{\phi}\right)}^{2}}(x, y)\right) .
$$

Where $\gamma_{\left(\Delta_{\phi}\right)}(x)$ is the solution of FYE in Ω.

$$
(-\Delta)^{\frac{d}{2}-\Delta_{\phi}}\left[\gamma_{\left(\Delta_{\phi}\right)}(x)\right]^{-\Delta_{\phi}}=\text { const. } \times\left[\gamma_{\left(\Delta_{\phi}\right)}(x)\right]^{-d+\Delta_{\phi}}
$$

Conformally covariant operator

Conformal change: $g \rightarrow g^{\prime}=g / w^{2}$ for a "good" operator A we want $A_{g^{\prime}}\left(w^{p} \varphi\right)=w^{q} A_{g}(\varphi)$.
Conformal laplacian:

$$
\mathcal{L}_{g}^{(1)}=\left(-\Delta_{g}\right)+\frac{d-2}{4(d-1)} R_{g}
$$

with $p=\frac{d-2}{2}, q=\frac{d+2}{2}$, and $\left(-\Delta_{g}\right)$ Laplace-Beltrami operator.
If we manage to construct $\mathcal{L}_{g}^{\left(\frac{d}{2}-\Delta_{\phi}\right)}$ FYE reads ${ }^{6}$:

$$
\mathcal{L}_{\delta / w^{2}}^{\left(\frac{d}{2}-\Delta_{\phi}\right)}\left(\frac{\gamma_{\left(\Delta_{\phi}\right)}(x)}{w(x)}\right)^{-\Delta_{\phi}}=\frac{\Upsilon\left(\Delta_{\phi}\right)}{\Upsilon\left(d-\Delta_{\phi}\right)}\left(\frac{\gamma_{\left(\Delta_{\phi}\right)}(x)}{w(x)}\right)^{-d+\Delta_{\phi}}
$$

Choosing $w(x)=\gamma_{\left(\Delta_{\phi}\right)}(x)$:

$$
\mathcal{L}_{\delta / \gamma_{\left(\Delta_{\phi}\right)}^{\left(\frac{d}{2}-\Delta_{\phi}\right)}}^{\left.(\mathbb{1})=\frac{\Upsilon\left(\Delta_{\phi}\right)}{\Upsilon\left(d-\Delta_{\phi}\right)}(\mathbb{1}), ~\right)}
$$

$$
{ }^{6} \Upsilon(x)=\Gamma(1-x) \cos (\pi x / 2)
$$

What's it all about?

For domains where complete uniformisation can be achieved:

- Semi-infinite systems $\left(x_{d}>0\right)$
- Balls $(|x|<1)$
- Any domain in 2d
we recover what is known from the group approach.

$$
\mathfrak{D}_{\delta / x_{d}^{2}}(x, y)=\operatorname{arccosh}\left[\frac{|x-y|_{d-1}^{2}+x_{d}^{2}+y_{d}^{2}}{2 x_{d} y_{d}}\right]
$$

What's it all about?

For domains where complete uniformisation can be achieved:

- Semi-infinite systems $\left(x_{d}>0\right)$
- Balls $(|x|<1)$
- Any domain in 2d
we recover what is known from the group approach.

$$
\mathfrak{D}_{\delta / x_{d}^{2}}(x, y)=\operatorname{arccosh}\left[\frac{|x-y|_{d-1}^{2}+x_{d}^{2}+y_{d}^{2}}{2 x_{d} y_{d}}\right]
$$

New predictions:

any domain in $d>2$ differing semi-infinite and balls.
Our work will be aimed to the slab domain $-1<x_{1}=x<1$ in $d=3$. Ideal geometry for confronting with experiments!
(Bounded) Criticality and Conformal invariance

Uniformisation

Interesting technicalities
Conformal fractional laplacian. . .
... in bounded domains
Fractional Yamabe in a slab

Results

Conclusions \& Perspectives

Fractional laplacian (in \mathbb{R}^{d})

Given a function $f(x)$ compute $(-\Delta)^{s} f=g$

- Singular integral $g(x)=$ const. $\int d^{d} x \frac{f(x)-f(y)}{|x-y|^{d+2 s}}$
- Fourier transform $\hat{g}(k)=$ const. $\hat{f}(k)|k|^{2 s}$
- Inverse operator $f(x)=$ const. $\int d^{d} x \frac{g(x)}{|x-y|^{d-2 s}}$
- Heat semigroup $g(x)=$ const. $\int_{0}^{\infty} d t \frac{\left(e^{t \Delta}-\mathbb{1}\right) f(x)}{t^{1+s}}$
- PDE Extension (wait for next slide)

They are all (under conditions) equivalent ${ }^{7}$
${ }^{7}$ Ten equivalent definitions of the fractional Laplace operator, M. Kwaśnicki, Fract. Calc. Appl. Anal., 20, (2017), p. 7-51

