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Wilson's idea: a scale by scale summation over fluctuations

Traditional formulation of field theory= integral problem:

Z= / D(x)e~ HIoI+] dx B(x)é(x)

with for instance
1 1
H= [ ot (G700 + G + ()

While perturbation theory consists in expanding in power series

exp (—& [ dx ¢*(x)).

Wilson's idea: transform it into a differential problem. This is the
“block-spin” idea:

The fluctuations are integrated over scale by scale and not in one
shot.



Wilson's RG: general idea

Build an interpolation between

H= hamiltonian or action defined at k = A ~ a~1

no fluctuations are taken into account
and

the Gibbs free energy I at scale k = L™ — 0
all fluctuations have been integrated over

Gibbs free energy = Legendre transform of the Helmoltz free
energy F = log Z = 1Pl generating functional.

= introduce a new scale k that will vary between A and 0 such
that when k is decreased more and more fluctuations are
integrated over.



Integration over the rapid modes:

218] = [ De exp { — Hiel + [ B}
hyp.: the system is close to criticality (§{ > a ~ Al = mgr<N)
e 6(2) = (9(%))
o Mgl +In Z[B] = [, B«ox

Idea: deform the model
integrate over the rapid modes only — freeze the slow modes
— make them non-critical — give them a large mass.



Wilson's RG: modern implementation

build a one-parameter family of models, indexed by a scale k:
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e when k = A all fluctuations are frozen = mean field is exact:
= Tk=n[8] = H[¢]

e when k = 0 all fluctuations are integrated out and the original

model is retrieved
Vq, szo(q) =0, = Zk:()[J] = Z[J] and Mo =T

then Ik[¢] interpolates between the microphysics at k = A and the
macrophysics at k = 0.



The flow equation for I',[¢] writes:

0rlol = 5 [ BRu@Gla:0

where GJ[g; ¢] is the full 2-point function (full propagator):

Gla: 6] = (T + Ri) = with TP[q; 9] = 50t

Some properties of the flow equation:

— differential formulation of field theory

— involves only one integral

— the initial condition is the (microscopic) bare theory

— good properties of decoupling of the massive and rapid modes
— starting point of non-perturbative approximation schemes (not
linked to an expansion in a small coupling constant)

— BUT it is a tremendously complicated equation: functional, non
linear and integral...
= it leads to very few exact results and requires approximation.



Sector at vanishing momentum : Derivative Expansion (DE)

rilel = [ {0+ 3200000 + 07
flow of 'y = flow of functions: Uk(¢), Zk(¢), ...

The DE consists in keeping all I'S(") correlation functions and

expanding in their momenta (more precisely in ).

Most celebrated: Local Potential Approximation (LPA):
1
it = [t (o) + 300

- bare momentum dependence of Fg)(p);

- zero momentum approximation for all other correlation functions;
— exact for the flow of Uy when N — oo, 1-loop exact in

d =4 —¢, 1-loop exact for O(N) in d = 2+ € (actually: the LPA’).



Nonuniversal results obtained with the LPA: T, in d =3

rLpA /dd <Uk(l\/l)+ (Vl\/l))

— requires a reformulation of the NPRG formalism on the lattice

(T. Machado, N. Dupuis: Phys. Rev. E 82, 041128 (2010) )

jd+1
I Uk(M) = @+ Ur(m)
TME/J | Texact/ ) | TRPRG )y
Ising 3D 6 4.51 4.48
XY 3D 3 2.20 2.18
Heisenberg 3D 2 1.44 1.42




Universal results obtained with the LPA: v and nin d =3

v=0.651and n=0
“exact” results

v =0.630 and n = 0.0363

Accuracy on both universal and nonuniversal results = 3 -4 %



Universal results obtained with the LPA: v and n in d =3

v=20.651landn=0
“exact” results

v = 0.630 and 1 = 0.0363

Accuracy of both universal and nonuniversal results = 3 — 4 %

Other completely nontrivial results:
- convexity of the effective potential U(¢) in the broken phase,
- phase diagrams in reaction-diffusion systems, ...

