Convergence of the derivative expansion

Bertrand Delamotte, LPTMC, Sorbonne University, Paris

Trento, September 2019

In collaboration with

- I. Balog (Croatia)
- H. Chaté (Saclay, France)
- M. Marohnic (Sweden)
- N. Wschebor (Uruguay)

Wilson's idea: a scale by scale summation over fluctuations

Traditional formulation of field theory= integral problem:

$$\mathcal{Z} = \int D\phi(x)e^{-H[\phi(x)]+\int d^dx B(x)\phi(x)}$$

with for instance

$$H = \int d^d x \left(\frac{1}{2} (\nabla \phi(x))^2 + \frac{1}{2} m_0^2 \phi(x)^2 + \frac{g_0}{4!} \phi^4(x) \right)$$

While perturbation theory consists in expanding in power series $\exp\left(-\frac{g_0}{4!}\int d^dx\,\phi^4(x)\right)$.

Wilson's idea: transform it into a differential problem. This is the "block-spin" idea:

The fluctuations are integrated over scale by scale and not in one shot.

Wilson's RG: general idea

Build an interpolation between

H= hamiltonian or action defined at $k=\Lambda \sim a^{-1}$ no fluctuations are taken into account

and

the Gibbs free energy Γ at scale $k = L^{-1} \rightarrow 0$ all fluctuations have been integrated over

Gibbs free energy = Legendre transform of the Helmoltz free energy $F = \log \mathcal{Z} = 1$ PI generating functional.

 \Rightarrow introduce a new scale k that will vary between Λ and 0 such that when k is decreased more and more fluctuations are integrated over.

Integration over the rapid modes:

$$\mathcal{Z}[B] = \int D\varphi \exp \left\{ -H[\varphi] + \int_X B(x)\varphi(x) \right\}$$

<u>hyp.:</u> the system is close to criticality $(\xi \gg a \sim \Lambda^{-1} \Rightarrow m_R \ll \Lambda)$

- $\phi(\vec{x}) = \langle \varphi(\vec{x}) \rangle$
- $\Gamma[\phi] + \ln \mathcal{Z}[B] = \int_X B_X \phi_X$

Idea: deform the model

integrate over the rapid modes only $\;\to\;$ freeze the slow modes $\to\;$ make them non-critical $\;\to\;$ give them a large mass.

Wilson's RG: modern implementation

build a one-parameter family of models, indexed by a scale k:

$$\mathcal{Z}[B] \to \mathcal{Z}_{\mathbf{k}}[B] = \int D\varphi \exp\left\{-H[\varphi] - \Delta H_{\mathbf{k}}[\varphi] + \int_{x} B(x)\varphi(x)\right\}$$
$$\Delta H_{\mathbf{k}}[\varphi] = \frac{1}{2} \int_{a} R_{\mathbf{k}}(q) \varphi_{q} \varphi_{-q}$$

- when $k = \Lambda$ all fluctuations are frozen \Rightarrow mean field is exact: $\Rightarrow \Gamma_{k-\Lambda}[\phi] = H[\phi]$
- ullet when k=0 all fluctuations are integrated out and the original model is retrieved

$$\forall q, \ \ R_{k=0}(q)=0, \quad \Rightarrow \ \ \mathcal{Z}_{k=0}[J]=\mathcal{Z}[J] \ \text{and} \ \Gamma_{k=0}=\Gamma$$

then $\Gamma_k[\phi]$ interpolates between the microphysics at $k=\Lambda$ and the macrophysics at k=0.

The flow equation for $\Gamma_k[\phi]$ writes:

$$\partial_k \Gamma_k[\phi] = \frac{1}{2} \int_q \partial_k R_k(q) G[q;\phi]$$

where $G[q;\phi]$ is the full 2-point function (full propagator): $G[q;\phi] = (\Gamma_k^{(2)} + R_k)^{-1}$ with $\Gamma_k^{(2)}[q;\phi] = \frac{\delta^2 \Gamma_k[\phi]}{\delta \phi(q) \delta \phi(-q)}$

Some properties of the flow equation:

- differential formulation of field theory
- involves only one integral
- the initial condition is the (microscopic) bare theory
- good properties of decoupling of the massive and rapid modes
- starting point of non-perturbative approximation schemes (not linked to an expansion in a small coupling constant)
- BUT it is a tremendously complicated equation: functional, non linear and integral...
- ⇒ it leads to very few exact results and requires approximation.

