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Crystallization in ultracold systems

Crystallization: self-ordering of particles 
into an array with regular geometry

Prototypical example: 
Wigner crystal in 
an electron gas in 
uniform background 
(Wigner 1934)

Polar molecules,  
magnetic atoms

Atoms in cavities

Spin-orbit coupled BECs (Spielmann, Stringari, Ketterle,…)

(Ritsch, Esslinger, …)

(Ye, Pfau, Ferlaino,  
Büchler, Rey, Zoller…)

(Fetter and Walecka)

Ions (Bollinger, Hennrich,..)



•Hydrogen-like wave functions 

•Quantum defects
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Property Scaling 87Rb 43S

Radius (n*)2 2400 a0 = 127 nm

Lifetime (n*)3 45 .10-6 s

Van der Walls 
coefficient (n*)11 C6 = -1.7 .10-19 a.u.

Blockade radius 
(Rabi = 200 kHz) (n*)2 ~ 5.10-6 m 

alat = 532 nm
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Rydberg atoms



Long-range potentials from Rydberg atoms

the sequence. If both qubits are initially in ∣ ñ0 , the laser pulses
have no effect. This leads to the truth table shown in
figure 2(c), which implements a controlled-phase gate (that
can be turned into a controlled-not (CNOT) gate using
additional single-qubit gates). One appealing feature of the
Rydberg gates lies in its short duration, set by the interaction
energy of the two atoms: as it can be as large as 10MHz, the
gate can operate on a sub-microsecond time scale. This is in
contrast with entangling operations using e.g. much weaker
ground-state interaction [16], which operate over a much
longer time. Another strong advantage of this protocol is that
it is largely insensitive to the exact value of the inter-atomic
interaction.

Further theoretical studies proposed to use the Rydberg
blockade in atomic ensembles [3, 17] in order to generate
non-classical states of light, or encode collective qubits.
These early proposals were then followed by detailed theor-
etical analyses of the various sources of possible experimental
imperfections [15, 18], that showed promising prospects for
the realization of high-fidelity gates. After the first demon-
stration of the blockade between two atoms (see section 5),
new schemes were proposed for quantum gates [19, 20],
including a generalized CNOT gate where one atom controls
the state of many others [21], or for the preparation of multi-
partite entangled states [22].

2.3. Quantum simulation

Building a useful, general-purpose quantum computer is to
date an extremely challenging task, due to the very large
number of qubits and high-fidelity gates that are required
[23]. A seemingly more realistic goal is to realize quantum
simulators [24, 25], in particular analog ones, i.e. well-con-
trolled quantum systems that can be used to realize physi-
cally, in the laboratory, a complex, many-body Hamiltonian
of interest in other fields, e.g. in condensed-matter physics
[26]. Interesting properties of the Hamiltonian, that are in
practice impossible to obtain from theoretical or numerical
studies, can then be directly measured in the simulated
system.

Rydberg atoms are attractive candidates for the realiza-
tion of quantum simulators [27]. In particular, as we shall see
in the next section, the interactions between Rydberg atoms
naturally implement analog simulations of various types of

spin Hamiltonians, such as the Ising model or the XY model,
where the spin states are encoded in different atomic levels.

3. Interaction between Rydberg atoms

In this section, we briefly describe various regimes of inter-
actions between two Rydberg atoms. We restrict ourselves to
a perturbative approach, and only outline the main features of
the problem for the simple case of alkali atoms. For details
about actual numerical calculations, we refer for instance
to [28].

3.1. Perturbation of pair states by the dipole–dipole interactions

We consider two atoms, labeled 1 and 2, located at positions
R1 and R2, and we denote by = -R R R2 1 their separation.
When ∣ ∣º RR is much larger than the size of the electronic
wavefunction, the interaction Hamiltonian is obtained by the
multipolar expansion, and the dominant term is the dipole–
dipole interaction
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with =n R R, and di the electric dipole operator of atom i.
Let us denote by ∣ ∣a bñ ñ ¼, , the eigenstates of a single

atom, with corresponding eigenenergies ¼a bE E, , (α sum-
marizes the quantum numbers n l j m, , , j). In the absence of
interaction, the eigenstates of the two-atom system are the
pair states ∣ ∣ ∣ab a bñ º ñ Ä ñ with energies = +ab a bE E E .
Our goal is to calculate the effect of the perturbation (3) on
these pair states; depending on the situation, three regimes can
be obtained (see figure 3).

3.2. Van der Waals regime

We first assume that the two atoms are prepared in the same
state ∣añ. In general, the pair state ∣aañ is not degenerate with
any other pair state (figure 3(a)), the typical splittings being
several GHz. We thus use non-degenerate perturbation the-
ory. To first order, there is no energy shift, as the average
value of Vddi in ∣aañ vanishes due to the fact that di is an odd-
parity operator and that the atomic states ∣añ have definite
parity. The energy shift is thus given by second-order

Figure 2. Principle of a two-qubit quantum gate based on the
Rydberg blockade. (a) Involved levels and lasers. (b) Pulse
sequence. (c) Truth table of the phase gate.

Figure 3. Various types of interactions between two Rydberg atoms.
(a) Van der Waals regime. (b) Förster resonance. (c) Resonant
dipole–dipole interaction between two different Rydberg states ∣añ
and ∣bñ.
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Figure 1. Schematic of the experiment. a, The 5S1/2 |F = 2,mF = �2i state (spin up |"i, blue arrow) is coupled to a
Rydberg state |ei in the manifold of 31P1/2 with Rabi frequency ⌦ (purple arrow) and detuning � (upper black arrow), leading
to the dressed state |g̃i. For separations R < Rc, the bare Rydberg interactions detune the state |eei with two atoms in |ei
(shifted black solid line), which is two-photon coupled via the singly excited intermediate state. This induces interactions Ui,j

between ground state atoms in |"i whereas the spin down state |#i (|1,�1i, red arrow) remains una↵ected. b, The excitation
laser propagates along k in the plane of the 2d spin lattice (lattice constant alat) at an angle of 45� with respect to the x
and y axes. The magnetic field Bz (Bxy) was aligned with the z-axis (k). c, Calculated soft-core potential for 31P1/2 for
⌦s/2⇡ = 1.33MHz and �/2⇡ = 6MHz (orange solid line). The AC-Stark shift of the pair state and the soft-core saturation
value U(0) are shown as light blue lines. The inset shows the bare Rydberg interaction curves (blue solid lines) including the
optically coupled potential (orange solid line) underlying the soft-core interaction. Rc (vertical dashed line) marks the distance
where the interaction shift equals 2� (red solid line). d, Ramsey oscillation fringe with |"i coupled to 31P3/2, mJ = �3/2
with ⌦s/2⇡ = 1.9(1)MHz and �/2⇡ = �8MHz (blue points). Three representative single shots of the atom distributions at
the times indicated by the grey triangles are shown above. In the central shot, the bulk part of the sample had acquired a
relative phase shift of ⇡ with respect to particles situated at the edge due to the collective longitudinal field �(coll)

i . The theory
prediction (solid blue line) reproduces the interaction induced dephasing of the oscillation. The errorbars denote the standard
error of the mean (s.e.m).

atoms blocks this simultaneous excitation within a crit-
ical distance, Rc, determined by V (Rc) = 2~�. As a
result, the induced interaction acquires a soft-core shape
and saturates to a value of U(0) = ~⌦4/(8|�|3) (Fig.
1c) [5, 6, 9]. Extending the system by involving other
atomic ground states in the dynamics, naturally yields
various kinds of lattice models of interacting spins that
have been proposed for metrology applications [9, 25] or
the exploration of exotic quantum magnetism [3, 4]. In
the simplest case, a single additional ground state that is
not coupled to the Rydberg state (Fig. 1a,b) results in a
system described by a 2d Ising Hamiltonian

Ĥ = ~
NX

i
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Here, Ŝz is a spin-1/2 operator with eigenstates |"i and
|#i, corresponding to the Rydberg-dressed and uncoupled
atomic ground state, respectively. The longitudinal field

� arises from the single atom light shift, � ⇡ ⌦2/(4�)
and Ui,j = U(Ri,j) denotes the dressing-induced inter-
action between spins located on lattice sites i and j at
a distance Ri,j = i � j. The collective contribution

�(coll)
i =

PN
j 6=i

Ui,j

2 results from the transformation from
the original atomic-state representation to e↵ective spin
operators [15, 26]. Due to the extended range of the
interactions, it depends on the interaction with nearby
spins and therefore provides an inhomogeneous longit-
udinal field in a finite system. As a consequence, spins
near the edge of a finite lattice should evolve di↵erently,
which we clearly observe in our experiments (Fig. 1d,
Fig. 6). Furthermore, the long-range spin-spin interac-
tion leads to an intriguing entanglement dynamics which
features spin squeezing and a collapse of magnetisation,
followed, on longer timescales, by revival dynamics in
the many-body system. Since Ui,j / ⌦(t)4, the inter-
actions can be switched on fast timescales, and we can

Applications to quantum 
simulation, quantum metrology, 
quantum information …

the sequence. If both qubits are initially in ∣ ñ0 , the laser pulses
have no effect. This leads to the truth table shown in
figure 2(c), which implements a controlled-phase gate (that
can be turned into a controlled-not (CNOT) gate using
additional single-qubit gates). One appealing feature of the
Rydberg gates lies in its short duration, set by the interaction
energy of the two atoms: as it can be as large as 10MHz, the
gate can operate on a sub-microsecond time scale. This is in
contrast with entangling operations using e.g. much weaker
ground-state interaction [16], which operate over a much
longer time. Another strong advantage of this protocol is that
it is largely insensitive to the exact value of the inter-atomic
interaction.

Further theoretical studies proposed to use the Rydberg
blockade in atomic ensembles [3, 17] in order to generate
non-classical states of light, or encode collective qubits.
These early proposals were then followed by detailed theor-
etical analyses of the various sources of possible experimental
imperfections [15, 18], that showed promising prospects for
the realization of high-fidelity gates. After the first demon-
stration of the blockade between two atoms (see section 5),
new schemes were proposed for quantum gates [19, 20],
including a generalized CNOT gate where one atom controls
the state of many others [21], or for the preparation of multi-
partite entangled states [22].

