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Wilson’s idea: a scale by scale summation over fluctuations

Traditional formulation of field theory= integral problem:

Z =

∫
Dφ(x)e−H[φ(x)]+

∫
ddx B(x)φ(x)

with for instance

H =

∫
ddx

(
1

2
(∇φ(x))2 +

1

2
m2

0φ(x)2 +
g0

4!
φ4(x)

)
While perturbation theory consists in expanding in power series
exp

(
−g0

4!

∫
ddx φ4(x)

)
.

Wilson’s idea: transform it into a differential problem. This is the
“block-spin” idea:
The fluctuations are integrated over scale by scale and not in one
shot.



Wilson’s RG: general idea

Build an interpolation between

H= hamiltonian or action defined at k = Λ ∼ a−1

no fluctuations are taken into account

and

the Gibbs free energy Γ at scale k = L−1 → 0
all fluctuations have been integrated over

Gibbs free energy = Legendre transform of the Helmoltz free
energy F = logZ = 1PI generating functional.
⇒ introduce a new scale k that will vary between Λ and 0 such

that when k is decreased more and more fluctuations are
integrated over.



Integration over the rapid modes:

Z[B] =

∫
Dϕ exp

{
− H[ϕ] +

∫
x
B(x)ϕ(x)

}
hyp.: the system is close to criticality (ξ � a ∼ Λ−1 ⇒ mR � Λ)

• φ(~x) = 〈ϕ(~x)〉

• Γ[φ] + lnZ[B] =
∫
x Bxφx

Idea: deform the model
integrate over the rapid modes only → freeze the slow modes
→ make them non-critical → give them a large mass.



Wilson’s RG: modern implementation

build a one-parameter family of models, indexed by a scale k :

Z[B]→ Zk [B] =

∫
Dϕ exp

{
− H[ϕ]−∆Hk [ϕ] +

∫
x
B(x)ϕ(x)

}
∆Hk [ϕ] =

1

2

∫
q
Rk(q)ϕqϕ−q

q

Rk HqL

k

k2



q

Rk HqL

k

k2

• when k = Λ all fluctuations are frozen ⇒ mean field is exact:
⇒ Γk=Λ[φ] = H[φ]

• when k = 0 all fluctuations are integrated out and the original
model is retrieved
∀q, Rk=0(q) = 0, ⇒ Zk=0[J] = Z[J] and Γk=0 = Γ

then Γk [φ] interpolates between the microphysics at k = Λ and the
macrophysics at k = 0.



The flow equation for Γk [φ] writes:

∂kΓk [φ] =
1

2

∫
q
∂kRk(q)G [q;φ]

where G [q;φ] is the full 2-point function (full propagator):

G [q;φ] = (Γ
(2)
k + Rk)−1 with Γ

(2)
k [q;φ] = δ2Γk [φ]

δφ(q)δφ(−q)

Some properties of the flow equation:
– differential formulation of field theory
– involves only one integral
– the initial condition is the (microscopic) bare theory
– good properties of decoupling of the massive and rapid modes
– starting point of non-perturbative approximation schemes (not
linked to an expansion in a small coupling constant)

– BUT it is a tremendously complicated equation: functional, non
linear and integral...
⇒ it leads to very few exact results and requires approximation.



Sector at vanishing momentum : Derivative Expansion (DE)

Γk [φ] =

∫
x

{
Uk(φ) +

1

2
Zk(φ)(∇φ(x))2 + O(∇4)

}
flow of Γk ⇒ flow of functions: Uk(φ),Zk(φ), ...

The DE consists in keeping all Γ
(n)
k correlation functions and

expanding in their momenta (more precisely in pi
k ).

Most celebrated: Local Potential Approximation (LPA):

Γ LPA
k =

∫
ddx

(
Uk(φ) +

1

2
(∇φ)2

)
- bare momentum dependence of Γ

(2)
k (p);

- zero momentum approximation for all other correlation functions;
→ exact for the flow of Uk when N →∞, 1-loop exact in
d = 4− ε, 1-loop exact for O(N) in d = 2 + ε (actually: the LPA’).



Nonuniversal results obtained with the LPA: Tc in d = 3

Γ LPA
k =

∫
ddx

(
Uk(M) +

1

2
(∇M)2

)
→ requires a reformulation of the NPRG formalism on the lattice
(T. Machado, N. Dupuis: Phys. Rev. E 82, 041128 (2010) )

∂kUk(M) =
kd+1

k2 + U ′′k (M)

TMF
c /J T exact

c /J TNPRG
c /J

Ising 3D 6 4.51 4.48

XY 3D 3 2.20 2.18

Heisenberg 3D 2 1.44 1.42



Universal results obtained with the LPA: ν and η in d = 3

ν = 0.651 and η = 0

“exact” results

ν = 0.630 and η = 0.0363

Accuracy on both universal and nonuniversal results = 3 – 4 %
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Other completely nontrivial results:
- convexity of the effective potential U(φ) in the broken phase,
- phase diagrams in reaction-diffusion systems, ...