Sector at vanishing momentum : Derivative Expansion (DE)

$$\Gamma_k[\phi] = \int_{\mathcal{X}} \left\{ U_k(\phi) + \frac{1}{2} Z_k(\phi) (\nabla \phi(x))^2 + O(\nabla^4) \right\}$$

flow of $\Gamma_k \Rightarrow$ flow of functions: $U_k(\phi), Z_k(\phi), ...$

The DE consists in keeping all $\Gamma_k^{(n)}$ correlation functions and expanding in their momenta (more precisely in $\frac{p_i}{k}$).

Most celebrated: Local Potential Approximation (LPA):

$$\Gamma_k^{\text{LPA}} = \int d^d x \left(U_k(\phi) + \frac{1}{2} (\nabla \phi)^2 \right)$$

- bare momentum dependence of $\Gamma_k^{(2)}(p)$;
- zero momentum approximation for all other correlation functions;
- \rightarrow exact for the flow of U_k when $N \rightarrow \infty$, 1-loop exact in $d = 4 \epsilon$, 1-loop exact for O(N) in $d = 2 + \epsilon$ (actually: the LPA').

Nonuniversal results obtained with the LPA: T_c in d=3

$$\Gamma_k^{\text{LPA}} = \int d^d x \left(U_k(M) + \frac{1}{2} (\nabla M)^2 \right)$$

 \rightarrow requires a reformulation of the NPRG formalism on the lattice (T. Machado, N. Dupuis: Phys. Rev. E 82, 041128 (2010))

$$\partial_k U_k(M) = \frac{k^{d+1}}{k^2 + U_k''(M)}$$

	$T_c^{ m MF}/J$	$T_c^{ m exact}/J$	$T_c^{ m NPRG}/J$
Ising 3D	6	4.51	4.48
XY 3D	3	2.20	2.18
Heisenberg 3D	2	1.44	1.42

Universal results obtained with the LPA: ν and η in d=3

$$\nu=0.651$$
 and $\eta=0$

"exact" results

$$\nu = 0.630 \ {\rm and} \ \eta = 0.0363$$

Accuracy on both universal and nonuniversal results = 3 - 4 %

Universal results obtained with the LPA: ν and η in d=3

$$u=0.651$$
 and $\eta=0$ "exact" results $u=0.630$ and $\eta=0.0363$

Accuracy of both universal and nonuniversal results = 3 - 4 %

Other completely nontrivial results:

- convexity of the effective potential $U(\phi)$ in the broken phase,
- phase diagrams in reaction-diffusion systems, ...

BUT the successes of the LPA do not prove the convergence of the DE!

Beyond LPA for the O(N) models

$$\Gamma_k[\phi] = \int_X \left\{ U_k(\phi) + \frac{1}{2} Z_k(\phi) (\nabla \phi(x))^2 + O(\nabla^4) \right\}$$

Strangely: very few results!

Beyond LPA for the O(N) models

$$\Gamma_k[\phi] = \int_X \left\{ U_k(\phi) + \frac{1}{2} Z_k(\phi) (\nabla \phi(x))^2 + O(\nabla^4) \right\}$$

Strangely: very few results!

- OK for Ising at order ∇^2 of the DE in d=3

L. Canet, B. D., D. Mouhanna, J. Vidal, Phys.Rev. D67, 2003 :

$$\nu = 0.6278 \ {\rm and} \ \eta = 0.045.$$

"exact" results

 $\nu=0.6300$ and $\eta=0.036\Rightarrow$ accuracy better than 1% for ν .

Beyond LPA for the O(N) models

$$\Gamma_k[\phi] = \int_{\mathcal{X}} \left\{ U_k(\phi) + \frac{1}{2} Z_k(\phi) (\nabla \phi(x))^2 + O(\nabla^4) \right\}$$

Strangely: very few results!

- OK for Ising at order ∇^2 of the DE in d=3:

L. Canet, B. D., D. Mouhanna, J. Vidal, Phys.Rev. D67, 2003 :

$$u = 0.6278 \text{ and } \eta = 0.045.$$

"exact" results

 $\nu =$ 0.6300 and $\eta =$ 0.036 \Rightarrow accuracy better than 1% for $\nu.$

- Only preliminary results for Ising at order $abla^4$ of the DE
- L. Canet, B. D., D. Mouhanna, J. Vidal, Phys.Rev. B68, 2003
- And O(N) models studied in detail at order $abla^2$ only in 2014!