2.3. Quantum simulation

Building a useful, general-purpose quantum computer is to
date an extremely challenging task, due to the very large
number of qubits and high-fidelity gates that are required
[23]. A seemingly more realistic goal is to realize quantum
simulators [24, 25], in particular analog ones, i.e. well-con-
trolled quantum systems that can be used to realize physi-
cally, in the laboratory, a complex, many-body Hamiltonian
of interest in other fields, e.g. in condensed-matter physics
[26]. Interesting properties of the Hamiltonian, that are in
practice impossible to obtain from theoretical or numerical
studies, can then be directly measured in the simulated
system.

Rydberg atoms are attractive candidates for the realiza-
tion of quantum simulators [27]. In particular, as we shall see
in the next section, the interactions between Rydberg atoms
naturally implement analog simulations of various types of

spin Hamiltonians, such as the Ising model or the XY model,
where the spin states are encoded in different atomic levels.

3. Interaction between Rydberg atoms

In this section, we briefly describe various regimes of inter-
actions between two Rydberg atoms. We restrict ourselves to
a perturbative approach, and only outline the main features of
the problem for the simple case of alkali atoms. For details
about actual numerical calculations, we refer for instance
to [28].

3.1. Perturbation of pair states by the dipole–dipole interactions

We consider two atoms, labeled 1 and 2, located at positions
R1 and R2, and we denote by = -R R R2 1 their separation.
When ∣ ∣º RR is much larger than the size of the electronic
wavefunction, the interaction Hamiltonian is obtained by the
multipolar expansion, and the dominant term is the dipole–
dipole interaction
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with =n R R, and di the electric dipole operator of atom i.
Let us denote by ∣ ∣a bñ ñ ¼, , the eigenstates of a single

atom, with corresponding eigenenergies ¼a bE E, , (α sum-
marizes the quantum numbers n l j m, , , j). In the absence of
interaction, the eigenstates of the two-atom system are the
pair states ∣ ∣ ∣ab a bñ º ñ Ä ñ with energies = +ab a bE E E .
Our goal is to calculate the effect of the perturbation (3) on
these pair states; depending on the situation, three regimes can
be obtained (see figure 3).

3.2. Van der Waals regime

We first assume that the two atoms are prepared in the same
state ∣añ. In general, the pair state ∣aañ is not degenerate with
any other pair state (figure 3(a)), the typical splittings being
several GHz. We thus use non-degenerate perturbation the-
ory. To first order, there is no energy shift, as the average
value of Vddi in ∣aañ vanishes due to the fact that di is an odd-
parity operator and that the atomic states ∣añ have definite
parity. The energy shift is thus given by second-order

Figure 2. Principle of a two-qubit quantum gate based on the
Rydberg blockade. (a) Involved levels and lasers. (b) Pulse
sequence. (c) Truth table of the phase gate.

Figure 3. Various types of interactions between two Rydberg atoms.
(a) Van der Waals regime. (b) Förster resonance. (c) Resonant
dipole–dipole interaction between two different Rydberg states ∣añ
and ∣bñ.
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the sequence. If both qubits are initially in ∣ ñ0 , the laser pulses
have no effect. This leads to the truth table shown in
figure 2(c), which implements a controlled-phase gate (that
can be turned into a controlled-not (CNOT) gate using
additional single-qubit gates). One appealing feature of the
Rydberg gates lies in its short duration, set by the interaction
energy of the two atoms: as it can be as large as 10MHz, the
gate can operate on a sub-microsecond time scale. This is in
contrast with entangling operations using e.g. much weaker
ground-state interaction [16], which operate over a much
longer time. Another strong advantage of this protocol is that
it is largely insensitive to the exact value of the inter-atomic
interaction.

Further theoretical studies proposed to use the Rydberg
blockade in atomic ensembles [3, 17] in order to generate
non-classical states of light, or encode collective qubits.
These early proposals were then followed by detailed theor-
etical analyses of the various sources of possible experimental
imperfections [15, 18], that showed promising prospects for
the realization of high-fidelity gates. After the first demon-
stration of the blockade between two atoms (see section 5),
new schemes were proposed for quantum gates [19, 20],
including a generalized CNOT gate where one atom controls
the state of many others [21], or for the preparation of multi-
partite entangled states [22].

2.3. Quantum simulation

Building a useful, general-purpose quantum computer is to
date an extremely challenging task, due to the very large
number of qubits and high-fidelity gates that are required
[23]. A seemingly more realistic goal is to realize quantum
simulators [24, 25], in particular analog ones, i.e. well-con-
trolled quantum systems that can be used to realize physi-
cally, in the laboratory, a complex, many-body Hamiltonian
of interest in other fields, e.g. in condensed-matter physics
[26]. Interesting properties of the Hamiltonian, that are in
practice impossible to obtain from theoretical or numerical
studies, can then be directly measured in the simulated
system.

Rydberg atoms are attractive candidates for the realiza-
tion of quantum simulators [27]. In particular, as we shall see
in the next section, the interactions between Rydberg atoms
naturally implement analog simulations of various types of

spin Hamiltonians, such as the Ising model or the XY model,
where the spin states are encoded in different atomic levels.

3. Interaction between Rydberg atoms

In this section, we briefly describe various regimes of inter-
actions between two Rydberg atoms. We restrict ourselves to
a perturbative approach, and only outline the main features of
the problem for the simple case of alkali atoms. For details
about actual numerical calculations, we refer for instance
to [28].

3.1. Perturbation of pair states by the dipole–dipole interactions

We consider two atoms, labeled 1 and 2, located at positions
R1 and R2, and we denote by = -R R R2 1 their separation.
When ∣ ∣º RR is much larger than the size of the electronic
wavefunction, the interaction Hamiltonian is obtained by the
multipolar expansion, and the dominant term is the dipole–
dipole interaction
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with =n R R, and di the electric dipole operator of atom i.
Let us denote by ∣ ∣a bñ ñ ¼, , the eigenstates of a single

atom, with corresponding eigenenergies ¼a bE E, , (α sum-
marizes the quantum numbers n l j m, , , j). In the absence of
interaction, the eigenstates of the two-atom system are the
pair states ∣ ∣ ∣ab a bñ º ñ Ä ñ with energies = +ab a bE E E .
Our goal is to calculate the effect of the perturbation (3) on
these pair states; depending on the situation, three regimes can
be obtained (see figure 3).

3.2. Van der Waals regime

We first assume that the two atoms are prepared in the same
state ∣añ. In general, the pair state ∣aañ is not degenerate with
any other pair state (figure 3(a)), the typical splittings being
several GHz. We thus use non-degenerate perturbation the-
ory. To first order, there is no energy shift, as the average
value of Vddi in ∣aañ vanishes due to the fact that di is an odd-
parity operator and that the atomic states ∣añ have definite
parity. The energy shift is thus given by second-order

Figure 2. Principle of a two-qubit quantum gate based on the
Rydberg blockade. (a) Involved levels and lasers. (b) Pulse
sequence. (c) Truth table of the phase gate.

Figure 3. Various types of interactions between two Rydberg atoms.
(a) Van der Waals regime. (b) Förster resonance. (c) Resonant
dipole–dipole interaction between two different Rydberg states ∣añ
and ∣bñ.
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Experiments in Bloch group (’16-’18)

3

makes one of the lasers o↵-resonant, one and only one of
the atoms undergoes a 2⇡ rotation, and the wavefunction
of the system gets a minus sign at the end of the sequence.
If both qubits are initially in |0i, the laser pulses have no
e↵ect. This leads to the truth table shown in Fig. 2c,
which implements a controlled-phase gate (that can be
turned into a CNOT gate using additional single-qubit
gates). One appealing feature of the Rydberg gates lies
in its short duration, set by the interaction energy of the
two atoms: as it can be as large as 10 MHz, the gate can
operate on a sub-microsecond time scale. This is in con-
trast with entangling operations using e.g. much weaker
ground-state interaction [15], which operate on a much
longer time. Another strong other asset of this protocol
is that it is largely insensitive to the exact value of the
interatomic interaction.

Further theoretical studies proposed to use the Ry-
dberg blockade in atomic ensembles [3, 16] in order to
generate non-classical states of light, or encode collec-
tive qubits. These early proposals were then followed
by detailed theoretical analyses of the various sources of
possible experimental imperfections [14, 17], that showed
promising prospects for the realization of high-fidelity
gates. After the first demonstration of the blockade be-
tween two atoms (see Sec.V), new schemes where pro-
posed for quantum gates [18, 19], including a generalized
CNOT gate where one atom controls the state of many
others [20], or for the preparation of multi-partite entan-
gled states [21].

C. Quantum simulation

Building a useful, general-purpose quantum computer
is to date an extremely challenging task, due to the very
large number of qubits and high-fidelity gates that are
required [22]. A seemingly more realistic goal is to re-
alize quantum simulators [23, 24], in particular analog
ones, i.e. well-controlled quantum systems that can be
used to realize physically, in the laboratory, a complex,
many-body Hamiltonian of interest in other fields, e.g. in
condensed-matter physics [25]. Interesting properties of
the Hamiltonian, that are in practice impossible to ob-
tain from theoretical or numerical studies, can then be
directly measured in the simulated system.

Rydberg atoms are attractive candidates for the re-
alization of quantum simulators [26]. In particular, as
we shall see in the next section, the interactions between
Rydberg atoms naturally implement analog simulations
of various types of spin Hamiltonians, such as the Ising
model or the XY model, where the spin states are en-
coded in di↵erent atomic levels.

FIG. 3: Various types of interactions between two Rydberg
atoms. (a) Van der Waals regime. (b) Förster resonance.
(c) Resonant dipole-dipole interaction between two di↵erent
Rydberg states |↵i and |�i.

III. INTERACTION BETWEEN RYDBERG
ATOMS

In this section, we briefly describe various regimes of
interactions between two Rydberg atoms. We restrict
ourselves to a perturbative approach, and only outline
the main features of the problem for the simple case of
alkali atoms. For details about actual numerical calcula-
tions, we refer for instance to [27].

