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The renormalization group

The renormalization group has been a central tool in condensed matter
and high energy physics for over 50 years now.1

Basic idea is that an increasing correlation length near phase transition
washes out degrees of freedom which are then incorporated in an
effective Hamiltonian which keeps the free energy constant.
Also: since the early days of Statistical Mechanics, Entropy and
Information have been closely related concepts.

1Kadanoff (60’s)
Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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From Kadanoff to Wilson

Consider a momentum dependent action. The coarse graining is
introduced perturbatively by integrating out fast modes:

Z =

∫
Dφe−S ≈

∫
Dφ<e

−Sk̃ [φ<]

∫
Dφ>e

−S[φ>]−S′[φ<,φ>] (1)

where φ< ≡ φ̃k≤k∗ and φ> ≡ φ̃k>k∗ are the slow and fast modes
respectively. Wilson introduced a momentum-shell coarse-graining
procedure.

Good: Phase diagrams, effective field theories and interesting phases
Outstanding success here, including BKT transition

OK: Critical Exponents to a very good level of approximation
Bootstrap is also extremely precise, based on CFT at the critical
point Addendum September 16th: Now also FRG seems to be doing
very well, but need PMS

“Distasteful”: How do we choose coarse graining?

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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Intermezzo: Variational principles

Variational principles have a long history in the study of
perturbation theory.

Kadanoff (70s) suggested a variational principle in which the
“optimal” coarse graining is one in which the free energy is
minimized at the discrete level.

Feynman and Kleinert (1986) introduced variational
perturbation theory.

In the case of FK, write

S =
1

2
(m2 − Ω2)φ2 +

1

2
Ω2φ2 + gφ4︸ ︷︷ ︸
perturbation

(2)

and then finding Ω by minimizing the energy at the perturbative
level.

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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Exact renormalization group

Wetterich Equation

This whole workshop is based on the following equation:

∂k Γk [{φ}] =
1

2
Tr

(
∂kRk

δ2

δ2{φ}Γk + Rk

)
(3)

which, rather than an equation, is a statement of intent!

Γk [φ] is our guess for the the parameter space dependence

Rk is a mass, e.g. a regulator: it is our recipe for how modes
should be eliminated2

2Polchinsky (1988) , Wetterich (1993), Morris (1994)
Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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Exact renormalization group

Regulator dependence

One of the key problems of the Wetterich equation is the fact that
the regulator Rk is actually arbitrary, e.g. you can introduce your
favourite regulator. The flow equation is infinite dimensional, thus
one has to work out various approximations to test Rk . In principle
the flow should not depend on the regulator, but one uses
oftentimes the optimized regulator3:

Rk (q) = (k2 − q2)θ(k2 − q2) ≡ q2r(y) (4)

as it simplifies the flow equations, with y = q2/k2. It is considered
optimal because the equations converge fast to the UV theory at
k = 0.

3Litim (2000); Litim (2001)
Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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Exact renormalization group

Compactly Supported Smooth (CSS) regulator

The Litim regulator can be generalized to a smooth one4:

Rk (q) = q2rcss(y) =
e

c
yb
0

1−yb
0 − 1

e
c yb

1−yb − 1

θ(1− y) (5)

where y0, b and c are parameters. But the key problem is: how to
choose among the new parameter space?

Variational principles (minimizing the free energy) do not seem to work,
as one gets a monotonic free energy. Other options is the Principle of
Minimum Sensitivity5, e.g. use parameters such that physical parameter
at the least dependent on.

4Nandori (2013)
5Stevenson (1981)

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Information of the RG flow: fast and slow modes

Consider the probability function 6

p(φ, ψ) =
1

Z
e−S[φ,ψ] (6)

for a certain physical system, where

Z =

∫
[Dφ][Dψ]e−S[φ,ψ]. (7)

In particular, one can choose φ and ψ such that these are the slow and
fast modes in a renormalization group approach, e.g. we study the
effective action

eWeff [φ]] =

∫
[Dψ]e−S[φ,ψ]. (8)

where ψ are considered the fast mode that need to be integrated out.
6Apenko (2009)

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Mutual information

Alternatively to the use of variational principles, one can think of
information theoretic principles for the study of the renormalization
group. For instance, one can think of using the mutual information
along the renormalization group flow.Mutual information is defined
as a relative entropy measure. If p(ψ, φ) is the distribution on two
variables,

M =
∑
ψ,φ

p(φ, ψ) log
p(ψ, φ)

p(φ)p(ψ)
. (9)

In the case of discrete this measure already saw some adopters,
obtaining some optimal coarse graining procedures. 7. Our
purpose is to introduce the use of Fisher information for reasons
that will be clear soon.