BUT the successes of the LPA do not prove the convergence of the
DE!



Beyond LPA for the O(N) models
el = [ { o)+ 320000 + 0w}

Strangely: very few results!
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- OK for Ising at order V2 of the DE in d = 3
L. Canet, B. D., D. Mouhanna, J. Vidal, Phys.Rev. D67, 2003 :

v = 0.6278 and n = 0.045.
“exact” results

v = 0.6300 and n = 0.036 = accuracy better than 1% for v.



Beyond LPA for the O(N) models

rilel = [ {i0) + 320000 + 07

Strangely: very few results!

- OK for Ising at order V? of the DE in d = 3:
L. Canet, B. D., D. Mouhanna, J. Vidal, Phys.Rev. D67, 2003 .

v = 0.6278 and n = 0.045.
“exact” results

v = 0.6300 and n = 0.036 = accuracy better than 1% for v.

- Only preliminary results for Ising at order V*# of the DE

L. Canet, B. D., D. Mouhanna, J. Vidal, Phys.Rev. B68, 2003

- And O(N) models studied in detail at order V2 only in 2014!

P. Jakubczyk, N. Dupuis, B. D., Phys. Rev. E 90, 2014



Two crucial questions: the convergence and the accuracy of the DE

Two strategies:

@ produce analytical arguments about the convergence of the
DE,

@ obtain numbers at order V°.

. and study in detail the impact of the choice of regulator Rx(q)
on the results:
- in the exact theory: physical quantities do not depend on Ry,

- whereas a spurious dependence shows up once approximations
are performed.



The DE of the ¢* theory (k = 0) in the massive case in d = 3

Renormalized mass at p = 0 <+ inverse correlation length: m = ¢~*

Massive theory in QFT = Non critical theory in Stat. Mech.
= It is non singular.

— When m > 0, the momentum expansion of I'®(p, m, ¢ = 0)
exists and has a finite radius of convergence:

) 2 2 ™ 2\ "
(p, m) _ ko(pP, m) 14 % 4 ch % .
r@©,m (o, m) m? i \m

The ¢, are universal close to criticality.



The DE of the ¢* theory (k = 0) in the massive case in d = 3

r@(p.m) _ Tolp.m) _ |, P i ( >
r@o,m @ (o, m) m =

The series is alternating and has a finite radius of convergence:
@ in the symmetric phase: R = 9: ¢cp11/¢cn ~ —1/9 for n — oo,
@ in the broken phase: R =4: cpy1/cn ~ —1/4 for n — oc.

Why?



The DE of the ¢* theory (k = 0) in the massive case in d = 3

r(2)(p, m) B Fgfz)o(p, m) B L i < >n
r@o,m @ o,m m " 2
The series is alternating and has a finite radius of convergence:
@ in the symmetric phase: R =9: ¢cp41/¢h ~ —1/9 for n — o,
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because the singularity nearest to the origin in the complex plane of
p®is at |p|?> = 9m? (symm. phase) or |p|> = 4m? (broken phase).

Why?



The DE of the ¢* theory (k = 0) in the massive case in d = 3

r@A(p,m) 1P (p,m N
r(2>(g ) _ <k50(p )14 AP (Z2>
(0,m) i (0, m) o

The series is alternating and has a finite radius of convergence:

@ in the symmetric phase: R =9: cp41/cp ~ —1/9 for n — oo,

@ in the broken phase: R =4: cpy1/cn ~ —1/4 for n — oo
because the singularity nearest to the origin in the complex plane
of p? is at p?> = 9m? (symm. phase) or p> = 4m? (broken phase).

Because the Minkowskian (that is, Wick rotated) version of the
theory has a 3- (2-) particle cut, that is, a branch cut at p = 3m
(p = 2m) in the symmetric (broken) phase (Kallén-Lehmann
decomposition).

Symm phase: & = —4 x 1074, c3 = 0.9 x 1075,
broken phase: ¢ ~ —1072, 3 ~ 4 x 107 3.