A. Perturbation of pair states by the dipole-dipole
interactions

We consider two atoms, labeled 1 and 2, located at po-
sitions R1 and R2, and we denote by R = R2�R1 their
separation. When R ⌘ |R| is much larger than the size
of the electronic wavefunction, the interaction Hamilto-
nian is obtained by the multipolar expansion, and the
dominant term is the dipole-dipole interaction

Vddi =
1

4⇡"0

d1 · d2 � 3(d1 · n)(d1 · n)
R3

, (3)

with n = R/R, and di the electric dipole operator of
atom i.
Let us denote by |↵i, |�i, . . . the eigenstates of a sin-

gle atom, with corresponding eigenenergies E↵, E� , . . .

(↵ summarizes the quantum numbers n, l, j,mj). In the
absence of interaction, the eigenstates of the two-atom
system are the pair states |↵�i ⌘ |↵i ⌦ |�i with energies
E↵� = E↵+E� . Our goal is to calculate the e↵ect of the
perturbation (3) on these pair states; depending on the
situation, three regimes can be obtained (see Figure 3).

B. Van der Waals regime

We first assume that the two atoms are prepared in
the same state |↵i. In general, the pair state |↵↵i is
not degenerate with any other pair state (Figure 3a), the
typical splittings being several GHz. We thus use non-
degenerate perturbation theory. To first order, there is no
energy shift, as the average value of Vddi in |↵↵i vanishes
due to the fact that di is an odd-parity operator and that
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Combine quasicrystalline behavior
and superfluidity from interactions?
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Superfluid-Quasicrystal in a Bose-Einstein Condensate
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A quasicrystal is a class of ordered structures defying conventional classification of solid crystals and
may carry classically forbidden (e.g., fivefold) rotational symmetries. In view of long-sought supersolids, a
natural question is whether a superfluid can spontaneously form quasicrystalline order that is not possessed
by the underlying Hamiltonian, forming “superfluid-quasicrystals.” Here we show that a superfluid-
quasicrystal stripe state with the minimal fivefold rotational symmetry can be realized as the ground state of
a Bose-Einstein condensate within a practical experimental scheme. There exists a rich phase diagram
consisting of various superfluid-quasicrystal, supersolid, and plane-wave phases. Our scheme can be
generalized for generating other higher-order (e.g., sevenfold) quasicrystal states, and provides a platform
for investigating such new exotic quantum matter.

DOI: 10.1103/PhysRevLett.120.060407

Introduction.—Quasicrystals exhibit exotic spatial pat-
terns that are neither periodic as solid crystals (i.e., lack of
translational symmetry) nor totally disordered (i.e., pos-
session of long-range order) [1]. The Bragg diffraction
peaks of quasicrystals possess rotational symmetries such
as five-, seven-, eight-, nine-, tenfold that are forbidden in
classical crystalline orders [1,2]. Since its first report in
Al-Mn and Al-Mn-Si alloys in 1984 [3], quasicrystal order
has been studied and discovered in many different materials
[4–10].
Supersolid, another exotic phase of matter, combines

solid crystalline structure with superfluidity, where two
continuous symmetries, namely, translational and Uð1Þ
gauge, are spontaneously broken [11]. Supersolids were
first predicted for helium almost 50 years ago [12,13], and
have recently been observed in cold atom experiments
[14,15], where a stripe phase with supersolid properties was
generated and observed in a Bose-Einstein condensate
(BEC) [14]. These great advances in the study of super-
solids raise a natural question: Is it possible to create a
novel quantum matter where both superfluidity and quasi-
crystal orders coexist?
In this Letter, we address this important question by

proposing a scheme to generate a stable quasicrystal
ground state in a BEC. The experimental setup contains
a 3D BEC confined in a 1D optical superlattice with
quintuple wells (defines five pseudospin states), where
neighboring wells are coupled by Raman assisted tunneling
to generate an effective spin-orbit coupling (SOC) [14,16]
in the perpendicular plane. The scheme utilizes natural
contact interaction and can realize quasicrystals with the
minimum fivefold rotational symmetry. In this new quan-
tum state, the Uð1Þ gauge symmetry is spontaneously
broken just as that in supersolid stripe phases [14,16].
However, the discrete translational symmetry, which is

preserved in supersolids and leads to periodic density
modulations in stripe phases [14,16], has also been broken,
leaving only specified rotational symmetry. A quasicrystal
order with such rotational symmetry but no periodic spatial
density modulation is spontaneously formed although the
underlying Hamiltonian does not possess such order.
Therefore, we denote this quantum matter as “super-
fluid-quasicrystal.” By tuning system parameters (e.g.,
Raman coupling strength, detuning, interaction, etc.), we
show, through both variational ansatz analysis and direct
simulation of the mean field Gross-Pitaevskii equation
(GPE), that there exists a rich phase diagram containing
various superfluid-quasicrystals, supersolids, and plane-
wave phases. Our scheme can be further extended to
generate any n-order superfluid-quasicrystal phases. Our
results may advance our understanding of both quasicrys-
tals and superfluids and should provide an excellent plat-
form for exploring many interesting properties of
superfluid-quasicrystals, a novel format of quantum matter.
Experimental scheme and Hamiltonian.—We consider a

3D BEC confined in a tilted superlattice potential

VSLðzÞ ¼ V1sin2ðkL1zÞ þ V2sin2ðkL2zþ ϕ12Þ þ αzz ð1Þ

along the z direction [Fig. 1(a)] with kL2 ¼ kL1=5. Here
two lattices can come from the same laser source with the
second lattice potential formed by two beams intersecting
with an angle θ ¼ 2 arcsinð1=5Þ ≈ 23°. The linear potential
αzz can be realized with a magnetic field gradient. Note that
this superlattice does not defy the definition for superfluid-
quasicrystal because it only breaks the translational sym-
metry in the z direction, while the spontaneous formation of
(quasi)crystal order is on the x-y plane. We denote five
wells in each unit cell as five pseudospins and the effective
couplingsΩ between neighboring spins are induced by five
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Mosaic two-lengthscale quasicrystals
T. Dotera1, T. Oshiro1 & P. Ziherl2,3

Over the past decade, quasicrystalline order1 has been observed in many
soft-matter systems: in dendritic micelles2, in star3 and tetrablock4

terpolymer melts and in diblock copolymer5 and surfactant micelles6.
The formation of quasicrystals7–9 from such a broad range of ‘soft’
macromolecular micelles suggests that they assemble by a generic
mechanism rather than being dependent on the specific chemistry
of each system. Indeed, micellar softness has been postulated7 and
shown to lead to quasicrystalline order10. Here we theoretically explore
this link by studying two-dimensional hard disks decorated with step-
like square-shoulder repulsion that mimics, for example, the soft alkyl
shell around the aromatic core in dendritic micelles2. We find a family
of quasicrystals with 10-, 12-, 18- and 24-fold bond orientational order
which originate from mosaics of equilateral and isosceles triangles
formed by particles arranged core-to-core and shoulder-to-shoulder.
The pair interaction responsible for these phases highlights the role
of local packing geometry in generating quasicrystallinity in soft
matter, complementing the principles that lead to quasicrystal forma-
tion in hard tetrahedra11,12. Based on simple interparticle potentials,
quasicrystalline mosaics may well find use in diverse applications
ranging from improved image reproduction13 to advanced photonic
materials14.

The simple rules needed to encode the quasicrystalline order are as
remarkable as the order itself. All that is required to create a one-
dimensional quasicrystal is the Fibonacci sequence of long and short
segments such that their length and number ratios are equal to the
golden ratio t 5 (1 1

ffiffiffi
5
p

)/2 < 1.618. Also pervaded by t is the arche-
typal Penrose tiling, the two-dimensional analogue of the Fibonacci
quasicrystal composed of a small set of prototiles, such as the fat and
the skinny Penrose rhombi15. Because the golden ratio represents the
geometry of the regular pentagon, Penrose tiling must have a non-
crystallographic tenfold symmetry directly related to the shape of the
Robinson triangles forming the prototiles15.

The Robinson triangles are a very useful concept for constructing
quasicrystals from particles because in two dimensions the local struc-
ture of three particles with a two-lengthscale pair interaction is either
an isosceles or an equilateral triangle (Fig. 1c). Indeed, properly tailored
shoulder-like interactions as well as single-well and double-well inter-
actions (examples are simple step-like potentials16 and hard-core repul-
sion combined with square-well attraction17) do induce the formation
of decagonal17–19 and dodecagonal quasicrystals16,19,20. Here we propose
a bottom-up framework for two-lengthscale quasicrystals that is analo-
gous to the canonical-cell tiling model21, showing that such quasicrystals
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Figure 1 | Real-space structures and diffraction patterns. a, Snapshot
illustrating the mosaic nature of two-lengthscale quasicrystals; shown here is
the core-only representation of the HD12 phase with shoulder-to-core ratio
l 5 1.40, reduced temperature H 5 kBT/e 5 0.278 and packing fraction
g 5pNs2/4A 5 0.770 where N is the number of disks in a box of area A.
b, Hard-core/square-shoulder pair interaction. c, Local disk packings: collapsed
equilateral (C), short isosceles (S), long isosceles (L) and expanded equilateral
triangle (E). d, Location of quasicrystals in the phase diagram. Dashed lines

represent two hexagonal phases built from C and E triangles and two rhombic
phases built from S and L triangles, respectively. e–j, HD12 (e; same parameters
as in a), HD18 (f; l 5 1.27, H 5 0.208, g 5 0.780), LD10 (g; l 5 1.60,
H 5 0.133, g 5 0.550) and LD12 (h; l 5 1.95, H 5 0.154, g 5 0.430), LD18
(i; l 5 1.43, H 5 0.0885, g 5 0.490) and LD24 (j; l 5 1.29, H 5 0.098,
g 5 0.595) phases. Bonds drawn in the core-only representation (a and the
bottom-left parts of panels e–f) accentuate the polygonal tiles.
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as in a), HD18 (f; l 5 1.27, H 5 0.208, g 5 0.780), LD10 (g; l 5 1.60,
H 5 0.133, g 5 0.550) and LD12 (h; l 5 1.95, H 5 0.154, g 5 0.430), LD18
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O ne of the most striking signatures of self-organization is 
spontaneous pattern formation1,2. Among the morphologies
observed, stripes are intrinsically fascinating and have 

potential for technological applications including nanolithography
and nanoelectricity. Examples of materials featuring stripe patterns
include Langmuir monolayers3, magnetic films4, lipid monolayers5,
liquid crystals6 and polymer films7. Stripe formation is generally
attributed to the competition between short-range attractive forces
and long-range repulsion arising from dipole interactions8,9. Here
we show that stripe phases may result from a different mechanism
based on a purely repulsive isotropic short-range pair potential with
two characteristic length scales. We consider a two-dimensional
(2D) assembly of particles consisting of a hard core surrounded by a
soft corona and find that at densities where the hard-and-soft core
radii compete with each other, decreasing the temperature induces a
transition from a disordered state to an orientationally ordered
phase characterized by stripe patterns.