P. Jakubczyk, N. Dupuis, B. D., Phys. Rev. E 90, 2014

Two crucial questions: the convergence and the accuracy of the DE

Two strategies:

- produce analytical arguments about the convergence of the DE,
- obtain numbers at order ∇^6 .

... and study in detail the impact of the choice of regulator $R_k(q)$ on the results:

- in the exact theory: physical quantities do not depend on R_k ,
- whereas a spurious dependence shows up once approximations are performed.

Renormalized mass at $p = 0 \leftrightarrow$ inverse correlation length: $m = \xi^{-1}$

Massive theory in QFT = Non critical theory in Stat. Mech. \Rightarrow It is non singular.

 \rightarrow When m > 0, the momentum expansion of $\Gamma^{(2)}(p, m, \phi = 0)$ exists and has a finite radius of convergence:

$$\frac{\Gamma^{(2)}(p,m)}{\Gamma^{(2)}(0,m)} = \frac{\Gamma^{(2)}_{k=0}(p,m)}{\Gamma^{(2)}_{k=0}(0,m)} = 1 + \frac{p^2}{m^2} + \sum_{n=2}^{\infty} c_n \left(\frac{p^2}{m^2}\right)^n.$$

The c_n are universal close to criticality.

$$\frac{\Gamma^{(2)}(p,m)}{\Gamma^{(2)}(0,m)} = \frac{\Gamma^{(2)}_{k=0}(p,m)}{\Gamma^{(2)}_{k=0}(0,m)} = 1 + \frac{p^2}{m^2} + \sum_{n=2}^{\infty} c_n \left(\frac{p^2}{m^2}\right)^n$$

The series is alternating and has a finite radius of convergence:

- in the symmetric phase: $\mathcal{R}=9$: $c_{n+1}/c_n\sim -1/9$ for $n\to\infty$,
- in the broken phase: $\mathcal{R}=4$: $c_{n+1}/c_n\sim -1/4$ for $n\to\infty$.

Why?

$$\frac{\Gamma^{(2)}(p,m)}{\Gamma^{(2)}(0,m)} = \frac{\Gamma^{(2)}_{k=0}(p,m)}{\Gamma^{(2)}_{k=0}(0,m)} = 1 + \frac{p^2}{m^2} + \sum_{n=2}^{\infty} c_n \left(\frac{p^2}{m^2}\right)^n$$

The series is alternating and has a finite radius of convergence:

- in the symmetric phase: $\mathcal{R}=9$: $c_{n+1}/c_n\sim -1/9$ for $n\to\infty$,
- ullet in the broken phase: $\mathcal{R}=$ 4: $c_{n+1}/c_n\sim -1/4$ for $n
 ightarrow\infty$

because the singularity nearest to the origin in the complex plane of p^2 is at $|p|^2 = 9m^2$ (symm. phase) or $|p|^2 = 4m^2$ (broken phase).

Why?

$$\frac{\Gamma^{(2)}(p,m)}{\Gamma^{(2)}(0,m)} = \frac{\Gamma^{(2)}_{k=0}(p,m)}{\Gamma^{(2)}_{k=0}(0,m)} = 1 + \frac{p^2}{m^2} + \sum_{n=2}^{\infty} c_n \left(\frac{p^2}{m^2}\right)^n$$

The series is alternating and has a finite radius of convergence:

- ullet in the symmetric phase: $\mathcal{R}=9$: $c_{n+1}/c_n\sim -1/9$ for $n o\infty$,
- in the broken phase: $\mathcal{R}=4$: $c_{n+1}/c_n\sim -1/4$ for $n\to\infty$ because the singularity nearest to the origin in the complex plane of p^2 is at $p^2=9m^2$ (symm. phase) or $p^2=4m^2$ (broken phase).

Because the Minkowskian (that is, Wick rotated) version of the theory has a 3- (2-) particle cut, that is, a branch cut at p=3m (p=2m) in the symmetric (broken) phase (Källén-Lehmann decomposition).

Symm phase: $c_2 = -4 \times 10^{-4}$, $c_3 = 0.9 \times 10^{-5}$, broken phase: $c_2 \simeq -10^{-2}$, $c_3 \simeq 4 \times 10^{-3}$.

The DE of the NPRG in the critical case: the d=3 Ising (ϕ^4) model

For k > 0, a critical theory is made noncritical by $R_k(q)$ $\Rightarrow R_k(q)$ gives an effective mass $m_{\rm eff}$ to the theory.

We expect the regularized critical theory to be roughly "in between" the theory in its symmetric and broken phase:

Expected radius of conv.: $4 \le \mathcal{R} \le 9$.