7Apenko (2009), Lenggenhager et al (2018), Koch-Janusz, Ringel (2018)
Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Central Limit Theorem and RG

Let us consider a probability distribution p(x). We write these
relations for simple 0-dimensional distributions, but these can be
generalized to d−dimensional systems as well. The probability
distribution can be written in terms of the characteristic function
f̂ (t) as

p(x) =
1

2π

∫ ∞
−∞

e−itx f̂ (t)dt

f̂ (t) =

∫ ∞
−∞

e itxp(x)dx (10)

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Let us write the characteristic function in terms of the moments ck

cumulants γk , as

f̂ (t) =
∑

r=0∞

cr
(it)r

r !
= e

∑∞
r=1 γk

(it)r

r ! = eψ̂(t), (11)

from which we see that we can write

p(x) =
1

2π

∫ ∞
−∞

e−itx+ψ̂(t)dt (12)

Let Xi be 2n random variables distributed according to

p(xi ) = N e
− (xi−µi )2

2σ2
i . The characteristic function of Xi is given by

f̂Xi
(t) = e iµi t−

t2σ2
i

2 . (13)

Let us consider now the case µi = 0, σi = 1 for a single variable.
Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory

Information theory and (F)RG



Outline Exact Renormalization Group Information theory Conclusions and Outlook

General information theoretic framework

Let X1 · · ·Xn be random variables sampled from F (x). Let us
assume that EXi = 0,EX 2

i = 1. We define γ = EX 3
i , τ = EX 4

i .
We want to study the distribution of the variable

Zn =
1√
n

n∑
j=1

Xj . (14)

Let us define the renormalization group transformation (grouping)

φn(t) = Ee itZn = E[φ̂n(
t√
n

)] ≡ Rφ(t), (15)

which is a convolution, and which is known to have a finite
variance if the sample variables comes from a distribution which
has finite variance.This step can be interpreted as a renormalization
group transformation.8 The scaling t√

n
is to fix the variance.

8Jona-Lasinio (2001); see also notes by Codello
Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory

Information theory and (F)RG



Outline Exact Renormalization Group Information theory Conclusions and Outlook

General information theoretic framework

We now use the Taylor expansion for φ( t√
n

):

ψ(
t√
n

) = E
(

1 +
itX√
n

+
1

2

(it)2X 2

n
+

1

6

(it)3X 3

n
√
n

+
1

24

(it)4X 4

n2
+ · · ·

)
= 1− 1

2

t

n
− i

6

t3γ

n
√
n

+
1

24

t4τ

n2
+ · · · , (16)

from which, after elevating to the n-th power, we get

ψn(
t√
n

) =
(

(1− t2

2n
)n + (1− t2

2n
)n−1(− i

6

t3γ√
n

+
1

24

t4τ

n
)

+ (1− t2

2n
)n−2 (n − 1)γ2(it)6

72n2

)
+O(

1

n
) (17)

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

We have

ψ̂n(t) = e−
t2

2

(
1 +

(it)3γ

6
√
n

+
(it)4(τ − 3)

24n
+

(it)6γ2

72n
+ · · ·

)
(18)

We thus find that, using the Hermite polynomials, we have

Pn(x) =

∫ ∞
−∞

e−itx ψ̂n(t)
dt

2π

=

(
1 +

H3(x)γ

6
√
n

+
H4(x)(τ − 3)

24n
+

H6(x)γ2

72n

)
φ(x)

(19)

which is called Edgeworth expansion. What signals the
convergence of the CLT?