Periodic structures in nature are often the result of competition
between different interactions. In magnetic materials domain structure
with alternating spin orientations originates from the competition
between short-range exchange interaction and long-range dipole
energy10,11. In systems endowed with a permanent or induced electric
dipole moment, macroscopic patterns result from the competition
between attractive interactions and repulsive dipole–dipole long-range
interactions8 . A more subtle form of competing interactions is that
featured by softened-core potentials12. These are characterized by a
repulsive component consisting of an exclusion region plus a finite
shoulder, and thus possess two competing repulsive length scales.
Numerical simulation has shown that softened-core potentials may give
rise to phase behaviour that is definitely unusual for one-component
systems,such as isostructural solid–solid transitions13 and liquid–liquid
phase transitions14 . Our aim is to study whether the competition
between two short-range repulsive distances may generate spatial
modulations.We consider a 2D system of particles interacting through
a radially symmetric pair potential which consists of an impenetrable
hard core of radius σ0 plus a repulsive square shoulder extending to
r = σ1 (Fig. 1). Particles are therefore hard disks surrounded by a soft
circular corona. Our system is studied through Monte Carlo (MC)
simulations at constant number of particles N, volume V and
temperature T (NVT simulations15). In our calculations σ1/σ0 = 2.5.

The spatial configuration of the system is shown in Fig. 2 
(top panels), at different densities for a fixed temperature (T = 0.1 in

units of ε/kB, kB being the Boltzmann constant). As the density is
increased,the system rapidly turns from the disordered configuration of
Fig. 2a (top) into a triangular lattice with few defects and lattice constant
σ1, where particles just touch each other with their coronas (Fig. 2b,
top). At the next density considered (Fig. 2c, top) the system is
composed mainly of dimers (that is,pairs of particles with hard cores in
contact or at distances much smaller than particle dimensions) and a
few short linear chains.Counterintuitive as it may appear,the formation
of dimers is a consequence of the presence of the repulsive shoulder.
In fact, if an extra particle is inserted in the centre of a cell of a dense
enough lattice, its shoulder partly overlaps with the shoulders of all its
nearest neighbours, whereas if its hard core touches that of a particle of
the lattice, its shoulder overlaps with the shoulder of only one particle
(provided the density is not too high). The second arrangement has a
smaller energetic cost for the system and will be preferred. With
increasing density, dimers and particles align in worm-like filaments
and eventually form stripe domain patterns (Fig. 2d, top) similar to
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RESULTS

Supersolidity with Soft-core bosons. We consider
a two-dimensional ensemble of N bosons with density ⇢,
interacting via a pair potential of the type

V =
V0

r� +R
�
c
. (1)

This interaction approaches a constant value V0/R
�
c as

the inter-particle distance, r, decreases below the soft-
core distance Rc, and drops to zero for r > Rc. The
limiting case � ! 1 yields the soft-disc model [26], while
� = 3 and � = 6 correspond to soft-core dipole-dipole [27]
and van der Waals [28] interactions that can be realized
with ultracold atoms [28, 29] or polar molecules [30, 31].
Here, we focus on the latter case (� = 6), for which the
Hamiltonian reads

Ĥ = �
NX

i=1

r2
i

2
+

NX

i<j

U

1 + r
6
ij

, (2)

where the units of length and energy are Rc and ~2/mR
2
c ,

respectively, and m denotes the particle mass. In these
units, the zero-temperature physics is controlled by the
dimensionless interaction strength U = mV0/(~2R4

c) and
the dimensionless density R

2
c⇢.

Particles with soft-core interactions have been studied
previously in the field of soft condensed matter physics
[32–34], in the classical high-temperature regime. One of
the main findings has been that pair potentials with a
negative Fourier component [32] favor the formation of
particle clusters, which in turn can crystallize to form a
so-called cluster-crystal. In the quantum domain, the-
oretical work has so far focused on the regime of weak
interactions and high particle densities [27, 28, 35–38],
which was shown to be well described by mean-field cal-
culations [39, 40]. In this limit, one finds strongly mod-
ulated superfluid states [2, 26–28] with broken transla-
tional symmetry in the form of a density-wave.

In the following we investigate strong coupling
domain where correlations and quantum fluctuations
are expected to become important. We employ path
integral Monte Carlo simulations to determine the
ground state properties of the Hamiltonian eq.(2) (see
Methods section). The obtained phase diagram, shown
in Fig.2, reveals a rich spectrum of phases with varying
interaction strength and density.

Small particle densities. At small densities R2
c⇢ . 0.5

we find two phases: a superfluid and an insulating tri-
angular crystal composed of singly occupied sites, that
is, where the number of lattice sites, Ns, equals the
particle number N . The observed lobe structure of
this crystalline region is readily understood by noticing
that at very low densities, that is, large inter-particle

FIG. 2: Zero-temperature phase diagram of two-
dimensional soft-core bosons. The phase diagram dis-
plays the emergence of superfluid (SF) and di↵erent solid (NS)
and supersolid (SS) phases for varying interaction strength
U and density ⇢. The density on the left y-axis has been
scaled by the soft-core radius Rc. The right axis gives the
density in units of the inverse area, A =

p
3(1.6Rc)

2/2, of
the unit cell of the high-density solid phase, corresponding to
the lattice site occupation N/Ns for a given number of parti-
cles and lattice sites, N and Ns, respectively. For A⇢ & 1.5,
the grey region labeled as NS corresponds to a cluster crystal
with N/Ns > 1, as indicated by the grey scale. Supersolid
phases with di↵erent occupation numbers are found between
two hyperbolas, defined by R2

c⇢U = const. (dotted lines). At
high densities (A⇢ & 3.5) they can be understood in terms
of density-modulated superfluids. In contrast, superfluidity
within the low-density supersolid lobes emerges from delocal-
ized zero-point defects according to the ALC scenario. The
horizontal error bars represent statistical uncertainties and
uncertainties due to the finite stepping of U .

distances r̄ = 1/
p
⇡⇢ > Rc, the physics is dominated

by the long-range tail of the interaction potential,
V ⇠ 1/r6. For a fixed interaction strength U & 35,
we thus find a first order liquid-solid quantum phase
transition with increasing A⇢, consistent with previous
work on bosons with power-law interactions [30, 41–43].
In particular, the location of the liquid-solid phase
transition for very low densities coincides with that
for pure van der Waals interactions. With increasing
density, however, the average inter-particle spacing, r̄,
approaches the soft-core radius Rc and drops to values
for which equation (1) strongly deviates from pure
⇠ 1/r6 interactions and levels o↵ below the turning
point Ro = (5/7)1/6Rc . As a result of the decreasing
repulsive inter-particle forces, the crystal melts again for
increasing densities. As indicated in Fig.2, we indeed
find a re-entrant superfluid at particle densities for
which r̄ < Ro.

Introduction Rydberg-dressing Modulational instability Superfluidity Quantum phase diagram at T = 0
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Result of perturbation theory:

U(r) =
C̃6

R6
c + r6

, ← Soft-core interaction

Rc = (C6/2!∆)1/6,

C̃6 = ( Ω
2∆)4C6 ← easily tunable

! No interaction for r ≪ Rc
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polarized sample where all dipoles point in the same direction
z (figure 1(b)), this expression simplifies to

Udd(r) = Cdd

4π

1 − 3 cos2 θ

r3
, (2.2)

where θ is the angle between the direction of polarization and
the relative position of the particles. Two main properties of
the dipole–dipole interaction, namely its long-range (∼1/r3)
and anisotropic character, are obvious from (2.1) and (2.2),
and contrast strongly with the short-range, isotropic contact
interaction (1.1) usually at work between particles in ultra-cold
atom clouds.

Long-range character. In a system of particles interacting
via short-range interactions, the energy is extensive in the
thermodynamic limit. In contrast, in systems with long-range
interactions, the energy per particle does not depend only on
the density, but also on the total number of particles. It is easy
to see that a necessary condition for obtaining an extensive
energy is that the integral of the interaction potential U(r)

∫ ∞

r0

U(r) dDr, (2.3)

where D is the dimensionality of the system and r0 some short-
distance cutoff, converges at large distances. For interactions
decaying at large distances as 1/rn, this implies that one
needs to have D < n in order to consider the interaction
to be short range. Therefore, the dipole–dipole interaction
(n = 3) is long range in three dimensions, and short range
in one and two dimensions. For a more detailed discussion,
including alternative definitions of the long-range character of
a potential, the reader is referred to [36].

Anisotropy. The dipole–dipole interaction has the angular
symmetry of the Legendre polynomial of second order
P2(cos θ), i.e. d-wave. As θ varies between 0 and π/2, the
factor 1 − 3 cos2 θ varies between −2 and 1, and thus the
dipole–dipole interaction is repulsive for particles sitting side
by side, while it is attractive (with twice the strength of the
previous case) for dipoles in a ‘head-to-tail’ configuration
(see figures 2(c) and (d )). For the special value θm =
arccos(1/

√
3) ≃ 54.7◦—the so-called ‘magic angle’ used

in high resolution solid-state nuclear magnetic resonance
[37, 38]—the dipole–dipole interaction vanishes.