Order 6 of the DE

$$\begin{split} \Gamma_{k}[\phi] &= \int d^{d}x \Big[U_{k}(\phi) + \frac{1}{2}Z_{k}(\phi)(\partial\phi)^{2} \\ &+ \frac{1}{2}W_{k}^{a}(\phi)(\partial_{\mu}\partial_{\nu}\phi)^{2} + \frac{1}{2}\phi W_{k}^{b}(\phi)(\partial^{2}\phi)(\partial\phi)^{2} \\ &+ \frac{1}{2}W_{k}^{c}(\phi)\left((\partial\phi)^{2}\right))^{2} + \frac{1}{2}X_{k}^{a}(\phi)(\partial_{\mu}\partial_{\nu}\partial_{\rho}\phi)^{2} \\ &+ \frac{1}{2}\phi\tilde{X}_{k}^{b}(\phi)(\partial_{\mu}\partial_{\nu}\phi)(\partial_{\nu}\partial_{\rho}\phi)(\partial_{\mu}\partial_{\rho}\phi) \\ &+ \frac{1}{2}\phi\tilde{X}_{k}^{c}(\phi)\left(\partial^{2}\phi\right)^{3} + \frac{1}{2}\tilde{X}_{k}^{d}(\phi)\left(\partial^{2}\phi\right))^{2}(\partial\phi)^{2} \\ &+ \frac{1}{2}\tilde{X}_{k}^{e}(\phi)(\partial\phi)^{2}(\partial_{\mu}\phi)(\partial^{2}\partial_{\mu}\phi) + \frac{1}{2}\tilde{X}_{k}^{f}(\phi)(\partial\phi)^{2}(\partial_{\mu}\partial_{\nu}\phi)^{2} \\ &+ \frac{1}{2}\phi\tilde{X}_{k}^{g}(\phi)\left(\partial^{2}\phi\right)\left((\partial\phi)^{2}\right)^{2} + \frac{1}{96}\tilde{X}_{k}^{b}(\phi)\left((\partial\phi)^{2}\right)^{3} \Big]. \end{split}$$

To reach the fixed point (FP): need to work with dimensionless and renormalized functions: $\tilde{x}=kx$, $\tilde{\phi}(\tilde{x})=\sqrt{Z_k^0}\,k^{(2-d)/2}\,\phi(x)$

$$Z_k(\phi) = Z_k^0 z_k(\tilde{\phi}), \ W_k^c(\phi) = (Z_k^0)^2 k^{-d} w_k^c(\tilde{\phi})$$

At criticality and for s = 6, the analogue of

$$\frac{\Gamma^{(2)}(p,m)}{\Gamma^{(2)}(0,m)} = \frac{\Gamma^{(2)}_{k=0}(p,m)}{\Gamma^{(2)}_{k=0}(0,m)} = 1 + \frac{p^2}{m^2} + \sum_{n=2}^{\infty} c_n \left(\frac{p^2}{m^2}\right)^n$$

is

$$\frac{\Gamma_k^{(2)}(p,\phi) + R_k(0)}{\Gamma_k^{(2)}(0,\phi) + R_k(0)} = 1 + \frac{Z_k p^2 + W_k^a p^4 + X_k^a p^6}{U_k'' + R_k(0)}$$

$$\xrightarrow[k \to 0]{} 1 + \frac{p^2}{m_{\text{eff}}^2} + \frac{w_a^* v^{*''}}{z^{*2}} \frac{p^4}{m_{\text{eff}}^4} + \frac{x_a^* v^{*''^2}}{z^{*3}} \frac{p^6}{m_{\text{eff}}^6}$$

with
$$m_{\text{eff}}^2 = k^2 v^{*''}/z^*$$
 and $v^{*''} = u^{*''} + R_k(0)/Z_k^0 k^2$.

 c_2 is analogous to $w_a^* v^{*''}/z^{*2}$ c_3 is analogous to $x_a^* v^{*''^2}/z^{*3}$.

Procedure and goal

- 1. Choose a regulator $R_k(q)$ and compute at order $s=0,\cdots,6$ the FP functions: u^*,\cdots,x_h^* ;
- 2. Compute physical quantities, e.g. critical exponents, and study their dependence on R_k and their accuracy/convergence with s;
- 3. Compute $m_{\rm eff}^2 = k^2 v^{*\prime\prime}/z^*$, $w_a^* v^{*\prime\prime}/z^{*2}$ and $x_a^* v^{*\prime\prime^2}/z^{*3}$ to see whether they behave respectively as the mass generated by the regulator and the analogues of c_2 and c_3 .
- 4. Obtain criteria defining what a good regulator is;
- 5. Conclude about the convergence of the DE.