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Fisher information

Let us now introduce the properties of the Fisher information. The
Fisher information is a measure of the amount of information
associated with a certain parameter b, specifically,
The quantity

l(x , b) =
d

db
log pb(x) (20)

is called the score function and is the derivative of the
log-likelihood of a certain model, and describes the sensitivity of
the probability distribution on the parameter b. The Fisher
information is thus just a measure of average score. Fisher
information is defined as

〈(l(x , b))2〉, (21)

which is maximum when the Fisher information is high.
Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Fisher Information 2

There are two equivalent definitions of the Fisher information if the
distribution is C2 in the parameter b:

I (θ) =

∫
dx pb(x) (∂b log pb(x))2 =

∫
dx

(∂bpb(x))2

pb(x)

If C 2 = −
∫

dx pb(x)∂2
b log pb(x)← our definition (22)

Specifically, Fisher information is high if the parameter b is
informative. Thus:
Fisher information is a measure of the dependence of a
distribution on a parameter. The higher I , the more
information b contains about the distribution.

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Fisher Information 3

There are many definitions of the Fisher information, which we
now describe. The Fisher information of a probability distribution
p(x , ~b) which depends on a set of parameters ~b, is defined as

I (~b) =

∫
dx p(x , ~b)

(
~∇b log (p(x , b))

)2
, (23)

Example For instance, suppose that for a normal distribution the
value of µ is unkown, but σ is given. Then

log pµ(x) = −1

2
log(2πσ2)− (x − µ)2

2σ2
, (24)

and thus

I (µ) =
1

σ2
← Related to the Cramer-Rao bound (25)

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Also you have to admit that Fishers usually get it right

and

And yes, it’s not the same Fisher
Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Interestingly, it has been shown using the Edgeworth expansion
that if we define the relative Fisher information for the CLT:

F (Zn||Z ) = F (Z )− F (Zn) =

∫ (
p′(x)

p(x)
− p′n(x)

pn(x)

)2

p(x)dx (26)

one has9

F (Zn||Z ) =
c1

n
+

c2

n2
+ · · · , (27)

e.g. Fisher information should be converging in the central limit
theorem.
Hypothesis: can we use Fisher information along the flow?

Can it tell something new?

9Bobkov, Chistyakov, Götze (2014)
Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Functional case

In the case of the Polchinski and Wetterich approaches for the
functional renormalization group, one typically writes

Zk =

∫
[Dφ]e−S[φ]−Sk [φ]. (28)

where Sk [φ] is a regulator which depends on a scale k. This scale
is what defines fast and slow modes. Thus,

eWk [φ]] =

∫
[Dφ]e−S[φ]−Sk [φ]. (29)

and where

Sk [φ] =

∫
x ,y

∑
α,β

1

2
φα(Ck )α,βφβ (30)

and Ck is the regulator. The connection with the previous picture
of fast and slow modes is the following.

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

First we consider a measure of the following type

dµΛ(φ) = Dφe−
1
2

∫
x,y φ(x)C−1

Λ (x−y)φ(y) (31)

with CΛ(p) = (1− θε(P, Γ))C (p) where θε(P, Γ) simply represents
a UV cutoff and ε is a parameter which controls its smoothness.
The block spin idea is thus connected to the following
decomposition. We assume that we can write in momentum space
the following decomposition:

φk = φ〈k + φ〉k (32)

where the scale k defines the modes that are fast and slow. Since
now on we drop the symbol k in the fields.

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

We then divide the propagator in two parts for the two modes, for an
arbitrary regulator as before, as

φ〈k → Ck (p), φ〉k → Cλ − Ck (p)

where Ck defines our arbitrary scale. Then the partition function is
written as

Z =

∫
dµCΛ

(φ)e−
∫

p
V (φ) =

∫
dµCk

(φ〈)dµ(CΛ−Ck )(φ〉)e
−

∫
V (φ〈+φ〉) (33)

Thus, the probability distribution that we had introduced at the
beginning of this section can be simply written as

p(φ, ψ)→ p(φ, k , {b}) (34)

where {b} are the parameters which enter in the family of regulators Rk ,
and

p(φ, k , b) =
e−S(φ,k,b)

Zk (b)
=

e−S[φ]−Sk (φ,b)

Zk (b)
(35)

An open question is how to choose, given a family of regulators Rk , the
right regulators in order to perform the renormalization group.