Scattering properties. Usually, the interaction potential
between two atoms separated by a distance r behaves like
−C6/r6 at large distances. For such a van der Waals potential,
one can show that in the limit of a vanishing collision energy,
only the s-wave scattering plays a role. This comes from the
general result stating that for a central potential falling off
at large distances as 1/rn, the scattering phase shifts δℓ(k)

scale, for k → 0, as k2ℓ+1 if ℓ < (n − 3)/2, and as kn−2

otherwise [39]. In the ultra-cold regime, the scattering is thus
fully characterized by the scattering length a. In the study
of quantum gases, the true interaction potential between the
atoms can then be replaced by a pseudo-potential having the

Figure 2. Two particles interacting via the dipole–dipole
interaction. (a) Non-polarized case; (b) polarized case; (c) two
polarized dipoles side by side repel each other (black arrows);
(d ) two polarized dipoles in a ‘head-to-tail’ configuration attract
each other (black arrows).

same scattering length, the so-called contact interaction given
by (1.1).

In the case of the dipole–dipole interaction, the slow decay
as 1/r3 at large distances implies that for all ℓ, δℓ ∼ k
at low momentum, and all partial waves contribute to the
scattering amplitude. Moreover, due to the anisotropy of the
dipole–dipole interaction, partial waves with different angular
momenta couple with each other. Therefore, one cannot
replace the true potential by a short-range, isotropic contact
interaction. This specificity of the dipolar interaction has an
interesting consequence in the case of a polarized Fermi gas:
contrary to the case of a short-range interaction, which freezes
out at low temperature, the collision cross section for identical
fermions interacting via the dipole–dipole interaction does not
vanish even at zero temperature. This could be used to perform
evaporative cooling of polarized fermions, without the need for
sympathetic cooling via a bosonic species.

Dipolar interactions also play an important role in
determining inelastic scattering properties. In particular,
because of its anisotropy, the dipole–dipole interaction can
induce spin–flips, leading to dipolar relaxation. The cross-
section for dipolar relaxation scales with the cube of the dipole
moment [40], and therefore plays a crucial role in strongly
dipolar systems (see section 3.4.1). Dipolar relaxation is
usually a nuisance, but can in fact be used to implement
novel cooling schemes inspired by adiabatic demagnetization
as described in section 3.4.3.

Fourier transform. In view of studying the elementary
excitations in a dipolar condensate, as well as for numerical
calculations, it is convenient to use the Fourier transform of
the dipole–dipole interaction. The Fourier transform

Ũdd(k) =
∫

Udd(r)e−ik·r d3r (2.4)

of (2.2) reads as

Ũdd(k) = Cdd(cos2 α − 1/3), (2.5)
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bach resonance located at B0 = 7.117(3)G. We then ob-
tained typically 15,000 atoms in nearly-pure Dy BECs (see
Methods section). The atoms were trapped in a radially
symmetric pancake-shaped trap with harmonic frequencies
of (⌫x, ⌫y, ⌫z) = (46, 44, 133)Hz and the external magnetic
field aligned the magnetic dipoles in axial z-direction. Sub-
sequently, we tuned the magnetic field B . 6.9G, which
reduces a to abg < add resulting in an angular roton
instability16 that triggered the transition to ordered states
(Fig. 1a). We observed then the formation of droplets that
arrange in ordered structures by in situ phase-contrast polar-
ization imaging along the z-direction with a spatial resolution
of 1µm.

In Fig. 1b we show typical in situ images of the re-
sulting triangular patterns for the quantum ferrofluid with
different number of droplets Nd ranging from two to ten.
In the case of Nd = 2 we observe a droplet distance of
d = 3.0(4)µm. This length distance can be calculated
in a classical system of two homogeneous spherical dipolar
droplets confined in a harmonic trap. The droplets experience
restoring forces, namely the dipolar repulsion for small d and
the trap confinement for high d. Each droplet is in an effec-
tive radial harmonic trap with frequencies close to our axial
trap frequency. For our experimental parameters they mini-
mize their energy with a distance of d = 3.2µm, in agree-
ment with the observed distance. For Nd > 2 the droplets ar-
range in triangular structures and form a microscopic crystal
with a droplet distance of d = 2� 3µm. In order to analyze
the average atom number per droplet, we count the number of
droplets Nd in relation to the total atom number. Fig. 1c indi-
cates a linear dependence between Nd and atom number with
a slope of 1750(300) atoms per droplet. Because of the re-
pelling dipolar force between the droplets in the radial direc-
tion, we observe nearly round discrete droplets with possible
weak overlap to neighbouring ones. A single droplet should
be unstable for a < add due to the attractive part of the dipo-
lar interaction. However, for small atom number the quantum
pressure can dominate the interparticle interactions and com-
pensate the attraction. We used a simple Gaussian ansatz for
the density distribution to estimate the stability threshold22.
This results in a maximal atom number of 2100(600) for a
single droplet at a = abg for a round trap with our axial con-
finement, in good agreement with the observed atom number
per droplet. We also verified that within this ansatz a single
droplet has a smaller spatial extent than the droplet distance
d. Within this simple approximation we find that the droplets
are stable. Very similar behaviour and patterns have been
observed in a ferrofluid on a superhydrophobic surface3. In
this system a single droplet first deforms for increasing exter-
nal magnetic field and divides above a critical field into two
droplets.

For further quantitative statistical analysis, we com-
puted the Fourier spectrum S(k) of the obtained images
(Fig. 2a-c). The patterns are visible as a local maximum at
finite momentum k = 2⇡/d ⇡ 2.5µm�1, whereas the spec-
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Figure 1: Microscopic droplet crystal growth. a, Scheme
of the experimental procedure: We prepared a stable strongly
dipolar Dy BEC at a ⇡ add in a pancake-shaped trap. By
decreasing the scattering length a, we induced a roton in-
stability close to a ⇡ abg. Followed by this instability the
atoms clustered to droplets in a triangular lattice. b, Rep-
resentative single-shot in situ images of droplet patterns with
droplet numbers Nd ranging from two to ten. c, We used a set
of 112 realizations with different droplet and atom numbers
for a statistical analysis. The plot shows the mean number
of atoms in dependence of visible droplets Nd, with the stan-
dard deviation as error bars. We fitted a linear relation (grey
dashed line) and extracted a slope of 1750(300) atoms per
droplet. This shows the growth of the microscopic droplet
crystal by increasing the atom number.
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Figure 1: Microscopic droplet crystal growth. a, Scheme
of the experimental procedure: We prepared a stable strongly
dipolar Dy BEC at a ⇡ add in a pancake-shaped trap. By
decreasing the scattering length a, we induced a roton in-
stability close to a ⇡ abg. Followed by this instability the
atoms clustered to droplets in a triangular lattice. b, Rep-
resentative single-shot in situ images of droplet patterns with
droplet numbers Nd ranging from two to ten. c, We used a set
of 112 realizations with different droplet and atom numbers
for a statistical analysis. The plot shows the mean number
of atoms in dependence of visible droplets Nd, with the stan-
dard deviation as error bars. We fitted a linear relation (grey
dashed line) and extracted a slope of 1750(300) atoms per
droplet. This shows the growth of the microscopic droplet
crystal by increasing the atom number.

2

Dysprosium (Stuttgart, Pfau - Modugno, Pisa)
Erbium (Innsbruck - Ferlaino)

Quantum droplets and 
Supersolid in quasi-2D

F. Cinti, A. Cappellaro, L. Salasnich, T. M., Phys. Rev. Lett. 119, 215302 (2017)

Uniform superfluid phase 
with fs=1

Filament phase (dipoles 
aligned vertically) with 
anisotropic superfluidity

Cluster phase - dipoles 
aligned vertically 

Quantum droplets and
Filaments in 3D



Hard-core potential (infinite repulsive barrier) 

Transition to crystal at ⇢ �2 ⇡ 0.32
<latexit sha1_base64="kEtZ51pE/b/xkc/xgYj1Gk+kcfA=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBbBhYQkFXRZdOOygn1AE8tkOmmHzmTCzEQsoRs3/oobF4q49R/c+TdOHwttPXDhcM693HtPlDKqtOt+W4Wl5ZXVteJ6aWNza3vH3t1rKJFJTOpYMCFbEVKE0YTUNdWMtFJJEI8YaUaDq7HfvCdSUZHc6mFKQo56CY0pRtpIHfswkH0RnMJA0R5Hdz4MUJpK8QBdp+J37LLruBPAReLNSBnMUOvYX0FX4IyTRGOGlGp7bqrDHElNMSOjUpApkiI8QD3SNjRBnKgwn3wxgsdG6cJYSFOJhhP190SOuFJDHplOjnRfzXtj8T+vnen4IsxpkmaaJHi6KM4Y1AKOI4FdKgnWbGgIwpKaWyHuI4mwNsGVTAje/MuLpOE7XsXxb87K1ctZHEVwAI7ACfDAOaiCa1ADdYDBI3gGr+DNerJerHfrY9pasGYz++APrM8fIWKXCg==</latexit>

Hard-core and dipolar (dipolar gases) 

Quantum droplets/superfluid filaments in 3D

Zoo of nonlocal interactions

Soft-core potential (finite repulsive) 

Rydberg atoms, cluster supersolids

Hard-core and soft-core (finite repulsive) 

Rydberg atoms

r
<latexit sha1_base64="mcxbHMlpexUZOQ80I65L7N8gjUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuqXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH3m+M+g==</latexit>

�0
<latexit sha1_base64="xO9jTW5afqxEZb4hFxPWqMpkX4M=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21okl2TrFCW/gkvHhTx6t/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6sJOEBZIMFY84JdZJnZ7hQ0n6Xr9c8areHHiV+DmpQI5Gv/zVG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2Tze6f4zCkDHMXalbJ4rv6eyIg0ZiJD1ymJHZllbyb+53VTG10HGVdJapmii0VRKrCN8ex5POCaUSsmjhCqubsV0xHRhFoXUcmF4C+/vEpatap/Ua3dX1bqN3kcRTiBUzgHH66gDnfQgCZQEPAMr/CGHtELekcfi9YCymeO4Q/Q5w/Fj4/K</latexit>