BUT the successes of the LPA do not prove the convergence of the
DE!



Beyond LPA for the O(N) models

Γk [φ] =
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x
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- OK for Ising at order ∇2 of the DE in d = 3
L. Canet, B. D., D. Mouhanna, J. Vidal, Phys.Rev. D67, 2003 :
ν = 0.6278 and η = 0.045.

“exact” results

ν = 0.6300 and η = 0.036 ⇒ accuracy better than 1% for ν.
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Γk [φ] =

∫
x

{
Uk(φ) +

1

2
Zk(φ)(∇φ(x))2 + O(∇4)

}

Strangely: very few results!

- OK for Ising at order ∇2 of the DE in d = 3:
L. Canet, B. D., D. Mouhanna, J. Vidal, Phys.Rev. D67, 2003 :
ν = 0.6278 and η = 0.045.

“exact” results

ν = 0.6300 and η = 0.036 ⇒ accuracy better than 1% for ν.

- Only preliminary results for Ising at order ∇4 of the DE
L. Canet, B. D., D. Mouhanna, J. Vidal, Phys.Rev. B68, 2003

- And O(N) models studied in detail at order ∇2 only in 2014!
P. Jakubczyk, N. Dupuis, B. D., Phys. Rev. E 90, 2014



Two crucial questions: the convergence and the accuracy of the DE

Two strategies:

produce analytical arguments about the convergence of the
DE,

obtain numbers at order ∇6.

... and study in detail the impact of the choice of regulator Rk(q)
on the results:

- in the exact theory: physical quantities do not depend on Rk ,
- whereas a spurious dependence shows up once approximations

are performed.



The DE of the φ4 theory (k = 0) in the massive case in d = 3

Renormalized mass at p = 0↔ inverse correlation length: m = ξ−1

Massive theory in QFT = Non critical theory in Stat. Mech.
⇒ It is non singular.

→ When m > 0, the momentum expansion of Γ(2)(p,m, φ = 0)
exists and has a finite radius of convergence:

Γ(2)(p,m)

Γ(2)(0,m)
=

Γ
(2)
k=0(p,m)

Γ
(2)
k=0(0,m)

= 1 +
p2

m2
+
∞∑
n=2

cn

(
p2

m2

)n

.

The cn are universal close to criticality.



The DE of the φ4 theory (k = 0) in the massive case in d = 3
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Γ
(2)
k=0(p,m)

Γ
(2)
k=0(0,m)

= 1 +
p2

m2
+
∞∑
n=2

cn

(
p2

m2

)n

The series is alternating and has a finite radius of convergence:

in the symmetric phase: R = 9: cn+1/cn ∼ −1/9 for n→∞,

in the broken phase: R = 4: cn+1/cn ∼ −1/4 for n→∞.

Why?
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The DE of the φ4 theory (k = 0) in the massive case in d = 3

Γ(2)(p,m)

Γ(2)(0,m)
=

Γ
(2)
k=0(p,m)

Γ
(2)
k=0(0,m)

= 1 +
p2

m2
+
∞∑
n=2

cn

(
p2

m2

)n

The series is alternating and has a finite radius of convergence:

in the symmetric phase: R = 9: cn+1/cn ∼ −1/9 for n→∞,
in the broken phase: R = 4: cn+1/cn ∼ −1/4 for n→∞

because the singularity nearest to the origin in the complex plane
of p2 is at p2 = 9m2 (symm. phase) or p2 = 4m2 (broken phase).

Because the Minkowskian (that is, Wick rotated) version of the
theory has a 3- (2-) particle cut, that is, a branch cut at p = 3m
(p = 2m) in the symmetric (broken) phase (Källén-Lehmann
decomposition).

Symm phase: c2 = −4× 10−4, c3 = 0.9× 10−5,
broken phase: c2 ' −10−2, c3 ' 4× 10−3.



The DE of the NPRG in the critical case:
the d = 3 Ising (φ4) model

For k > 0, a critical theory is made noncritical by Rk(q)
⇒ Rk(q) gives an effective mass meff to the theory.

We expect the regularized critical theory to be roughly “in
between” the theory in its symmetric and broken phase:

Expected radius of conv.: 4 ≤ R ≤ 9.