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory

Information theory and (F)RG



Outline Exact Renormalization Group Information theory Conclusions and Outlook

General information theoretic framework

Imagine that Ötzi had to solve FRG

he would do it in zero dimensions first

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory

Information theory and (F)RG
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General information theoretic framework

Flow equation for 0d field theories, also called integrals

What is the FRG equivalent of the 0d probability “Jona-Lasinio”
approach?10 Consider an integral:

Z =

∫ ∞
−∞

f (x)dx (36)

with f (x) ≥ 0, and can be interpreted as a . In this case, we can
write 11

f (x) = e−S(x) (37)

Consider now a “regulator”:

fk (x , j) = e−S(x)− 1
2

k2x2−jx → Zk (j) =

∫ ∞
−∞

fk (x)dx ≡ eWk (j) (38)

10Jona-Lasinio (2001)
11see for instance Flörchinger thesis(2014)

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Following the same derivation for the Wetterich equation, we can write a
flow equation as a function of the regulator momentum k

∂k Γk (φ) =
1

2

∂kk
2

δ2

δ2φΓk (φ) + k2
(39)

where Γk (φ) = j [φ]φ−Wk (j [φ])− 1
2k

2x2 and

j [φ] = supφ

(
j [φ]φ−Wk (j [φ])

)
. It can be shown that

Zk = e−Γk [φ=0] (40)

Now, we are interested in the regulator dependence. Consider

Rk =
1

2
k2αx2 (41)

which generalizes to a new parameter α the previous regulator. Can we
see that α = 1 should be “optimal”?

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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Outline Exact Renormalization Group Information theory Conclusions and Outlook

General information theoretic framework

Danger! Danger! Danger! Simple case follows

Case under control (we know the solution):

S(x) =
1

2
m2x2 (42)

but we can solve any integrals. in this case, we must have

lim
k→0

Zk (j = 0) =

√
2π

m
. (43)

This means that for m = 1 this is a very complicated way of
calculating

√
2π.

In order to solve this integral, we can choose an initial condition
for the (functional) differential equation such that

lim
k→∞

Γk [φ] = S(φ) + log

(
k2α

√
2π

)
(44)

this is a technical but important point.
Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Procedure: standard truncation scheme.

Γk [φ] =
n∑

j=0

aj [k]φk (45)

If n = 3, we have for instance

a′0(k)− k2α−1α

2a2 + k2α
= 0 (46)

6a3(k)α2k2α−1

(2a2 + k2α) 2
+ a′1 = 0 (47)

a′2(k)− 36a3
2k2α−1α

(2a2(k) + k2α) 3
= 0 (48)

216a3(k)3αk2α−1

(2a2(k) + k2α) 4
+ a′3(k) = 0 (49)

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

|Zk −
√

2π/m| → 0 as k → 0

α=1

α=2

α=3

α=4
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Hypothesis: Does the Fisher information say anything about
the parameter α?

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Procedure for calculating Fisher

How to calculate pk (x , α)? Using the definition we had seen we
have that

p(x , α) =
e−S(x)

Z
→ pk (x , α) =

e−S(x)− 1
2

k2αx2

Zk
= eΓk (α)−S(x)− 1

2
k2αx2

(50)
We can calculate Fisher information along the flow. As it turns
out, we have actually in the Gaussian case

I (x , α) = −
∫ ∞
−∞

p(x , k , α)∂2
α log p(x , k, α)

= 〈x2〉pk (x ,α)f (k , α) + G (k) (51)

with G (k)→ 0 as k → 0, and one can use the fact that
∂αΓk = k log k

α ∂k Γk .

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Fisher information seems to suggest a value of α = 1

α=1

α=2

α=3

α=4

2 4 6 8 10
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0.15

0.20

0.25

t=1/k

F
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h
er

We see that the convergence of the Fisher has a hierarchy in the
exponents, which is consistent with the convergence.

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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General information theoretic framework

Fisher information seems to suggest a value of α

In case for S [φ] = 1
2φ

4

α=.9
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The equations seem to converge only for α = 1. Again: this is a
work in progress, take this with a grain of salt.

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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Our preliminary results seem to suggest that Fisher information
might be a good measure to estimate the role of the parameters:
the one that contains the most amount of information about the
system, at the expense of a slower convergence. Next steps:

Test our hypothesis on Landau-Ginzburg → Check the critical
exponents

Future work: make α(k) dynamical. We have some ideas in
this regard.

Francesco Caravelli,Theory Division and CNLS, Los Alamos National Laboratory
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The end.

Many thanks to ACRI for support!
caravelli@lanl.gov
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