V (r)
<latexit sha1_base64="r4oB+Nw5YZrnaUu+jPC3dlgUuXk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpE5VXQ7LFbfmLoDWiZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRTuelQaJpjMkUj2nfUokF1X66uHWOLqwyQmGkbEmDFurviRQLrWcisJ0Cm4le9TLxP6+fmPDGT5mME0MlWS4KE45MhLLH0YgpSgyfWYKJYvZWRCZYYWJsPCUbgrf68jrp1Gteo1Z/uKo0b/M4inAG51AFD66hCffQgjYQmMAzvMKbI5wX5935WLYWnHzmFP7A+fwBTB+Nvw==</latexit>

r
<latexit sha1_base64="mcxbHMlpexUZOQ80I65L7N8gjUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuqXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH3m+M+g==</latexit>

V (r)
<latexit sha1_base64="r4oB+Nw5YZrnaUu+jPC3dlgUuXk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpE5VXQ7LFbfmLoDWiZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRTuelQaJpjMkUj2nfUokF1X66uHWOLqwyQmGkbEmDFurviRQLrWcisJ0Cm4le9TLxP6+fmPDGT5mME0MlWS4KE45MhLLH0YgpSgyfWYKJYvZWRCZYYWJsPCUbgrf68jrp1Gteo1Z/uKo0b/M4inAG51AFD66hCffQgjYQmMAzvMKbI5wX5935WLYWnHzmFP7A+fwBTB+Nvw==</latexit>

�1
<latexit sha1_base64="GCOVvUeYeAeb+ag4WpSjasXyuZw=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21okl2TrFCW/gkvHhTx6t/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6sJOEBZIMFY84JdZJnZ7hQ0n6fr9c8areHHiV+DmpQI5Gv/zVG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2Tze6f4zCkDHMXalbJ4rv6eyIg0ZiJD1ymJHZllbyb+53VTG10HGVdJapmii0VRKrCN8ex5POCaUSsmjhCqubsV0xHRhFoXUcmF4C+/vEpatap/Ua3dX1bqN3kcRTiBUzgHH66gDnfQgCZQEPAMr/CGHtELekcfi9YCymeO4Q/Q5w/HE4/L</latexit>

r
<latexit sha1_base64="mcxbHMlpexUZOQ80I65L7N8gjUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuqXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH3m+M+g==</latexit>

V (r)
<latexit sha1_base64="r4oB+Nw5YZrnaUu+jPC3dlgUuXk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpE5VXQ7LFbfmLoDWiZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRTuelQaJpjMkUj2nfUokF1X66uHWOLqwyQmGkbEmDFurviRQLrWcisJ0Cm4le9TLxP6+fmPDGT5mME0MlWS4KE45MhLLH0YgpSgyfWYKJYvZWRCZYYWJsPCUbgrf68jrp1Gteo1Z/uKo0b/M4inAG51AFD66hCffQgjYQmMAzvMKbI5wX5935WLYWnHzmFP7A+fwBTB+Nvw==</latexit>

�0
<latexit sha1_base64="xO9jTW5afqxEZb4hFxPWqMpkX4M=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21okl2TrFCW/gkvHhTx6t/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6sJOEBZIMFY84JdZJnZ7hQ0n6Xr9c8areHHiV+DmpQI5Gv/zVG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2Tze6f4zCkDHMXalbJ4rv6eyIg0ZiJD1ymJHZllbyb+53VTG10HGVdJapmii0VRKrCN8ex5POCaUSsmjhCqubsV0xHRhFoXUcmF4C+/vEpatap/Ua3dX1bqN3kcRTiBUzgHH66gDnfQgCZQEPAMr/CGHtELekcfi9YCymeO4Q/Q5w/Fj4/K</latexit> r

<latexit sha1_base64="mcxbHMlpexUZOQ80I65L7N8gjUM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuqXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSrlW9i2qteVmp3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH3m+M+g==</latexit>

V (r)
<latexit sha1_base64="r4oB+Nw5YZrnaUu+jPC3dlgUuXk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpE5VXQ7LFbfmLoDWiZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRTuelQaJpjMkUj2nfUokF1X66uHWOLqwyQmGkbEmDFurviRQLrWcisJ0Cm4le9TLxP6+fmPDGT5mME0MlWS4KE45MhLLH0YgpSgyfWYKJYvZWRCZYYWJsPCUbgrf68jrp1Gteo1Z/uKo0b/M4inAG51AFD66hCffQgjYQmMAzvMKbI5wX5935WLYWnHzmFP7A+fwBTB+Nvw==</latexit>

�1
<latexit sha1_base64="GCOVvUeYeAeb+ag4WpSjasXyuZw=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21okl2TrFCW/gkvHhTx6t/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6sJOEBZIMFY84JdZJnZ7hQ0n6fr9c8areHHiV+DmpQI5Gv/zVG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2Tze6f4zCkDHMXalbJ4rv6eyIg0ZiJD1ymJHZllbyb+53VTG10HGVdJapmii0VRKrCN8ex5POCaUSsmjhCqubsV0xHRhFoXUcmF4C+/vEpatap/Ua3dX1bqN3kcRTiBUzgHH66gDnfQgCZQEPAMr/CGHtELekcfi9YCymeO4Q/Q5w/HE4/L</latexit>

�0
<latexit sha1_base64="xO9jTW5afqxEZb4hFxPWqMpkX4M=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BIvgqexWQY9FLx4r2A9ol5JNs21okl2TrFCW/gkvHhTx6t/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6sJOEBZIMFY84JdZJnZ7hQ0n6Xr9c8areHHiV+DmpQI5Gv/zVG8Q0lUxZKogxXd9LbJARbTkVbFrqpYYlhI7JkHUdVUQyE2Tze6f4zCkDHMXalbJ4rv6eyIg0ZiJD1ymJHZllbyb+53VTG10HGVdJapmii0VRKrCN8ex5POCaUSsmjhCqubsV0xHRhFoXUcmF4C+/vEpatap/Ua3dX1bqN3kcRTiBUzgHH66gDnfQgCZQEPAMr/CGHtELekcfi9YCymeO4Q/Q5w/Fj4/K</latexit>

Rep. Prog. Phys. 72 (2009) 126401 T Lahaye et al

polarized sample where all dipoles point in the same direction
z (figure 1(b)), this expression simplifies to

Udd(r) = Cdd

4π

1 − 3 cos2 θ

r3
, (2.2)

where θ is the angle between the direction of polarization and
the relative position of the particles. Two main properties of
the dipole–dipole interaction, namely its long-range (∼1/r3)
and anisotropic character, are obvious from (2.1) and (2.2),
and contrast strongly with the short-range, isotropic contact
interaction (1.1) usually at work between particles in ultra-cold
atom clouds.

Long-range character. In a system of particles interacting
via short-range interactions, the energy is extensive in the
thermodynamic limit. In contrast, in systems with long-range
interactions, the energy per particle does not depend only on
the density, but also on the total number of particles. It is easy
to see that a necessary condition for obtaining an extensive
energy is that the integral of the interaction potential U(r)

∫ ∞

r0

U(r) dDr, (2.3)

where D is the dimensionality of the system and r0 some short-
distance cutoff, converges at large distances. For interactions
decaying at large distances as 1/rn, this implies that one
needs to have D < n in order to consider the interaction
to be short range. Therefore, the dipole–dipole interaction
(n = 3) is long range in three dimensions, and short range
in one and two dimensions. For a more detailed discussion,
including alternative definitions of the long-range character of
a potential, the reader is referred to [36].

Anisotropy. The dipole–dipole interaction has the angular
symmetry of the Legendre polynomial of second order
P2(cos θ), i.e. d-wave. As θ varies between 0 and π/2, the
factor 1 − 3 cos2 θ varies between −2 and 1, and thus the
dipole–dipole interaction is repulsive for particles sitting side
by side, while it is attractive (with twice the strength of the
previous case) for dipoles in a ‘head-to-tail’ configuration
(see figures 2(c) and (d )). For the special value θm =
arccos(1/

√
3) ≃ 54.7◦—the so-called ‘magic angle’ used

in high resolution solid-state nuclear magnetic resonance
[37, 38]—the dipole–dipole interaction vanishes.

Scattering properties. Usually, the interaction potential
between two atoms separated by a distance r behaves like
−C6/r6 at large distances. For such a van der Waals potential,
one can show that in the limit of a vanishing collision energy,
only the s-wave scattering plays a role. This comes from the
general result stating that for a central potential falling off
at large distances as 1/rn, the scattering phase shifts δℓ(k)

scale, for k → 0, as k2ℓ+1 if ℓ < (n − 3)/2, and as kn−2

otherwise [39]. In the ultra-cold regime, the scattering is thus
fully characterized by the scattering length a. In the study
of quantum gases, the true interaction potential between the
atoms can then be replaced by a pseudo-potential having the

Figure 2. Two particles interacting via the dipole–dipole
interaction. (a) Non-polarized case; (b) polarized case; (c) two
polarized dipoles side by side repel each other (black arrows);
(d ) two polarized dipoles in a ‘head-to-tail’ configuration attract
each other (black arrows).

same scattering length, the so-called contact interaction given
by (1.1).

In the case of the dipole–dipole interaction, the slow decay
as 1/r3 at large distances implies that for all ℓ, δℓ ∼ k
at low momentum, and all partial waves contribute to the
scattering amplitude. Moreover, due to the anisotropy of the
dipole–dipole interaction, partial waves with different angular
momenta couple with each other. Therefore, one cannot
replace the true potential by a short-range, isotropic contact
interaction. This specificity of the dipolar interaction has an
interesting consequence in the case of a polarized Fermi gas:
contrary to the case of a short-range interaction, which freezes
out at low temperature, the collision cross section for identical
fermions interacting via the dipole–dipole interaction does not
vanish even at zero temperature. This could be used to perform
evaporative cooling of polarized fermions, without the need for
sympathetic cooling via a bosonic species.