Order 6 of the DE

Γk [φ] =

∫
ddx

[
Uk(φ) + 1

2Zk(φ)(∂φ)2

+ 1
2W

a
k (φ)(∂µ∂νφ)2 + 1

2φW
b
k (φ)(∂2φ)(∂φ)2

+ 1
2W

c
k (φ)

(
(∂φ)2

)
)2 + 1

2X
a
k (φ)(∂µ∂ν∂ρφ)2

+ 1
2φX̃

b
k (φ)(∂µ∂νφ)(∂ν∂ρφ)(∂µ∂ρφ)

+ 1
2φX̃

c
k (φ)

(
∂2φ

)3
+ 1

2 X̃
d
k (φ)

(
∂2φ

)
)2(∂φ)2

+ 1
2 X̃

e
k (φ)(∂φ)2(∂µφ)(∂2∂µφ) + 1

2 X̃
f
k (φ)(∂φ)2(∂µ∂νφ)2

+ 1
2φX̃

g
k (φ)

(
∂2φ

) (
(∂φ)2

)2
+ 1

96 X̃
h
k (φ)

(
(∂φ)2

)3
]
.

To reach the fixed point (FP): need to work with dimensionless

and renormalized functions: x̃ = kx , φ̃(x̃) =
√
Z 0
k k(2−d)/2 φ(x)

Zk(φ) = Z 0
k zk(φ̃), W c

k (φ) = (Z 0
k )2k−dw c

k (φ̃)



At criticality and for s = 6, the analogue of

Γ(2)(p,m)

Γ(2)(0,m)
=

Γ
(2)
k=0(p,m)

Γ
(2)
k=0(0,m)

= 1 +
p2

m2
+
∞∑
n=2

cn

(
p2

m2

)n

is

Γ
(2)
k (p, φ) + Rk(0)

Γ
(2)
k (0, φ) + Rk(0)

= 1 +
Zkp

2 + W a
k p

4 + X a
k p

6

U ′′k + Rk(0)

−−−→
k→0

1 +
p2

m2
eff

+
w∗a v

∗′′

z∗2

p4

m4
eff

+
x∗a v

∗′′2

z∗3

p6

m6
eff

with m2
eff = k2v∗′′/z∗ and v∗′′ = u∗′′ + Rk(0)/Z 0

k k
2.

c2 is analogous to w∗a v
∗′′/z∗2

c3 is analogous to x∗a v
∗′′2/z∗3.



Procedure and goal

1. Choose a regulator Rk(q) and compute at order s = 0, · · · , 6
the FP functions: u∗, · · · , x∗h ;
2. Compute physical quantities, e.g. critical exponents, and study
their dependence on Rk and their accuracy/convergence with s;

3. Compute m2
eff = k2v∗′′/z∗, w∗a v

∗′′/z∗2 and x∗a v
∗′′2/z∗3 to see

whether they behave respectively as the mass generated by the
regulator and the analogues of c2 and c3.
4. Obtain criteria defining what a good regulator is;
5. Conclude about the convergence of the DE.



The choice of Rk(q)

- DE = Taylor expansion of all Γ
(n)
k ({pi}) in powers of pi · pj/k2

⇒ valid provided pi · pj/k2 < R with R ' 4− 9;

⇒ whenever a Γ
(n)
k is replaced in a flow equation by its DE, the

momentum region beyond R must be efficiently cut off.

- Good news: all flow equations involve ∂tRk(q2) because

∂kΓk [φ] =
1

2

∫
q
∂kRk(q)G [q;φ]

⇒ ∂tRk(q2) must almost vanish for |q| & k .

- Rk(q2) should behave as k2 for |q| < k to freeze the slow modes.

- ∂tRk(q2) and ∂nq2Rk(q2) appear in the flow for n ≤ s/2: they

should decrease monotonically to avoid a “bump” at q2 = q2
0 > 0

where the DE is not accurate.



The choice of Rk(q)

We have used three families of regulators

Wk(q2) = αZ 0
k k

2 y/(exp(y)− 1) (1a)

Θn
k(q2) = αZ 0

k k
2 (1− y)nθ(1− y) n ∈ N (1b)

Ek(q2) = αZ 0
k k

2 exp(−y) (1c)

where y = q2/k2 and α is varied between 0.1 and 10.

Physical quantities, e.g. critical exponents, depend on α at any
order s of the DE ⇒ one source of arbitrariness that needs to be
fixed.

Is it the only one?



A second source of arbitrariness

- ηk = −k∂k ln(Z 0
k ) becomes the anomalous dimension η at the FP.

- Z 0
k defined by Zk(φ) = Z 0

k zk(φ̃) (zk(φ̃) reaches a FP value).

- The absolute normalization of both Z 0
k and zk(φ̃) is defined by a

“renormalization condition”, e.g. zk(φ̃0) = 1. In the exact theory,
no physical quantity depends on φ̃0.