The square root of the laplacian

Set up this PDE in $d+1$ dimensions (\mathbf{x}, y)
$(-\Delta)^{1 / 2} f=g$

$$
\left\{\begin{array}{l}
\Delta_{x} u(\mathbf{x}, y)+\partial_{y y} u(\mathbf{x}, y)=0, \quad \text { for } y>0 \\
u(\mathbf{x}, 0)=f(x)
\end{array}\right.
$$

Impose Dirichlet BC, read off Neumann BC

$$
g(\mathbf{x})=(-\Delta)^{1 / 2} f(\mathbf{x})=-\left.\partial_{y} u(\mathbf{x}, y)\right|_{y=0}
$$

The fractional laplacian: scattering theory ${ }^{8}$

- Extension the space \mathbb{R}^{d} to $\mathbb{R}^{d+1},(\mathbf{x}, y):$ when $y \rightarrow 0$ we retrieve the base space \mathbb{R}^{d}.
- Near $y=0, g_{+} \sim \frac{d x^{2}}{y^{2}}$.
- g_{+}solution of Einstein equations in vacuum $\operatorname{Ric}_{g_{+}}+d g=0$

$$
\left\{\begin{array}{l}
\left(-\Delta_{g_{+}}\right) U=\Delta_{\phi}\left(d-\Delta_{\phi}\right) U \\
U=y^{\Delta_{\phi}} F_{I}+y^{d-\Delta_{\phi}} F_{O}
\end{array}\right.
$$

F_{l} and F_{O} are regular on $y=0$ and $\left.F\right|_{y=0}=f$. The fractional laplacian is $(-\Delta)^{d / 2-\Delta_{\phi} f}=$ const. $\times\left. F_{O}\right|_{y=0}$

- If you change to another variable $y \rightarrow v$ eigenfunction stays the same $U=y^{\Delta_{\phi}} F_{I}+y^{d-\Delta_{\phi}} F_{O}=v^{\Delta_{\phi}} F_{I}^{\prime}+v^{d-\Delta_{\phi}} F_{O}^{\prime}$
- $y=\left.\frac{d y}{d v}\right|_{\Omega} v=w(x)^{-1} v$

[^3] Maciej; Inventiones mathematicae 152, 89 (2003).

The extension space for bounded domains

Canonical form of the metric ${ }^{9}$:

$$
g_{+}=(\sin \theta)^{-2}\left(d \theta^{2}+g_{\theta}\right)=(\sin \theta)^{-2}\left(d \theta^{2}+d x^{2} / x_{d}^{2}\right)
$$

${ }^{9}$ Formal theory of cornered asymptotically hyperbolic Einstein metrics, McKeown, E. Stephen; arXiv:1708.02390 (2017).

EE solution for the slab geometry

Solutions of Einstein equations

$$
\operatorname{Ric}_{g_{+}}=-d g_{+}
$$

can be chosen in a diagonal form (for any $d>2$):

$$
g_{+}=(\sin \theta)^{-2}\left[d \theta^{2}+d x_{1}^{2} / \gamma_{x}\left(x_{1}, \theta\right)^{2}+\left(d x_{2}^{2}+d x_{3}^{2}\right) / \gamma_{\|}\left(x_{1}, \theta\right)^{2}\right]
$$

Fractional Yamabe solution

Ansatz for solution

$$
U=\sin (\theta)^{\Delta_{\phi}}\left(\sum_{i=0, i \text { even }}^{N_{\theta}} \mathcal{F}_{i}(x) \sin (\theta)^{2 i}+\sum_{i=1, i \text { odd }}^{N_{\theta}} \mathcal{F}_{i}(x) \sin (\theta)^{2 s+i-1}\right)
$$

eigenvalue problem solved by Chebyshev spectral methods yields a matrix operator \mathcal{J} (inverse of the fractional laplacian).
Nonlinear eigenvalue converted in a minimization problem for
$\mathcal{E}[\rho]=\mathcal{J}[\rho]-\rho^{\frac{\Delta_{\phi}}{d-\Delta_{\phi}}}=0$ where $\rho=(\gamma / w)^{-d+\Delta_{\phi}}$.
(Bounded) Criticality and Conformal invariance

Uniformisation

Interesting technicalities

Results
Monte Carlo simulations
One-point correlations
Two-point correlations

Conclusions \& Perspectives

Numerical Experiments

Improved Blume-Capel model ${ }^{10}$ (Ising universality class)

$$
\mathcal{H}=-\beta \sum_{<i, j>} s_{i} s_{j}+D \sum_{i} s_{i}^{2} \quad s_{i}= \pm 1,0
$$

- Best available values for the system to be at the critical point
- In a slab domain of transverse dimension $0<i_{1}<L$ with fixed boundary conditions $s_{i}=+1$ if $i_{1}=0$ or $i_{1}=L$.
- Large transverse dimension $i_{2}, i_{3}=1, \ldots, 6 L$. Periodic boundary conditions.
- Cluster + local moves, $\sim 10^{7}$ samples, largest size $L=192$.

