Geometry of Bounded Critical Phenomena

Giacomo Gori CNR-IOM, Università degli studi di Padova

FRGIM, Trento, 16/09/2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The people

Andrea Trombettoni (CNR-IOM, Trieste)

Thanks to math people

- María del Mar González (UAM Madrid)
- Robin C. Graham (Washington U, Seattle)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thanks to physics people

- Jacopo Viti (UFRN & IIP, Natal)
- Nicolò Defenu (U Heidelberg)

The paper

arXiv:1904.08919 Geometry of bounded critical phenomena Giacomo Gori, Andrea Trombettoni

... joint mathematical work is coming soon

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

(Bounded) Criticality and Conformal invariance

Symmetries at criticality...

... in a bounded system

Uniformisation

Yamabe Equation Anomalous dimension incluson Fractional Yamabe Equation Conformally covariant formulation

Interesting technicalities

Conformal fractional laplacian... ...in bounded domains Fractional Yamabe in a slab

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Results

Monte Carlo simulations One-point correlations Two-point correlations

Conclusions & Perspectives

(Bounded) Criticality and Conformal invariance Symmetries at criticality... ... in a bounded system

Uniformisation

Interesting technicalities

Results

Conclusions & Perspectives

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Statistical Models at Criticality

Ising model

$$\mathcal{H}(\{s_i\}) = -\sum_{\langle i,j \rangle} s_i s_j$$

►
$$s_i = \pm 1$$
 and $i = (i_1, i_2, \dots, i_d)$, $j = (j_1, j_2, \dots, j_d) \in \mathbb{Z}^d$

 \triangleright < *i*, *j* > nearest neighbors

• weight of a configuration $\{s_i\}$: $p(\{s_i\}) = \frac{1}{Z}e^{-\beta \mathcal{H}(\{s_i\})}$

Averages of observables $\mathcal{O}(\{s_i\})$ are calculated as

$$\langle \mathcal{O}
angle = \sum_{\{s_i\}} \mathcal{O}(\{s_i\}) e^{-eta \mathcal{H}(\{s_i\})}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symmetries in the continuum description

In the continuum limit (lattice spacing \ll correlation length ξ) $s_i \Rightarrow \phi(x)$ with $x = (x_1, x_2, \dots, x_d) \in \mathbb{R}^d$ for infinite system. We highly expect good properties under:

► Translations
$$\mathcal{T}$$
, $x \to x + a$ (*d*)
 $\langle \phi(x)\phi(y) \rangle = f(x - y)$

A little less trivial

• Rotations
$$\mathcal{R}$$
, $x \to Rx$ with $R^T R = \mathbb{1}\left(\frac{d(d-1)}{2}\right)$
 $\langle \phi(x)\phi(y) \rangle = f(|x-y|)$

for spinless operators. In general (spinful operators) we have covariance

Symmetries at criticality

At the critical point ξ diverges. Continuum description becomes THE description. The system forgets about the lattice spacing and becomes *scale invariant*,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Symmetries at criticality

At the critical point ξ diverges. Continuum description becomes THE description. The system forgets about the lattice spacing and becomes *scale invariant*, well covariant.

► Scaling
$$S$$
, $x \to \lambda x$ (1)
 $\langle \phi(0)\phi(\lambda x) \rangle = \lambda^{-\Delta_{\phi}} \langle \phi(0)\phi(x) \rangle$

this is the defining property of the critical point (RG approach).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Symmetries at criticality

At the critical point ξ diverges. Continuum description becomes THE description. The system forgets about the lattice spacing and becomes *scale invariant*, well covariant.

► Scaling
$$S, x \to \lambda x$$
 (1)
 $\langle \phi(0)\phi(\lambda x) \rangle = \lambda^{-\Delta_{\phi}} \langle \phi(0)\phi(x) \rangle$

this is the defining property of the critical point (RG approach). BONUS SYMMETRY!: what if we manage to construct transformations that locally is a scaling?

• Inversion
$$\mathcal{I}$$
, $x \to \frac{x}{|x|^2}$

► Special conformal transformations (SCT) $\mathcal{K} = \mathcal{ITI}$, (d) The conformal symmetry group $\{\mathcal{T}, \mathcal{R}, \mathcal{S}, \mathcal{K}\}$ $(1 + d + \frac{d(d-1)}{2} + d = \frac{(d+1)(d+2)}{2})$

How do SCT look like?

How do SCT look like?

What can be gained from conformal symmetry?