The choice of $R_k(q)$

- DE = Taylor expansion of all $\Gamma_k^{(n)}(\{\mathbf{p}_i\})$ in powers of $\mathbf{p}_i \cdot \mathbf{p}_j/k^2$
- \Rightarrow valid provided $\mathbf{p}_i \cdot \mathbf{p}_j/k^2 < \mathcal{R}$ with $\mathcal{R} \simeq 4-9$;
- \Rightarrow whenever a $\Gamma_k^{(n)}$ is replaced in a flow equation by its DE, the momentum region beyond \mathcal{R} must be efficiently cut off.
- Good news: all flow equations involve $\partial_t R_k(q^2)$ because

$$\partial_k \Gamma_k[\phi] = \frac{1}{2} \int_q \partial_k R_k(q) G[q;\phi]$$

- $\Rightarrow \partial_t R_k(q^2)$ must almost vanish for $|\mathbf{q}| \gtrsim k$.
- $R_k(q^2)$ should behave as k^2 for $|\mathbf{q}| < k$ to freeze the slow modes.
- $\partial_t R_k(q^2)$ and $\partial_{q^2}^n R_k(q^2)$ appear in the flow for $n \le s/2$: they should decrease monotonically to avoid a "bump" at $q^2 = q_0^2 > 0$ where the DE is not accurate.

The choice of $R_k(q)$

We have used three families of regulators

$$W_k(q^2) = \alpha Z_k^0 k^2 y / (\exp(y) - 1)$$
 (1a)

$$\Theta_k^n(q^2) = \alpha Z_k^0 k^2 (1 - y)^n \theta (1 - y) \quad n \in \mathbb{N}$$
 (1b)

$$E_k(q^2) = \alpha Z_k^0 k^2 \exp(-y) \tag{1c}$$

where $y = q^2/k^2$ and α is varied between 0.1 and 10.

Physical quantities, e.g. critical exponents, depend on α at any order s of the DE \Rightarrow one source of arbitrariness that needs to be fixed.

Is it the only one?

A second source of arbitrariness

- $\eta_k = -k\partial_k \ln(Z_k^0)$ becomes the anomalous dimension η at the FP.
- Z_k^0 defined by $Z_k(\phi) = Z_k^0 \ z_k(\tilde{\phi}) \ (z_k(\tilde{\phi}) \ \text{reaches a FP value}).$
- The absolute normalization of both Z_k^0 and $z_k(\tilde{\phi})$ is defined by a "renormalization condition", e.g. $z_k(\tilde{\phi}_0)=1$. In the exact theory, no physical quantity depends on $\tilde{\phi}_0$.
- At any order s of the DE, the critical exponents depend on $\tilde{\phi}_0 \Rightarrow$ another source of arbitrariness that needs to be fixed.
- However, the variations of $\tilde{\phi}_0$ can be compensated by the variations of $\alpha \Rightarrow$ there is only one arbitrariness and not two: possible to fix $\tilde{\phi}_0$ wherever we want (as long as there is a FP) and to study only the variations of α . (reparametrization invariance is not lost within the DE).

Figure: Exponent values $\nu(\alpha)$ and $\eta(\alpha)$ at different orders of the DE for the exponential regulator. Vertical lines indicate $\alpha_{\rm opt}$. LPA (s=0) results do not appear within the narrow ranges of values chosen here.

Principle of minimal sensitivity

The dependence of the exponents on α is such that:

- There is an extremum for both $\nu(\alpha)$ and $\eta(\alpha)$, $\forall s \in [0,6]$.
- The concavity of the curves $\nu(\alpha)$ and $\eta(\alpha)$ alternates at each order (coming from the alternating nature of the DE itself).
- The extremum is chosen as THE optimal value because it is the point where the exponent depends the least on α (principle of minimal sensitivity).
- At a given order s, $\alpha_{\rm opt}^{\nu} \neq \alpha_{\rm opt}^{\eta}$ but they are closer and closer as s increases.
- The concavity becomes larger for both exponents as *s* increases ⇒ PMS Is crucial to select "the best" value of the exponents.

derivative expansion	ν	η
s = 0 (LPA)	0.651(1)	0
s=2	0.6278(3)	0.0449 (6)
s = 4	0.63039(18)	0.0343(7)
s = 6	0.63012(5)	0.0361 (3)
$s \to \infty$	0.6300(2)	0.0358(6)
conformal bootstrap	0.629971(4)	0.0362978(20)

error bars for $s=0,\cdots,6=$ dispersion of results at order s from regulator to regulator.