Recorded observables:

- One-point function: $\left\langle s_{i}\right\rangle$
- Two-point function: $\left\langle s_{i} s_{j}\right\rangle$
${ }^{10}$ Finite size scaling study of lattice models in the three-dimensional Ising universality class, M. Hasenbush, Phys. Rev. B 82, 174433 (2010).

One-point functions I

From C1pt magnetization profile

$$
m_{i}=\alpha L^{-\Delta_{\phi}}\left[\gamma_{\left(\Delta_{\phi}\right)}\left(\frac{L x}{L+a}\right)\right]^{-\Delta_{\phi}}
$$

- Fitting parameters: α, a (extrapolation length), Δ_{ϕ}
- Adaptive windowing in order to have a 0.95 p -value

One-point functions II

Δ_{ϕ} as a function of L (blue), Conformal
Bootstrap (red)

Reference	Method	Δ_{ϕ}
Hasenbusch (2010)	MC	$0.518135(50)$
Ferrenberg et al. (2018)	MC	$0.51801(35)$
Sheer El-Showk et al. (2014)	Conformal Bootstrap	$0.518154(15)$
Kos et al. (2016)	Conformal Bootstrap	$0.5181489(10)$
This work	Critical Geometry	$0.518142(8)$

Reference	Method	Δ_{ϕ}
Hasenbusch (2010)	MC	$0.518135(50)$
Ferrenberg et al. (2018)	MC	$0.51801(35)$
Sheer El-Showk et al. (2014)	Conformal Bootstrap	$0.518154(15)$
Kos et al. (2016)	Conformal Bootstrap	$0.5181489(10)$
This work	Critical Geometry	$0.518142(8)$

Using $\eta=2 \Delta_{\phi}-(d-2)$:

$$
\begin{aligned}
\eta^{M C} & =0.036270(25) \\
\eta^{C B} & =0.0362978(20) \\
\eta^{D E} & =0.0358(6) \\
\eta^{C G} & =0.036284(16)
\end{aligned}
$$

Two-point functions I

Correlation ratio

$$
r(x, y)=\frac{\langle\phi(x) \phi(y)\rangle}{\langle\phi(x)\rangle\langle\phi(y)\rangle}
$$

According to C2pt it should depend just on $\mathfrak{D}_{g}(x, y)$. r evaluated for 7672 independent couples of points.
Bad choice (euclidean distance) \Rightarrow no collapse

Two-point functions II

FYE distance $\gamma_{\left(\Delta_{\phi}^{C B}\right)}$:

Two-point functions II

FYE distance $\gamma_{\left(\Delta_{\phi}^{C B}\right)}$:

Strip distance $\gamma=(2 / \pi) \cos \pi x / 2$:

Fit with: $f(x)=1+\sum_{i=1}^{3} a_{i} e^{-b_{i} x}$ Figure of merit

$$
\bar{\chi}=\sqrt{\frac{\left[r-f\left(\mathfrak{D}_{g}\right)\right]^{2}}{n_{\mathrm{d} . \mathrm{o.f.}}}}
$$

Two-point functions II

FYE distance $\gamma_{\left(\Delta_{\phi}^{C B}\right)}$:

Strip distance $\gamma=(2 / \pi) \cos \pi x / 2$:

Fit with:
$f(x)=1+\sum_{i=1}^{3} a_{i} e^{-b_{i} x}$ Figure of merit

$$
\bar{\chi}=\sqrt{\frac{\left[r-f\left(\mathfrak{D}_{g}\right)\right]^{2}}{n_{\text {d.o.f. }}}}
$$

(Bounded) Criticality and Conformal invariance

Uniformisation

Interesting technicalities

Results

Conclusions \& Perspectives

Conclusions

- Clean separation between geometry/kinematics and dynamics/interaction
- Solution of geometry/kinematics
\Rightarrow Prediction of critical magnetization profile
\Rightarrow Precise estimate of $\Delta_{\phi}=0.518142$ (8)
\Rightarrow Structure of two point functions verified

Perspectives

To do list

- More operators (ε energy operator)
- More models (3D O(2), percolation 3-4-5D)
- More boundary conditions (ordinary, special)

Bolder directions

- Compatibility conditions \Leftrightarrow OPE?
- Algebraic counterpart to "critical Geometry"?

Thank you

[^0]: ${ }^{1}$ Precision Islands in the Ising and $O(N)$ Models, Kos, Filip; Poland, David; Simmons-Duffin, David; Vichi, Alessandro; Journal of High Energy Physics. 2016 (8) 36.

[^1]: ${ }^{2}$ Conformal invariance and surface critical behavior, Cardy, John L.; Nuclear Physics B 240, 514 (1984).
 ${ }^{3}$ Boundary conformal field theory Cardy, John L.; arXiv:hep-th/0411189, in Encyclopedia of Mathematical Physics, Elsevier (2006).

[^2]: ${ }^{4}$ On a deformation of Riemannian structures on compact manifolds, Yamabe, Hidehiko; Osaka Journal of Mathematics 12, 21 (1960).

[^3]: ${ }^{8}$ Scattering matrix in conformal geometry Graham, C. Robin; Zworski,