The DE of the NPRG in the critical case:
the d = 3 Ising (¢*) model

For k > 0, a critical theory is made noncritical by Rx(q)
= Rk(q) gives an effective mass meg to the theory.

We expect the regularized critical theory to be roughly “in
between” the theory in its symmetric and broken phase:

Expected radius of conv.: 4 <R <09.



Order 6 of the DE

el = [ % [Ui(o) + §Zu(0)(00)
+3WE(6)(0,0,9)% + 30WR(6)(9°9)(09)

+3WE(9) ((99)%))? + 5X2(6)(9,0,0,0)°
+30XP(6)(0,0,6)(0,0,6)(8,.0,0)

+10XE(0) (0%0)° + 1XE(0) (0%0))2(00)
+1XE(6)(00)2(0,0)(9%0,0) + X[ (6)(96)7(8,0,)?
+30XE(6) (620) ((00)2)° + gsK0(0) ((90)2)° |-

To reach the fixed point (FP): need to work with dimensionless
and renormalized functions: X = kx, (X \/7k(2 972 p(x)

= Z 2u(9), Wi(9) = (Z0)° k9w ()




At criticality and for s = 6, the analogue of

r(2) r(2) , o n
(p.m) _ TiZo(p,m) _ Lz +ch
r@o.m @ (o, m)

n=2
is
r(f)(p, ¢) + Re(0) _ - Zkp? + W2p* + X7 p°
r®(0,) + Re(0) Uy + Ri(0)
* .,k * * 2
. p2 wiv " p4 Xtv " p6
- Mg 4 m¢ z Mg

with m% = k>v*"/z* and v*"" = u*" + R (0)/ ZPk>.

co is analogous to wv*" /z*2

2
c3 is analogous to x*v*'</z*3,



Procedure and goal

1. Choose a regulator R(q) and compute at order s =0,--- ,6
the FP functions: v*,--- , x};

2. Compute physical quantities, e.g. critical exponents, and study
their dependence on R) and their accuracy/convergence with s;
3. Compute m% = k2v*"/z*, wiv*"' /z*? and x;‘v*”z/z*3 to see
whether they behave respectively as the mass generated by the
regulator and the analogues of ¢, and c;.

4. Obtain criteria defining what a good regulator is;

5. Conclude about the convergence of the DE.



The choice of Rk(q)

- DE = Taylor expansion of all FS(")({p,-}) in powers of p; - p;/k?

= valid provided p; - pj/k2 <R with R ~4-09;
= whenever a I'S(n) is replaced in a flow equation by its DE, the
momentum region beyond R must be efficiently cut off.

- Good news: all flow equations involve 0;Ry(q?) because
O ulo] = 5 [ OuRu(a) Gl o
= 0:Ri(g?) must almost vanish for |q| > k.
- Ri(q?) should behave as k2 for |q| < k to freeze the slow modes.

- 0:Rk(q?) and 6(’;2Rk(q2) appear in the flow for n <'s/2: they
should decrease monotonically to avoid a “bump” at g = qg >0
where the DE is not accurate.



The choice of Rk(q)

We have used three families of regulators

Wi(q°) = aZk? y/(exp(y) — 1) (1a)
Onq®) = aZlk®(1—y)"0(1—y) neN (1b)
E(q®) = aZk* exp(—y) (1c)

where y = g?/k? and « is varied between 0.1 and 10.

Physical quantities, e.g. critical exponents, depend on « at any
order s of the DE = one source of arbitrariness that needs to be

fixed.

Is it the only one?



A second source of arbitrariness

-k = —kOk In(Z?) becomes the anomalous dimension 7 at the FP.
- 70 defined by Zx(6) = Z0 zk(®) (2x() reaches a FP value).

- The absolute normalization of both Z? and zk(qNﬁ) is defined by a
“renormalization condition”, e.g. zx(¢p) = 1. In the exact theory,
no physical quantity depends on ¢y.

- At any order s of the DE, the critical exponents depend on q'go =
another source of arbitrariness that needs to be fixed.