Dipolar interactions also play an important role in
determining inelastic scattering properties. In particular,
because of its anisotropy, the dipole–dipole interaction can
induce spin–flips, leading to dipolar relaxation. The cross-
section for dipolar relaxation scales with the cube of the dipole
moment [40], and therefore plays a crucial role in strongly
dipolar systems (see section 3.4.1). Dipolar relaxation is
usually a nuisance, but can in fact be used to implement
novel cooling schemes inspired by adiabatic demagnetization
as described in section 3.4.3.

Fourier transform. In view of studying the elementary
excitations in a dipolar condensate, as well as for numerical
calculations, it is convenient to use the Fourier transform of
the dipole–dipole interaction. The Fourier transform

Ũdd(k) =
∫

Udd(r)e−ik·r d3r (2.4)

of (2.2) reads as

Ũdd(k) = Cdd(cos2 α − 1/3), (2.5)
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Classical Quasicrystals

FIG. 1: Composite isotropic, repulsive potential [1]. The hard-core of the particles is

defined by the length scale �0. On top of that, particles also experiment repulsive forces

coming from a soft corona of energy ✏ when their distances is smaller than the length scale

�1.

I. MODEL

We consider a two-dimensional system of particles that interact in pairs via the isotropic,

purely repulsive potential

V (r) =
�������������������

+∞, r < �0

✏, �0 < r < �1

0, r > �1

(1)

that is shown in Fig. 1. The physics of this model is then controled by the interplay between

the ratio of length-scales �1��0 and the energy scale ✏.

II. COMPARISON OF SCALES

It is useful to consider comparisons between our system and the limits of purely hard or

soft core repulsion between particles. In order to do so, we define length scale

[L] = �0, (2)

and energy scale

[E] = ✏. (3)

2

FIG. 4: Equilibrium configurations at different densities obtained from classical

simulations. Control parameters are ✏ = 1.0, �1��0 = 2.5 and T = 0.1. Top: Bruno, 200

particles (CLAMC). Bottom: Ref. [1]. See text for discussion of the main features.

B. Comparison of equilibrium configurations between soft core potential (SC) and

soft core plus hard core (HC)

Here we also can use the dimensionless ↵ = m⇢✏�4
1��h2 that is eemployed in Ref. [4], see

more details in Fig. 5.

FIG. 5: Figure from Ref. [4].
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classical quasicrystals
include phases of 18- and 24-fold symmetry in addition to the previ-
ously known 10- and 12-fold quasicrystals. Motivated by the hard-
sphere theory of fluid-to-solid transition22, we numerically explored
two-dimensional disks interacting with the purely repulsive hard-core/
square-shoulder pair potential23,24 (Fig. 1b):

V rð Þ~
?, rvs

e, svrvls

0, rwls

8
><

>:

The shoulder height e sets the energy scale, and the shape of the poten-
tial is described solely by the ratio of the shoulder diameter ls to the
hard-core diameter s.

Representative real-space images of the quasicrystals found are shown
in Fig. 1 along with Fourier transforms of particle positions. At a shoulder-
to-core ratio of l < 1.40, we find a well-ordered 12-fold high-density
(HD12) quasicrystal (Fig. 1a, e) recently reported in attractive particles
interacting with a double-well potential of a similar lengthscale ratio25.
The most interesting feature of the HD12 phase is the value of l, which
is considerably smaller than l 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 z

ffiffiffi
3
pp

< 1.932, at which dodeca-
gonal phases were observed in related systems16,19,20. The HD12 phase
can be regarded as a random square–triangle tiling26, its triangle-to-
square ratio being close to the ideal value of 4/

ffiffiffi
3
p

< 2.309 (ref. 27). At
l < 1.27, we find a high-density phase with 18-fold symmetry (Fig. 1f).
With a large fraction of particles forming close-packed equilateral tri-
angles (C triangle in Fig. 1c), the HD18 quasicrystal is structurally
similar to the HD12 phase except that it contains rhombi of two 80u
short isosceles triangles (S triangle in Fig. 1c) rather than squares.

Also new is the low-density 12-fold phase (LD12, Fig. 1h) based on
C triangles and skinny rhombi formed by long isosceles triangles (L
triangle in Fig. 1c). Its main structural features are regular dodecagons
as well as straight, winding and meandering stripes reminiscent of laby-
rinthine phases24. At l < 1.60, we observe the decagonal LD10 phase
(Fig. 1g) constructed from sequences of the Robinson L and S trian-
gles, which form a standard set of decagonal tiles including pentagons
and dodecagons19. The dominant structural features of the ill-ordered
LD18 and LD24 phases (Fig. 1i, j) are skinny rhombi of two L triangles
mixed with the shoulder-to-shoulder equilateral E triangles (see Fig. 1c).
The location of quasicrystals in the phase diagram relative to the two
hexagonal and rhombic lattices is shown in Fig. 1d.

As illustrated by the snapshot of the HD12 phase in Fig. 1a, as well as
by Supplementary Figs 3, 6, 10, 14, 17 and 20, our quasicrystals may be
viewed as mosaics of small crystallites packed such that the quasicrys-
talline orientational order is established on a lengthscale considerably
larger than the nearest-neighbour distance. In this respect, they are quite
different from conventional metallic-alloy quasicrystals with a local struc-
ture based on icosahedral, decagonal or dodecagonal clusters of atoms.
The mosaic nature of quasicrystals presented in Fig. 1 is consistent with
the short range of particle–particle interactions, which do not extend
beyond nearest neighbours in either the high- or low-density phases.

To further quantify our quasicrystals, we computed the bond-orien-
tational-order correlation functions Gm(r) for their respective dominant
modes m (for example, m 5 18 in HD18 and LD18 phases), where r
is the distance between two bonds. Figure 2 shows that the correlation
function in the more classical LD10 levels off at a constant value, indi-
cating long-range orientational order and implying that this phase may
be referred to as random decagonal. Long-range order is also present in
HD12 and LD12 phases, so that both are true random dodecagonal
quasicrystals. On the other hand, correlations in the 18- and the 24-fold
quasicrystals exhibit a power-law decay of an exponent which varies
across the phases as well as with temperature. In analogy with the
hexatic phase (Supplementary Discussion I), these quasicrystals are best
described as the decaoctatic and the icositetratic phase, respectively.

An interesting consequence of the rather small shoulder-to-core ratio
in the square–triangle HD12 phase concerns its thermodynamic stability.
A repulsive shoulder with l just a little smaller than

ffiffiffi
2
p

reaches only to

the nearest neighbours and so the energy of the tiling depends on the
relative number of squares and triangles but not on the structure of the
tiling, implying that all defect-free tilings have the same energy as required
in the maximally random tiling26 (Supplementary Discussion V). Thus
at a density for which the triangle-to-square ratio is ideal, the minimal-
energy state is a disordered dodecagonal quasicrystal rather than a crys-
tal, meaning that the HD12 phase may be stable both at intermediate
and low temperatures.

Additional insight into the stability of the HD12, LD12, LD10, and
HD18 quasicrystals is provided by the rapid growth of bond order in
the initial random state (Supplementary Discussion IIA–D). This sug-
gests that these phases are preferred over disordered (HD12 and HD18)
and fluid (LD12 and LD10) states, so that at intermediate temperatures
they must be (at least) very long-lived metastable states, much like the
dodecagonal quasicrystals based on hard tetrahedra11. The LD18 and
LD24 phases form less readily and contain many defects (Supplemen-
tary Discussion IIE and IIF), calling for a more refined search in the
temperature–density–l phase space.

These new quasicrystal phases can be interpreted by generalizing the
well-known random LD1028 and HD12 quasicrystals26 based on the
hierarchy where two or more types of the canonical triangles shown in
Fig. 1c are used to construct a set of equilateral polygons that tile the
plane (Fig. 3a and Supplementary Fig. 26). Derived from the Robinson
triangles, the decagonal LD10 equilateral polygons include the penta-
gon, hexagon, nonagon, U-tile and decagon19,28 as well as their combi-
nations (Supplementary Fig. 24). On the other hand, the dodecagonal
HD12 equilateral polygons comprise the C triangle and the square built
from two S triangles with l~

ffiffiffi
2
p

(Supplementary Fig. 25).
This hierarchy is also applicable at certain other shoulder-to-core

ratios, the allowed values being determined by conditions which can be
illustrated by considering the rhombus–triangle tiling. Unlike squares,
two rhombi can be stacked either such that their short diagonals are
parallel (as in the 44

a cluster in Fig. 3b) or in a zigzag fashion (as in the 44
b

cluster in Fig. 3b). To admit the zigzag rhombus sequence in a random
tiling, two nontrivial local tile clusters are needed—one containing a
pair of adjacent rhombi with their acute angles pointing to the vertex
and the other containing a pair of rhombi in the obtuse orientation. In
the HD18 phase, there exist three clusters that accomplish this, all includ-
ing three rhombi and one or two triangles (Fig. 3b). We refer to these
clusters as special because they are only compatible with the 80u–100u
shapes of rhombi. Also present are five generic clusters containing either
zero, three or six triangles and four, two and zero rhombi, respectively.