Structure of correlators

$$\langle \phi(x)\phi(y)
angle = rac{1}{|x-y|^{\Delta_\phi}}$$

$$\langle \phi_1(x)\phi_2(y)\phi_3(z)\rangle = rac{C_{123}}{|x-y|^{\Delta_1+\Delta_2-\Delta_3}|y-z|^{\Delta_2+\Delta_3-\Delta_1}|z-x|^{\Delta_3+\Delta_1-\Delta_2}}$$

If we build a Field Theory with such a symmetry we obtain very nice objects, CFT. Recently (CFT + unitarity):

Conformal Bootstrap: good basis of operators yield exceptionally good results for Ising Critical Exponents Δ_φ = 0.5181489(10)¹.

¹Precision Islands in the Ising and O(N) Models, Kos, Filip; Poland, David; Simmons-Duffin, David; Vichi, Alessandro; Journal of High Energy Physics. 2016 (8) 36.

The d=2 case

Every holomorphic function $z \to f(z)$ with $z = x_1 + i x_2$ is locally a scaling.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Infinite dimensional symmetry group!

▶ Any
$$z \to z^n$$
 with $n \in \mathbb{Z}$ will do

The d=2 case

Every holomorphic function $z \to f(z)$ with $z = x_1 + i x_2$ is locally a scaling.

Infinite dimensional symmetry group!

▶ Any
$$z \rightarrow z^n$$
 with $n \in \mathbb{Z}$ will do

However: for example $z \to z^2$ map is not one-to-one in \mathbb{R}^2 . The ones mapping \mathbb{R}^2 into itself in a one-to-one fashion are just the Möbius transformations (6)

$$f(z) = \frac{az+b}{cz+d}$$
 with $ad - cb \neq 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Criticality in bounded domains

Take a (simply connected domain) Ω in \mathbb{R}^d . Put a critical system in it with "respectful" boundary conditions

- Extremely useful setting for experiments
- Structure of correlators (smaller symmetry group)

► SCT look more natural Classical results². In semiinfinite system $x_d > 0$ defining $|x - y|_{d-1}^2 = \sum_{i=1}^{d-1} (x_i - y_i)^2$: $\langle \phi(x) \rangle \propto x_d^{-\Delta_{\phi}}$ $\langle \phi(x) \phi(y) \rangle \propto x_d^{-\Delta_{\phi}} F\left(\frac{|x - y|_{d-1}^2 + x_d^2 + y_d^2}{2x_d y_d}\right)$

For the 2d case

 Extremely powerful setting (2dBCFT) a wealth of results known³

²Conformal invariance and surface critical behavior, Cardy, John L.; Nuclear Physics B **240**, 514 (1984).

³Boundary conformal field theory Cardy, John L.; arXiv:hep-th/0411189, in Encyclopedia of Mathematical Physics, Elsevier (2006). (Bounded) Criticality and Conformal invariance

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Uniformisation

Yamabe Equation Anomalous dimension incluson Fractional Yamabe Equation Conformally covariant formulation

Interesting technicalities

Results

Conclusions & Perspectives

Uniformisation

A system at criticality in a bounded domain will try to modify its (flat euclidean) metric in order to be "as uniform as possible". Otherwise stated it will try to forget the boundaries. Looking for a geometric description We start with $ds^2 = g_{ij}dx^i dx^j$

$$g_{ij} = \delta_{ij}$$

Allowed modifications of the metric: conformal changes

$$\mathsf{g}_{ij} = rac{\delta_{ij}}{\gamma(x)^2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

the two metric are said to belong to the same conformal class.

Riemannian geometry

(General Relativity) reminder

$$\begin{split} \Gamma_{jk}^{i} &= \frac{1}{2} g^{il} \left(\partial_{k} g_{lj} + \partial_{j} g_{lk} - \partial_{l} g_{jk} \right) \\ \operatorname{Ric}_{ij} &= \partial_{l} \Gamma_{ji}^{l} - \partial_{j} \Gamma_{li}^{l} + \Gamma_{l\lambda}^{l} \Gamma_{ji}^{\lambda} - \Gamma_{j\lambda}^{l} \Gamma_{li}^{\lambda} \\ R_{g} &= \operatorname{Ric}_{ij} g^{ji} \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where

- Γⁱ_{ik} Schwarz-Christoffel symbols
- Ric Ricci tensor curvature
- R_g Ricci scalar curvature

Implementing uniformisation

Intrinsic geometric quantity should be constant. Find $\gamma(x)$ such that

$$R_{\delta/\gamma(x)^2} = \kappa$$

Yamabe problem⁴ stated in the '60s. Still of interest to people doing differential geometry.