The $s \to \infty$ extrapolation is based on: $\nu(s) = \nu_{\infty} + a_{\nu}\beta^{-s/2} + b_{\nu}(-1)^{s/2}\beta^{-s/2}$ with $\beta \in [4, 9]$.

Back to m_{eff} , c_2 and c_3

We have:

$$\frac{\Gamma_k^{(2)}(p,\phi) + R_k(0)}{\Gamma_k^{(2)}(0,\phi) + R_k(0)} = 1 + \frac{Z_k p^2 + W_k^a p^4 + X_k^a p^6}{U_k'' + R_k(0)}$$

$$\xrightarrow{k \to 0} 1 + \frac{p^2}{m_{\text{eff}}^2} + \frac{w_a^* v^{*''}}{z^{*2}} \frac{p^4}{m_{\text{eff}}^4} + \frac{x_a^* v^{*''2}}{z^{*3}} \frac{p^6}{m_{\text{eff}}^6}$$

with
$$m_{\text{eff}}^2 = k^2 v^{*''}/z^*$$
 and $v^{*''} = u^{*''} + R_k(0)/Z_k^0 k^2$.

$$c_2$$
 (resp. c_3) is analogous to $w_a^* v^{*''}/z^{*2}$ (resp. $x_a^* v^{*''2}/z^{*3}$).

- ightarrow if $m_{
 m eff}^2$ is generated by the regulator, then $m_{
 m eff}^2 \propto R_k(0) = lpha k^2$,
- $\rightarrow c_3/c_2$ must typically be in [4, 9].

Numerical results for m_{eff}^2 and c_3/c_2

Figure: Squared dimensionless mass generated by the regulator $\tilde{m}_{\text{eff}}^2(\phi_{\min}) = v^{*\prime\prime}/z^*|_{\phi_{\min}}$ computed at the minimum of the potential.

Figure: The ratio $r=x_a^*u^{*''}/(w_a^*z^*)$ as a function of $\tilde{\rho}=\tilde{\phi}^2/2$. The line r=0.25 is a guide for the eyes.

A simple model for $\Gamma_k^{(2)}(p)$

At criticality:

when
$$p \gg k$$
, $\Gamma_k^{(2)}(p, \phi = 0) \simeq \Gamma_{k=0}^{(2)}(p, \phi = 0) \propto p^{2-\eta}$.

when
$$p \ll k$$
, $\Gamma_k^{(2)}(p,\phi=0) = \left(U_k'' + Z_k p^2 + W_k^a p^4 + X_k^a p^6\right)_{\phi=0}$

A simple way of matching these two expressions for $p \sim k$:

$$\Gamma_k^{(2)}(p,\phi=0) \simeq Ap^2(p^2+bk^2)^{-\eta/2}+m_k^2$$

with A and b two constants and $m_{k=0} = 0$.

Expand in powers of $p^2/k^2 \Rightarrow$ an alternating series:

- with a negative coefficient for p^4 and a positive one for p^6
- all coefficients of the series from $\it p^4$ are proportional to $\it \eta$
- \Rightarrow they are naturally small!

Conclusion

The DE is an alternating series. It has a finite radius of convergence. For the ϕ^4 theory it is either 9 or 4.

 $R_k(q)$ must almost vanish beyond typically $q^2=4k^2$, to cut efficiently the region $q^2>4k^2$ in the flow equations: no problem in replacing all $\Gamma_k^{(n)}$ by their Taylor expansion in the flow equations.

The PMS plays a crucial because the dependence on α increases with the order of the DE.

 η is NOT the small expansion parameter of the DE. However, all coefficients of the DE, starting from order p^4 , are proportional to η and are therefore naturally small \Rightarrow fast convergence.

The analysis above can be used to select optimal regulators. Wilson-Polchinski version of the RG does not converge well.

Preliminary results for N = 2

Conf. Bootstrap
$$\nu=0.6719(11),\;\eta=0.0385(7)$$
 Monte-Carlo
$$\nu=0.6717(1),\;\eta=0.0381(2)$$
 Experiments (space shuttle)
$$\nu=0.6709(1)$$
 DE
$$\nu=0.6727(5)$$