- At any order s of the DE, the critical exponents depend on φ̃0 ⇒
another source of arbitrariness that needs to be fixed.

- However, the variations of φ̃0 can be compensated by the
variations of α ⇒ there is only one arbitrariness and not two:
possible to fix φ̃0 wherever we want (as long as there is a FP) and
to study only the variations of α. (reparametrization invariance is
not lost within the DE).



Figure: Exponent values ν(α) and η(α) at different orders of the DE for
the exponential regulator. Vertical lines indicate αopt. LPA (s = 0)
results do not appear within the narrow ranges of values chosen here.



Principle of minimal sensitivity

The dependence of the exponents on α is such that:

- There is an extremum for both ν(α) and η(α), ∀s ∈ [0, 6].

- The concavity of the curves ν(α) and η(α) alternates at each
order (coming from the alternating nature of the DE itself).

- The extremum is chosen as THE optimal value because it is the
point where the exponent depends the least on α (principle of
minimal sensitivity).

- At a given order s, ανopt 6= αηopt but they are closer and closer as s
increases.

- The concavity becomes larger for both exponents as s increases
⇒ PMS Is crucial to select “the best” value of the exponents.



derivative expansion ν η

s = 0 (LPA) 0.651(1) 0

s = 2 0.6278(3) 0.0449 (6)

s = 4 0.63039(18) 0.0343(7)

s = 6 0.63012(5) 0.0361 (3)

s →∞ 0.6300(2) 0.0358(6)

conformal bootstrap 0.629971(4) 0.0362978(20)

error bars for s = 0, · · · , 6 = dispersion of results at order s from
regulator to regulator.

The s →∞ extrapolation is based on:
ν(s) = ν∞ + aνβ

−s/2 + bν(−1)s/2β−s/2 with β ∈ [4, 9].



Back to meff, c2 and c3

We have:

Γ
(2)
k (p, φ) + Rk(0)

Γ
(2)
k (0, φ) + Rk(0)

= 1 +
Zkp

2 + W a
k p

4 + X a
k p

6

U ′′k + Rk(0)

−−−→
k→0

1 +
p2

m2
eff

+
w∗a v

∗′′

z∗2

p4

m4
eff

+
x∗a v

∗′′2

z∗3

p6

m6
eff

with m2
eff = k2v∗′′/z∗ and v∗′′ = u∗′′ + Rk(0)/Z 0

k k
2.

c2 (resp. c3) is analogous to w∗a v
∗′′/z∗2 (resp. x∗a v

∗′′2/z∗3).

→ if m2
eff is generated by the regulator, then m2

eff ∝ Rk(0) = αk2,

→ c3/c2 must typically be in [4, 9].



Numerical results for m2
eff and c3/c2
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Figure: Squared dimensionless mass generated by the regulator
m̃2

eff(φmin) = v∗′′/z∗|φmin computed at the minimum of the potential.
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Figure: The ratio r = x∗a u
∗′′/(w∗a z

∗) as a function of ρ̃ = φ̃2/2. The line
r = 0.25 is a guide for the eyes.



A simple model for Γ
(2)
k (p)

At criticality:

when p � k , Γ
(2)
k (p, φ = 0) ' Γ

(2)
k=0(p, φ = 0) ∝ p2−η.

when p � k , Γ
(2)
k (p, φ = 0) =

(
U ′′k + Zkp

2 + W a
k p

4 + X a
k p

6
)
φ=0

A simple way of matching these two expressions for p ∼ k :

Γ
(2)
k (p, φ = 0) ' Ap2(p2 + bk2)−η/2 + m2

k

with A and b two constants and mk=0 = 0.

Expand in powers of p2/k2 ⇒ an alternating series:
- with a negative coefficient for p4 and a positive one for p6

- all coefficients of the series from p4 are proportional to η
⇒ they are naturally small!



Conclusion

The DE is an alternating series. It has a finite radius of
convergence. For the φ4 theory it is either 9 or 4.

Rk(q) must almost vanish beyond typically q2 = 4k2, to cut
efficiently the region q2 > 4k2 in the flow equations: no problem in

replacing all Γ
(n)
k by their Taylor expansion in the flow equations.

The PMS plays a crucial because the dependence on α increases
with the order of the DE.

η is NOT the small expansion parameter of the DE. However, all
coefficients of the DE, starting from order p4, are proportional to η
and are therefore naturally small ⇒ fast convergence.

The analysis above can be used to select optimal regulators.
Wilson-Polchinski version of the RG does not converge well.



Preliminary results for N = 2

Conf. Bootstrap
ν = 0.6719(11), η = 0.0385(7)

Monte-Carlo
ν = 0.6717(1), η = 0.0381(2)

Experiments (space shuttle)
ν = 0.6709(1)

DE
ν = 0.6727(5)