Possible values for κ :

- κ > 0 "spherical" (S^d special example). Problem: no boundary
- $\kappa = 0$ "flat" the one we started with
- κ < 0 "hyperbolic" (H^d special example). Looks promising: (infinitely distant) boundary.

For our case Yamabe equation reads:

$$1 - |\nabla \gamma(x)|^2 + \frac{2}{d}\gamma(x)\Delta\gamma(x) = 0$$

⁴On a deformation of Riemannian structures on compact manifolds, Yamabe, Hidehiko; Osaka Journal of Mathematics **12**, 21 (1960). **B A B A B A C** Properties & Simple solutions of Yamabe Equation

•
$$\gamma(x) = 0$$
 if $x \in \partial \Omega$

•
$$\gamma(x) \simeq \operatorname{dist}(x, \partial \Omega)$$
 if x is close to $\partial \Omega$

• Scaling
$$\gamma^{\lambda\Omega}(\lambda x) = \lambda \gamma^{\Omega}(x)$$

$$\gamma(\mathbf{x}) = \mathbf{x}_d$$

lnside balls
$$x_d > 0$$

$$\gamma(x) = \frac{1-|x|^2}{2}$$

In these two examples actually a model of \mathbb{H}^d is built that is a fully homogeneous space with all sectional curvatures negative and constant

Properties & Simple solutions of Yamabe Equation

•
$$\gamma(x) = 0$$
 if $x \in \partial \Omega$

• $\gamma(x) \simeq \operatorname{dist}(x, \partial \Omega)$ if x is close to $\partial \Omega$

- Scaling $\gamma^{\lambda\Omega}(\lambda x) = \lambda\gamma^{\Omega}(x)$
- Semi-infinite system x_d > 0

$$\gamma(\mathbf{x}) = \mathbf{x}_d$$

lnside balls
$$x_d > 0$$

$$\gamma(x) = \frac{1-|x|^2}{2}$$

In these two examples actually a model of \mathbb{H}^d is built that is a fully homogeneous space with all sectional curvatures negative and constant

Uniformisation in 2d

Unit disk: |x| < 1

Unit strip: $-1 < x_1 < 1$

$$\gamma(x) = \frac{2}{\pi} \cos \frac{\pi x_1}{2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\gamma(x) = \frac{1 - |x|^2}{2}$ Can't tell one point from another: Complete uniformisation.

Conjectures*

Given the scaling properties of γ (it has dimensions of a length) we are lead to:

Conjecture* for one-point correlators (C1pt*)

 $\langle \phi(\mathbf{x}) \rangle = const. \times \gamma(\mathbf{x})^{-\Delta_{\phi}},$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Conjectures*

Given the scaling properties of γ (it has dimensions of a length) we are lead to:

Conjecture^{*} for one-point correlators (C1pt^{*})

 $\langle \phi(x) \rangle = const. \times \gamma(x)^{-\Delta_{\phi}},$

Conjecture^{*} for two-point correlators (C2pt^{*})

$$\langle \phi(\mathbf{x})\phi(\mathbf{y})\rangle = \gamma(\mathbf{x})^{-\Delta_{\phi}}\gamma(\mathbf{y})^{-\Delta_{\phi}}F(\mathfrak{D}_{\delta/\gamma^{2}}(\mathbf{x},\mathbf{y})).$$

 $\mathfrak{D}_{\delta/\gamma^2}(x, y)$ is the distance between points x and y calculated with the metric δ/γ^2 . These Conjectures^{*} will be soon corrected to account for anomalous dimensions.

Yamabe equation

Yamabe equation

$$1 - |\nabla \gamma(x)|^2 + \frac{2}{d}\gamma(x)\Delta\gamma(x) = 0$$

can also be cast in the form (nonlinear eigenvalue problem)

$$(-\Delta)\gamma(x)^{-\frac{d-2}{2}} = -\frac{d(d-2)}{4}\gamma(x)^{-\frac{d+2}{2}}$$

we recognize scaling dimensions of the magnetization $\frac{d-2}{2}$ and the conjugate magnetic field $-\frac{d+2}{2}$ for a free field theory. In real life we have $\Delta_{\phi} \neq \frac{d-2}{2} = 0.5181 \dots$ (Ising 3D).