The LD12 phase is composed of polygonal tiles including the C tri-
angle, the regular dodecagon, and several winding and meandering shapes
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Figure 2 | Bond orientational order. The 10-, 12-, 18- and 24-fold bond
orientational order correlation functions characteristic of the respective
quasicrystals shown in Fig. 1;r/s is the distance expressed in units of hard-core
diameter s.
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Mosaic two-lengthscale quasicrystals
T. Dotera1, T. Oshiro1 & P. Ziherl2,3

Over the past decade, quasicrystalline order1 has been observed in many
soft-matter systems: in dendritic micelles2, in star3 and tetrablock4

terpolymer melts and in diblock copolymer5 and surfactant micelles6.
The formation of quasicrystals7–9 from such a broad range of ‘soft’
macromolecular micelles suggests that they assemble by a generic
mechanism rather than being dependent on the specific chemistry
of each system. Indeed, micellar softness has been postulated7 and
shown to lead to quasicrystalline order10. Here we theoretically explore
this link by studying two-dimensional hard disks decorated with step-
like square-shoulder repulsion that mimics, for example, the soft alkyl
shell around the aromatic core in dendritic micelles2. We find a family
of quasicrystals with 10-, 12-, 18- and 24-fold bond orientational order
which originate from mosaics of equilateral and isosceles triangles
formed by particles arranged core-to-core and shoulder-to-shoulder.
The pair interaction responsible for these phases highlights the role
of local packing geometry in generating quasicrystallinity in soft
matter, complementing the principles that lead to quasicrystal forma-
tion in hard tetrahedra11,12. Based on simple interparticle potentials,
quasicrystalline mosaics may well find use in diverse applications
ranging from improved image reproduction13 to advanced photonic
materials14.

The simple rules needed to encode the quasicrystalline order are as
remarkable as the order itself. All that is required to create a one-
dimensional quasicrystal is the Fibonacci sequence of long and short
segments such that their length and number ratios are equal to the
golden ratio t 5 (1 1

ffiffiffi
5
p

)/2 < 1.618. Also pervaded by t is the arche-
typal Penrose tiling, the two-dimensional analogue of the Fibonacci
quasicrystal composed of a small set of prototiles, such as the fat and
the skinny Penrose rhombi15. Because the golden ratio represents the
geometry of the regular pentagon, Penrose tiling must have a non-
crystallographic tenfold symmetry directly related to the shape of the
Robinson triangles forming the prototiles15.

The Robinson triangles are a very useful concept for constructing
quasicrystals from particles because in two dimensions the local struc-
ture of three particles with a two-lengthscale pair interaction is either
an isosceles or an equilateral triangle (Fig. 1c). Indeed, properly tailored
shoulder-like interactions as well as single-well and double-well inter-
actions (examples are simple step-like potentials16 and hard-core repul-
sion combined with square-well attraction17) do induce the formation
of decagonal17–19 and dodecagonal quasicrystals16,19,20. Here we propose
a bottom-up framework for two-lengthscale quasicrystals that is analo-
gous to the canonical-cell tiling model21, showing that such quasicrystals

1Department of Physics, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan. 2Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia. 3Jožef
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
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Figure 1 | Real-space structures and diffraction patterns. a, Snapshot
illustrating the mosaic nature of two-lengthscale quasicrystals; shown here is
the core-only representation of the HD12 phase with shoulder-to-core ratio
l 5 1.40, reduced temperature H 5 kBT/e 5 0.278 and packing fraction
g 5pNs2/4A 5 0.770 where N is the number of disks in a box of area A.
b, Hard-core/square-shoulder pair interaction. c, Local disk packings: collapsed
equilateral (C), short isosceles (S), long isosceles (L) and expanded equilateral
triangle (E). d, Location of quasicrystals in the phase diagram. Dashed lines

represent two hexagonal phases built from C and E triangles and two rhombic
phases built from S and L triangles, respectively. e–j, HD12 (e; same parameters
as in a), HD18 (f; l 5 1.27, H 5 0.208, g 5 0.780), LD10 (g; l 5 1.60,
H 5 0.133, g 5 0.550) and LD12 (h; l 5 1.95, H 5 0.154, g 5 0.430), LD18
(i; l 5 1.43, H 5 0.0885, g 5 0.490) and LD24 (j; l 5 1.29, H 5 0.098,
g 5 0.595) phases. Bonds drawn in the core-only representation (a and the
bottom-left parts of panels e–f) accentuate the polygonal tiles.
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FIG. 1: Composite isotropic, repulsive potential [1]. The hard-core of the particles is

defined by the length scale �0. On top of that, particles also experiment repulsive forces

coming from a soft corona of energy ✏ when their distances is smaller than the length scale

�1.

I. MODEL

We consider a two-dimensional system of particles that interact in pairs via the isotropic,

purely repulsive potential

V (r) =
�������������������

+∞, r < �0

✏, �0 < r < �1

0, r > �1

(1)

that is shown in Fig. 1. The physics of this model is then controled by the interplay between

the ratio of length-scales �1��0 and the energy scale ✏.

II. COMPARISON OF SCALES

It is useful to consider comparisons between our system and the limits of purely hard or

soft core repulsion between particles. In order to do so, we define length scale

[L] = �0, (2)

and energy scale

[E] = ✏. (3)
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Quantum Phases
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FIG. 1: Composite isotropic, repulsive potential [1]. The hard-core of the particles is

defined by the length scale �0. On top of that, particles also experiment repulsive forces

coming from a soft corona of energy ✏ when their distances is smaller than the length scale

�1.

I. MODEL

We consider a two-dimensional system of particles that interact in pairs via the isotropic,

purely repulsive potential

V (r) =
�������������������

+∞, r < �0

✏, �0 < r < �1

0, r > �1

(1)

that is shown in Fig. 1. The physics of this model is then controled by the interplay between

the ratio of length-scales �1��0 and the energy scale ✏.

II. COMPARISON OF SCALES

It is useful to consider comparisons between our system and the limits of purely hard or

soft core repulsion between particles. In order to do so, we define length scale

[L] = �0, (2)

and energy scale

[E] = ✏. (3)
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Quantum Quasicrystals

FIG. 1: Composite isotropic, repulsive potential [1]. The hard-core of the particles is

defined by the length scale �0. On top of that, particles also experiment repulsive forces

coming from a soft corona of energy ✏ when their distances is smaller than the length scale

�1.

I. MODEL

We consider a two-dimensional system of particles that interact in pairs via the isotropic,

purely repulsive potential

V (r) =
�������������������

+∞, r < �0

✏, �0 < r < �1

0, r > �1

(1)

that is shown in Fig. 1. The physics of this model is then controled by the interplay between

the ratio of length-scales �1��0 and the energy scale ✏.

II. COMPARISON OF SCALES

It is useful to consider comparisons between our system and the limits of purely hard or

soft core repulsion between particles. In order to do so, we define length scale

[L] = �0, (2)

and energy scale

[E] = ✏. (3)
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FIG. 1: Composite isotropic, repulsive potential [1]. The hard-core of the particles is

defined by the length scale �0. On top of that, particles also experiment repulsive forces

coming from a soft corona of energy ✏ when their distances is smaller than the length scale

�1.

I. MODEL

We consider a two-dimensional system of particles that interact in pairs via the isotropic,

purely repulsive potential

V (r) =
�������������������

+∞, r < �0

✏, �0 < r < �1

0, r > �1

(1)

that is shown in Fig. 1. The physics of this model is then controled by the interplay between

the ratio of length-scales �1��0 and the energy scale ✏.

II. COMPARISON OF SCALES

It is useful to consider comparisons between our system and the limits of purely hard or

soft core repulsion between particles. In order to do so, we define length scale

[L] = �0, (2)

and energy scale

[E] = ✏. (3)
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Competition of potential and kinetic energy 
(different from the soft-core)

Figure 9: Configuration of a labyrinth and the associated di↵raction pattern after ensemble
averaging.

that is able to promote peaks in the di↵raction pattern, as shown in Fig. 9. Notice that the
di↵raction pattern exhibits ring structures with a certain number of peaks.

3.3 Bond orientational order parameter

The di↵raction pattern in Fig. 9 reveals the existence of a certain structure in the configu-
ration of particles. Even though correlations are not long ranged in the sense that they fall
o↵ for large distances, we can see that locally the particles are arranged in a quite specific
way. This sort of arrangement is encapsulated in the bond orientational order parameter
�. The idea here is too look across the system for neighboring particles such that each pair
constitutes a bond b. Then we look at the angles ✓b that these Nb bonds make with an
arbitrary axis and calculate the result of their interference from a plane wave perspective.
Put into an equation, we have

�m =

*�����
1

Nb

X

b

e
im✓b

�����

2+
, (65)

where m is the bond mode. If �m 6= 0 for a certain m, the system locally has m-fold
symmetry. For instance, the existence of 12 peaks in the di↵raction pattern of Fig. 9 signals
a non-vanishing �12 order parameter, which is indeed the case as shown in Fig. 10.

The behavior of the correlation function of this order parameter, which is enclosed in

Gm(r) =

������
1

nr

X

|~r1�~r2|=r

exp [im(✓~r1 � ✓~r2)]

������
, (66)

can be used to distinguish between quasicrystals, BOO phases and hexatic phases, as shown
in Table 2, extracted from [3].

3.4 Density matrices

Density matrices ⇢ are the fundamental ingredient in PIMC simulations. One should always
take care in choosing this input since it can largely facilitate correct calculations of physical
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Pupillo Ziherl and Cinti arxiv:1905.12073 

Fourier transform two equal-depth negative 
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Quantum cluster quasicrystals
N=8192, t=0.03, 𝜌r20=0.8, Λ=0.1



Conclusions

• Crystalline phases: Triangular, superfluid stripes and 
quasicrystals.

• Quantum fluctuations and crystallization: hard-core and 
soft-core interactions.

• Perspectives: systematic characterization of the quantum phases 
with non-local potentials.
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Path Integral Monte Carlo

FIG. 1: Composite isotropic, repulsive potential [1]. The hard-core of the particles is

defined by the length scale �0. On top of that, particles also experiment repulsive forces

coming from a soft corona of energy ✏ when their distances is smaller than the length scale

�1.

I. MODEL

We consider a two-dimensional system of particles that interact in pairs via the isotropic,

purely repulsive potential

V (r) =
�������������������

+∞, r < �0

✏, �0 < r < �1

0, r > �1

(1)

that is shown in Fig. 1. The physics of this model is then controled by the interplay between

the ratio of length-scales �1��0 and the energy scale ✏.

II. COMPARISON OF SCALES

It is useful to consider comparisons between our system and the limits of purely hard or

soft core repulsion between particles. In order to do so, we define length scale

[L] = �0, (2)

and energy scale

[E] = ✏. (3)
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Cao-Berne approximation for the hard-core

Semiclassical treatment of the soft-core potential
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