- However, the variations of gZNJo can be compensated by the
variations of a = there is only one arbitrariness and not two:
possible to fix ¢ wherever we want (as long as there is a FP) and
to study only the variations of «v. (reparametrization invariance is
not lost within the DE).
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Figure: Exponent values v(«) and n(«) at different orders of the DE for
the exponential regulator. Vertical lines indicate aope. LPA (s = 0)
results do not appear within the narrow ranges of values chosen here.



Principle of minimal sensitivity

The dependence of the exponents on « is such that:
- There is an extremum for both v(«) and n(«), Vs € [0, 6].

- The concavity of the curves v(«) and n(«) alternates at each
order (coming from the alternating nature of the DE itself).

- The extremum is chosen as THE optimal value because it is the
point where the exponent depends the least on « (principle of
minimal sensitivity).

; v n
- At a given order s, gy # Qgp but they are closer and closer as s
increases.

- The concavity becomes larger for both exponents as s increases
= PMS Is crucial to select “the best” value of the exponents.



derivative expansion | v n

s =0 (LPA) 0.651(1) 0

s=2 0.6278(3) 0.0449 (6)
s=4 0.63039(18) | 0.0343(7)
s=06 0.63012(5) | 0.0361 (3)

s — 00 0.6300(2) 0.0358(6)
conformal bootstrap | 0.629971(4) | 0.0362978(20)

error bars for s = 0,--- ,6 = dispersion of results at order s from
regulator to regulator.

The s — oo extrapolation is based on:
V() = Voo + a,875/% 4+ b,(—1)%/2575/2 with 8 € [4,9].



Back to mefr, ¢ and c3

We have:
2
M(p.0) + R(0) _ |, Zup® + Wip + Xip°
(0, 6) + Ri(0) Uy + Ri(0)
. p2 wr v p4 X} v*”2 p6
+ 2 *2 4 + *3 6
k—0 Mg Z7° Mg Z77 Mg

with m%; = k>v*"/z* and v*" = u*" + Ri(0)/Z0k>.
¢ (resp. c3) is analogous to wiv*" /z*? (resp. x;kv*"2/z*3).

— if m2; is generated by the regulator, then m2; o R¢(0) = ak?,

— ¢3/c2 must typically be in [4,9].



: 2
Numerical results for mZ; and c3/c

Figure: Squared dimensionless mass generated by the regulator
2 (min) = v*"'/2*|4,., computed at the minimum of the potential.
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Figure: The ratio r = x*u*" /(w*z*) as a function of j = ¢?/2. The line
r = 0.25 is a guide for the eyes.



. 2
A simple model for FE{ )(p)

At criticality:
when p > k, I'Ef)(p, ¢ =0)~ I'Si)o(p, ¢ = 0) o< p>77.

when p < k, TP (p, ¢ = 0) = (U} + Zup? + Wp* + X2p°) ,_,
A simple way of matching these two expressions for p ~ k:
2 _
M2 (p, 6 = 0) = Ap(p? + bK2) /2 + m}

with A and b two constants and my—g = 0.

Expand in powers of p?/k? = an alternating series:

- with a negative coefficient for p* and a positive one for p°
- all coefficients of the series from p* are proportional to 7
= they are naturally small!



Conclusion

The DE is an alternating series. It has a finite radius of
convergence. For the ¢* theory it is either 9 or 4.

Ri(q) must almost vanish beyond typically g? = 4k?, to cut
efficiently the region g2 > 4k in the flow equations: no problem in
replacing all FE(”) by their Taylor expansion in the flow equations.

The PMS plays a crucial because the dependence on « increases
with the order of the DE.

1 is NOT the small expansion parameter of the DE. However, all
coefficients of the DE, starting from order p*, are proportional to 1
and are therefore naturally small = fast convergence.

The analysis above can be used to select optimal regulators.
Wilson-Polchinski version of the RG does not converge well.



Preliminary results for N = 2

Conf. Bootstrap
v =10.6719(11), n = 0.0385(7)

Monte-Carlo
v =0.6717(1), n = 0.0381(2)

Experiments (space shuttle)

v = 0.6709(1)
DE
v = 0.6727(5)


