Gaussian reasoning

Action of a theory at most quadratic in the fields

$$\mathcal{S}_Q[\phi(x)] = -\int \mathrm{d}^d x \frac{1}{2} \phi(x) (A\phi)(x) - \int \mathrm{d}^d x b(x) \phi(x),$$

Relation between applied field and magnetization $A\langle \phi(x) \rangle_Q = b(x)$. Assuming $A = (-\Delta)$ and that both field and magnetization can be related to a γ_Q we get Yamabe equation:

$$(-\Delta)\gamma_Q(x)^{-rac{d-2}{2}} = const. imes \gamma_Q(x)^{-rac{d+2}{2}}$$

How to account for anomalous dimensions?

$$(-\Delta)^{\frac{d}{2}-\Delta_{\phi}}\left[\gamma_{(\Delta_{\phi})}(x)\right]^{-\Delta_{\phi}} = const. \times \left[\gamma_{(\Delta_{\phi})}(x)\right]^{-d+\Delta_{\phi}},$$

Fractional Yamabe problem ⁵

⁵*Fractional Laplacian in conformal geometry* Chang, Sun-Yung Alice; González, María del Mar; Advances in Mathematics **226**, 1410 (2011).

Conjectures

Conjecture for one-point correlators (C1pt)

$$\langle \phi(x) \rangle = const. imes \gamma_{(\Delta_{\phi})}(x)^{-\Delta_{\phi}}$$

Conjecture for two-point correlators (C2pt)

$$\langle \phi(x)\phi(y)
angle = \gamma_{(\Delta_{\phi})}(x)^{-\Delta_{\phi}}\gamma_{(\Delta_{\phi})}(y)^{-\Delta_{\phi}}F(\mathfrak{D}_{\delta/\gamma^{2}_{(\Delta_{\phi})}}(x,y)).$$

Where $\gamma_{(\Delta_{\phi})}(x)$ is the solution of FYE in Ω . $(-\Delta)^{\frac{d}{2}-\Delta_{\phi}} \left[\gamma_{(\Delta_{\phi})}(x)\right]^{-\Delta_{\phi}} = const. \times \left[\gamma_{(\Delta_{\phi})}(x)\right]^{-d+\Delta_{\phi}},$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conformally covariant operator

Conformal change: $g \to g' = g/w^2$ for a "good" operator A we want $A_{g'}(w^p \varphi) = w^q A_g(\varphi)$. Conformal laplacian:

$$\mathcal{L}_g^{(1)}=(-\Delta_g)+rac{d-2}{4(d-1)}R_g$$

with $p = \frac{d-2}{2}$, $q = \frac{d+2}{2}$, and $(-\Delta_g)$ Laplace-Beltrami operator. If we manage to construct $\mathcal{L}_g^{(\frac{d}{2} - \Delta_{\phi})}$ FYE reads⁶:

$$\mathcal{L}_{\delta/w^2}^{(rac{d}{2}-\Delta_{\phi})}\left(rac{\gamma_{(\Delta_{\phi})}(x)}{w(x)}
ight)^{-\Delta_{\phi}}=rac{\Upsilon(\Delta_{\phi})}{\Upsilon(d-\Delta_{\phi})}\left(rac{\gamma_{(\Delta_{\phi})}(x)}{w(x)}
ight)^{-d+\Delta_{\phi}}$$

Choosing $w(x) = \gamma_{(\Delta_{\phi})}(x)$:

$$\mathcal{L}^{(rac{d}{2}-\Delta_{\phi})}_{\delta/\gamma^2_{(\Delta_{\phi})}}(\mathbb{1}) = rac{\Upsilon(\Delta_{\phi})}{\Upsilon(d-\Delta_{\phi})}(\mathbb{1})$$

$${}^{6}\Upsilon(x) = \Gamma(1-x)\cos(\pi x/2)$$

・ロト・西・・田・・田・・日・

What's it all about?

For domains where complete uniformisation can be achieved:

- Semi-infinite systems (x_d > 0)
- ▶ Balls (|x| < 1)</p>
- Any domain in 2d

we recover what is known from the group approach.

$$\mathfrak{D}_{\delta/x_d^2}(x,y) = \operatorname{arccosh}\left[\frac{|x-y|_{d-1}^2 + x_d^2 + y_d^2}{2x_d y_d}\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What's it all about?

For domains where complete uniformisation can be achieved:

- Semi-infinite systems (x_d > 0)
- Balls (|x| < 1)
- Any domain in 2d

we recover what is known from the group approach.

$$\mathfrak{D}_{\delta/x_d^2}(x,y) = \operatorname{arccosh}\left[\frac{|x-y|_{d-1}^2 + x_d^2 + y_d^2}{2x_d y_d}\right]$$

New predictions:

any domain in d > 2 differing semi-infinite and balls. Our work will be aimed to the slab domain $-1 < x_1 = x < 1$ in d = 3. Ideal geometry for confronting with experiments! (Bounded) Criticality and Conformal invariance

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Uniformisation

Interesting technicalities

Conformal fractional laplacian... ... in bounded domains Fractional Yamabe in a slab

Results

Conclusions & Perspectives

Fractional laplacian (in \mathbb{R}^d)

Given a function f(x) compute $(-\Delta)^s f = g$

- Singular integral $g(x) = const. \int d^d x \frac{f(x) f(y)}{|x y|^{d+2s}}$
- Fourier transform $\hat{g}(k) = const.\hat{f}(k)|k|^{2s}$
- Inverse operator $f(x) = const. \int d^d x \frac{g(x)}{|x-y|^{d-2s}}$
- Heat semigroup $g(x) = const. \int_0^\infty dt \frac{(e^{t\Delta} 1)f(x)}{t^{1+s}}$
- PDE Extension (wait for next slide)
 They are all (under conditions) equivalent ⁷

⁷ Ten equivalent definitions of the fractional Laplace operator, M. Kwaśnicki, Fract. Calc. Appl. Anal., **20**, (2017), p. 7-51

The square root of the laplacian

Set up this PDE in
$$d + 1$$
 dimensions (\mathbf{x}, y)
 $(-\Delta)^{1/2}f = g$
$$\begin{cases} \Delta_{\mathbf{x}}u(\mathbf{x}, y) + \partial_{yy}u(\mathbf{x}, y) = 0, & \text{for } y > 0\\ u(\mathbf{x}, 0) = f(x) \end{cases}$$

Impose Dirichlet BC, read off Neumann BC

$$g(\mathbf{x}) = (-\Delta)^{1/2} f(\mathbf{x}) = - \partial_y u(\mathbf{x}, y)|_{y=0}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The fractional laplacian: scattering theory⁸

▶ Extension the space \mathbb{R}^d to \mathbb{R}^{d+1} , (\mathbf{x}, y) : when $y \to 0$ we retrieve the base space \mathbb{R}^d .

• Near
$$y = 0$$
, $g_+ \sim \frac{dx^2}{y^2}$.

▶ g_+ solution of Einstein equations in vacuum $\operatorname{Ric}_{g_+} + dg = 0$

$$\begin{cases} (-\Delta_{g_+})U = \Delta_{\phi}(d - \Delta_{\phi})U \\ U = y^{\Delta_{\phi}}F_I + y^{d - \Delta_{\phi}}F_O \end{cases}$$

 F_I and F_O are regular on y = 0 and $F|_{y=0} = f$. The fractional laplacian is $(-\Delta)^{d/2-\Delta_{\phi}}f = const. \times F_O|_{y=0}$

If you change to another variable y → v eigenfunction stays the same U = y^{Δφ} F_I + y^{d-Δφ} F_O = v^{Δφ} F'_I + v^{d-Δφ} F'_O
 y = dy/dv |_Ω v = w(x)⁻¹v

⁸Scattering matrix in conformal geometry Graham, C. Robin; Zworski, Maciej; Inventiones mathematicae **152**, 89 (2003). The extension space for bounded domains

Canonical form of the metric⁹:

$$g_{+} = (\sin \theta)^{-2} (d\theta^{2} + g_{\theta}) = (\sin \theta)^{-2} (d\theta^{2} + dx^{2}/x_{d}^{2})$$

⁹ Formal theory of cornered asymptotically hyperbolic Einstein metrics, McKeown, E. Stephen; arXiv:1708.02390 (2017).

EE solution for the slab geometry

Solutions of Einstein equations

$$\operatorname{Ric}_{g_+} = -d g_+$$

can be chosen in a diagonal form (for any d > 2):

$$g_{+} = (\sin \theta)^{-2} \left[d\theta^{2} + dx_{1}^{2} / \gamma_{x}(x_{1}, \theta)^{2} + (dx_{2}^{2} + dx_{3}^{2}) / \gamma_{\parallel}(x_{1}, \theta)^{2} \right]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Fractional Yamabe solution

Ansatz for solution

$$U = \sin(\theta)^{\Delta_{\phi}} \left(\sum_{i=0, i \text{ even}}^{N_{\theta}} \mathcal{F}_i(x) \sin(\theta)^{2i} + \sum_{i=1, i \text{ odd}}^{N_{\theta}} \mathcal{F}_i(x) \sin(\theta)^{2s+i-1} \right)$$

eigenvalue problem solved by Chebyshev spectral methods yields a matrix operator \mathcal{J} (inverse of the fractional laplacian). Nonlinear eigenvalue converted in a minimization problem for $\mathcal{E}[\rho] = \mathcal{J}[\rho] - \rho^{\frac{\Delta_{\phi}}{d-\Delta_{\phi}}} = 0$ where $\rho = (\gamma/w)^{-d+\Delta_{\phi}}$. (Bounded) Criticality and Conformal invariance

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Uniformisation

Interesting technicalities

Results Monte Carlo simulations One-point correlations Two-point correlations

Conclusions & Perspectives

Numerical Experiments

Improved Blume-Capel model¹⁰ (Ising universality class)

$$\mathcal{H} = -\beta \sum_{\langle i,j \rangle} s_i s_j + D \sum_i s_i^2 \qquad s_i = \pm 1, 0$$

- Best available values for the system to be at the critical point
- In a slab domain of transverse dimension 0 < i₁ < L with fixed boundary conditions s_i = +1 if i₁ = 0 or i₁ = L.
- Large transverse dimension i₂, i₃ = 1,..., 6L. Periodic boundary conditions.
- Cluster + local moves, $\sim 10^7$ samples, largest size L = 192. Recorded observables:
 - One-point function: $\langle s_i \rangle$
 - **•** Two-point function: $\langle s_i s_j \rangle$

One-point functions I

From C1pt magnetization profile

$$m_i = \alpha L^{-\Delta_{\phi}} \left[\gamma_{(\Delta_{\phi})} \left(\frac{Lx}{L+a} \right) \right]^{-\Delta_{\phi}}$$

æ

Fitting parameters: α , *a* (extrapolation length), Δ_{ϕ}

Adaptive windowing in order to have a 0.95 p-value

One-point functions II

Reference	Method	Δ_{ϕ}
Hasenbusch (2010)	MC	0.518135(50)
Ferrenberg et al. (2018)	MC	0.51801(35)
Sheer El-Showk et al. (2014)	Conformal Bootstrap	0.518154(15)
Kos et al. (2016)	Conformal Bootstrap	0.5181489(10)
This work	Critical Geometry	0.518142(8)

Reference	Method	Δ_{ϕ}
Hasenbusch (2010)	MC	0.518135(50)
Ferrenberg et al. (2018)	MC	0.51801(35)
Sheer El-Showk et al. (2014)	Conformal Bootstrap	0.518154(15)
Kos et al. (2016)	Conformal Bootstrap	0.5181489(10)
This work	Critical Geometry	0.518142(8)

Using
$$\eta=2\Delta_{\phi}-(d-2)$$
:

$$\begin{aligned} \eta^{MC} &= 0.036270(25) \\ \eta^{CB} &= 0.0362978(20) \\ \eta^{DE} &= 0.0358(6) \\ \eta^{CG} &= 0.036284(16) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Two-point functions I

Correlation ratio

$$r(x,y) = \frac{\langle \phi(x)\phi(y)\rangle}{\langle \phi(x)\rangle\langle \phi(y)\rangle}$$

According to **C2pt** it should depend just on $\mathfrak{D}_g(x, y)$. *r* evaluated for 7672 independent couples of points. Bad choice (euclidean distance) \Rightarrow no collapse

э

Two-point functions II

Two-point functions II

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Two-point functions II

(Bounded) Criticality and Conformal invariance

Uniformisation

Interesting technicalities

Results

Conclusions & Perspectives

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Conclusions

- Clean separation between geometry/kinematics and dynamics/interaction
- Solution of geometry/kinematics
 - \Rightarrow Prediction of critical magnetization profile
 - \Rightarrow Precise estimate of $\Delta_{\phi} = 0.518142(8)$
 - \Rightarrow Structure of two point functions verified

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Perspectives

To do list

- More operators (ε energy operator)
- More models (3D O(2), percolation 3-4-5D)
- More boundary conditions (ordinary, special)

Bolder directions

- ► Compatibility conditions ⇔ OPE?
- Algebraic counterpart to "critical Geometry"?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thank you

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @