-Amber Lauer: Triangle Universities Nuclear Laboratory, Duke University, Durham, NC 27708

Abstract: One of the primary mechanisms for guiding experimental research in nuclear astrophysics is the sensitivity study. In a broad sense, these studies involve a stellar model in which quantities related to nuclear reactions are varied to examine the effects. These variables can include a single, or multiple, reaction rates, O-values, nuclear masses, and others. Subsequently, various aspects of the model are examined, such as elemental abundances, thermodynamics, and astronomical observables, and compared with theory and observations. This talk will examine the underlying stellar models, their strengths and limitations both broadly and as it applies to R-process, and discuss the findings of the most recent works, as well as improvements that must be made in the future in order to improve the accuracy of the results of the sensitivity study.

TRIANGLE UNIVERSITIES NUCLEAR LABORATORY

Stellar Modeling for R-Process Nucleosynthesis: 2010- present

- 1) Why do we need stellar models?
- 2) Networks for Nuclear-astrophysics (nucastro):
- 3) Stellar Models: Theory and limitations
- 4) Stellar Models for R-process nucleosynthesis

Why do we need stellar modeling?

Why do we need stellar modeling? Create and experiment with environments and time scales we will never visit or recreate otherwise*

Why do we need stellar modeling? Create and experiment with environments and time scales we will never visit or recreate otherwise*

Why do we need stellar modeling? Create and experiment with environments and time scales we will never visit or recreate otherwise*

Test theories for physics and the relationships between quantities

Why do we need stellar modeling? Create and experiment with environments and time scales we will never visit or recreate otherwise*

Test theories for physics and the relationships between quantities

How do test stellar models?

Why do we need stellar modeling? Create and experiment with environments and time scales we will never visit or recreate otherwise*

Test theories for physics and the relationships between quantities

How do test stellar models? Comparison with theory

Comparison with observables

*probably

·Realistic nucleosynthesis 3 levels of complexity:

1) Nuclear Network Only

2) Network & Stellar Model- post-processed

3) Network & Stellar Model (3D)- co-processed

• Nuclear network only

- Nuclear network only
 - Solve: diff eq's, NSE
 - Use: Linear algebra, matrix & stiff ODE solvers
 - Input
 - Initial X_i's
 - Rxn rates
 - $T \& \rho$ (constant or T(t)/ ρ (t)) , from sim. or obs.***

- Nuclear network only
- Network & stellar model- post-processed net
 - <u>1st model</u>: 3D Hydro or 1D SE w/Hydro
 - Small (or no), de-coupled Net (5-20 NZ)
 - More physical (coupled hydro, mixing, EOS, κ)
 - <u>2nd model:</u> Full/Large net
 - 1 or multi-zone/multi-particle
 - Input
 - $T \& \rho$ from 1st, sometimes mixing

- Nuclear network only
- Network & stellar model- post-processed net
- Network & stellar model (3D)- co-processed net
 - All physics fully coupled in single time step (hydro, SE, & Net)
 - Large (but not necessarily complete) net: 20-500 species

·Realistic nucleosynthesis 3 levels of complexity:

1) Nuclear Network Only

Network & stellar model- post-processed
 Network & stellar model (3D)- co-processed

·Realistic nucleosynthesis 3 levels of complexity:

- 1) Nuclear Network Only
- 2) Network & stellar model- post-processed
- 3) Network & stellar model (3D)- co-processed

"All models are wrong, some are useful" -G. E. P. Box

Full 3D coupled physics not yet possible

• Why?

- C. A. Meakin¹
 - Need: Θ(10²²) computational cells
 - Moore's law: log₂(flops/\$)=time/(18 months)
 - Horizon Run 2/3 on Tachyon ii²
 - 2011
 - 3.74 x10¹¹ particles

https://commons.wikimedia.org/w/index.php?curid=14941622 1. https://arxiv.org/pdf/0806.4542.pdf - (2008) 2. http://sdss.kias.re.kr/astro/Horizon-Runs/Horizon-Run.php

"All models are wrong, some are useful" -G. E. P. Box

Full 3D coupled physics not yet possible

• Why?

- C. A. Meakin¹
 - Need: Θ(10²²) computational cells
 - Moore's law: log₂(flops/\$)=time/(18 months)
 - Horizon Run 2/3 on Tachyon ii²
 - 2011
 - 3.74 x10¹¹ particles
- ==> ~50 years

https://commons.wikimedia.org/w/index.php?curid=14941622 1. https://arxiv.org/pdf/0806.4542.pdf - (2008) 2. http://sdss.kias.re.kr/astro/Horizon-Runs/Horizon-Run.php

"All models are wrong, some are useful" -G. E. P. Box

Full 3D coupled physics not yet possible

• Why?

- C. A. Meakin¹
 - Need: Θ(10²²) computational cells
 - Moore's law: log₂(flops/\$)=time/(18 months)
 - Horizon Run 2/3 on Tachyon ii²
 - 2011
 - 3.74 x10¹¹ particles
- ==> ~50 years

Stellar models characterized by how they make use of resources: Resolution or evolution?

https://commons.wikimedia.org/w/index.php?curid=14941622 1. https://arxiv.org/pdf/0806.4542.pdf - (2008) 2. http://sdss.kias.re.kr/astro/Horizon-Runs/Horizon-Run.php

Stellar Evolution (SE)

Conservation of momentum

Conservation of mass

Energy Transport

Conservation of energy

Fluid/Hydro Dynamics

Conservation of momentum

Conservation of mass

Conservation of energy (heating- Γ , cooling- Λ)

$$\begin{split} \frac{\partial P}{\partial M_r} &= -\frac{GM_r}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2}, \\ \frac{\partial r}{\partial M_r} &= \frac{1}{4\pi r^2 \rho}, \\ \frac{\partial T}{\partial M_r} &= -\frac{3\kappa L_r}{64\pi^2 a c T^3 r^4}, \\ \frac{\partial L_r}{\partial M_r} &= \epsilon - T \frac{\partial S}{\partial t}. \end{split}$$

$$\begin{aligned} \frac{d}{dt} &= -\rho \nabla \cdot \vec{v} \\ \frac{d}{dt} &= -\frac{\nabla P}{\rho} + \vec{g} \\ \frac{d}{dt} &= -\frac{P}{\rho} \nabla \cdot \vec{v} + \Gamma - \Lambda, \end{aligned}$$

$$P = (\gamma - 1)\rho u$$

[4],[5]

EOS (eg)

Stellar Evolution (SE) & Hydrodynamics

Hydrodynamic:

3D

Eulerian: M(r)- AMR (FLASH)

LaGrangian: R(m)- SPH (PHANTOM)

Hydrodynamic:

3D

Eulerian: M(r)- AMR (FLASH)

LaGrangian: R(m)- SPH (PHANTOM)

Common issues:

Advection errors Excessive Diffusion Angular Momentum errors Containment of experimental volume

Viscosity issues Mesh Deformation

Hydrodynamic:

3D

Eulerian: M(r)- AMR

LaGrangian: R(m)- SPH (PHANTOM)

Hydrodynamics + SE: MESA, KEPLER, GENEC, GARSTEC:

				1D						

Images courtesy Jordi Jose: http://www.fen.upc.edu/users/jjose/images/CRC/, ESO/L. Calcada., NASA/STScI

Hydrodynamic:

3D

Eulerian: M(r)- AMR

LaGrangian: R(m)- SPH (PHANTOM)

Hydrodynamics + SE: MESA, KEPLER, GENEC, GARSTEC:

$Pre-MS- \rightarrow WD \& other \ long \ term \ evol$

1					1D						

EOS, Mixing (simple 1D), Large nets (co-processed), mass Images courtesy Jordi Jose: http://www.fen.upc.edu/users/jjose/images/CRC/, ESO/L. Calcada., NASA/STScI

Hydrodynamic:

Eulerian: M(r)- AMR (FLASH)

LaGrangian: R(m)- SPH

Hydrodynamics + SE: MESA, KEPLER, GENEC, GARSTEC:

Images courtesy Jordi Jose: http://www.fen.upc.edu/users/jjose/images/CRC/, ESO/L. Calcada., NASA/STScI

R-Process: *n* rich, high T, seed X_i $\rightarrow t_{n_{cap}} < t_{\beta^{-}} < 1 s$

- Compact object merger
 - · Ejecta- LIGO 2017 [1] ✓
 - · Gamma Ray Burst [2]
- · Supernovae, CCSN [2]
 - Neutrino-driven wind [2]
 - · Relativistic/MHD Jets [2]

R-Process: *n* rich, high T, seed X_i $\rightarrow t_{n_{cap}} < t_{\beta^{-}} < 1 s$

- Compact object me ger
 - · Ejecta- LIGO 2017 [1]
 - · Gamma Ray Burst [2]
- · Supernovae, CCSN [2]
 - Neutrino-driven wind [2]
 - · Relativistic/MHD Jets [2]

- Nuclear network only
 - Solve: diff eq's, NSE
 - Use: Linear algebra, matrix & stiff ODE solvers
 - Input
 - Initial X_i's
 - Rxn rates
 - $T \& \rho$ (constant or T(t)/ ρ (t)) , from sim. or obs.***

R-process: S, $Y_e = \frac{n_p}{n_p + n_n}$, τ_{dyn} in order to calculate $T \& \rho$ profile & set X_n Physics: MHD, Neutrino transport, GR

Authors	Scenario	Simulation	Tested quantity	year
Beun, Blackmon, Hix McLaughlin, Smith, Surman[6]	η wind	param	<i>n</i> capture	2008
Surman,Beun, McLaughlin, Hix[7]	η wind	param	<i>n</i> capture	2009
Arcones, Martinez-Pinedo[8]	η wind	PPM	m, S _n	2011
Mumpower, McLaughlin, Surman[9]	Hot, cold	param	m	2012
Brett, Bentley, Paul, Aprahamian, Surman[10]	η winds	param	m, S _n	2012
Surman, Mumpower, Cass, Aprahamian[11]	Early universe?	param	m, S _n	2013
Surman, Mumpower, Cass, Bentley, Aprahamiian, McLaughlin[12]	η winds, NSM,	param, PPM, R-SPH	m, <i>n</i> capture, β^{-} rates	2013
Surman, Mumpower, Sinclair, Jones, Hix, McLaughlin[13]	CSSN	param	<i>n</i> capture	2014
Aprahmian, Bentley, Mumpower, Surman[14]	CCSN	param	m, S _n	2014
Mumpower, Cass, Passuci, Surman, Aprahamian[15]	η winds, NSM, GRB	Param, PPM	β rates	2014
Mumpower, Surman,Fang, Beard, Moller, Kawano, Aprahamian [16]	η winds, NSM	param, PPM, R-SPH	$m \rightarrow n$ capture, (γ ,p), β^{-}	2015
Abbreviations:				

PPM: Piecewise Parabolic Method (Eulerian) R-SPH: Relativistic Smoothed Particle Hydrodynamics

(LaGrangian) Param: Parameterized: Equation or constant

Is 3D necessary for r-process nucleosynthesis?

- Ideally, yes.
- But 2D will probably suffice
- Problems with level 2:
 - 1D uses approximations for 3D effects
 - Hydro timescales (dynamical) vs Myrs for SE
 (either-or)
 - Hydro → some physics issues due to mesh or smoothing
 - Post-processed \rightarrow Harder to test astron observables
 - Little/No feed back with net in 3D

Stellar modelling for nuc-astro

- What can we improve:
 - Physics: eg EOS, Neutrino treatment
 - Extending Models:
 - SE equations to 2D-3D hydro & vice versa*
 - Adaptive Hydro 1D, 2D \rightarrow 3D*
 - 2D Nuclear nets w/ mixing &/or Monte Carlo X_i
 - Eulerian smoothing
 - Hybrid Eulerian & Lagrangian*
 - Computing power:
 - This will motivate advancement
 - Algorithms & Solvers:
 - Probably have to rely on CS
 - Access model:

Pros: Deriving from first principles is useful exercise Encourages variation of solutions Cons: Closed source contrary to spirit of scientific method "black box", irreproducable Encourages replication & abandonware Slows advancement

Take cues from FOSS: "All bugs are shallow" or "Sunlight is the best disinfectant"

*already under way

Thank You- Collaborators

- Manos Chatzopoulos- LSU
- Zach Meisel- Ohio U
- Carl Fields- MSU
- Art Champagne- TUNL/ UNC
- Modules for Experiments With Astrophysics (MESA)

MESA

References

- [1] K. Hotokezaka, P. Beniamini, and T. Piran, (2018).
- [2] S. Brett, I. Bentley, N. Paul, R. Surman, and A. Aprahamian, Eur. Phys. J. A (2012).]
- [3] L. Scheck, H.-T. Janka, T. Foglizzo, and K. Kifonidis, Multidimensional Supernova Simulations with Approximative Neutrino Transport II. Convection and the Advective-Acoustic Cycle in the Supernova Core (2007).
- [4] http://flash.uchicago.edu/site/flashcode/user_support/tutorial_talks/May2004/PR_tutorial_talk.pdf
- [5]Wadsley, J. W., Keller, B. W., & Quinn, T. R. (2017). Gasoline2: A Modern SPH Code. In MNRAS (Vol. 000). Retrieved from http://gasoline-code.com
- [6]Arcones, A., & Martínez-Pinedo, G. (2011). Dynamical r-process studies within the neutrino-driven wind scenario and its sensitivity to the nuclear physics input. PHYSICAL REVIEW C, 83, 45809. https://doi.org/10.1103/PhysRevC.83.045809
- [7]Arcones, A., & Martínez-Pinedo, G. (2011). Dynamical r-process studies within the neutrino-driven wind scenario and its sensitivity to the nuclear physics input. PHYSICAL REVIEW C, 83, 45809. https://doi.org/10.1103/PhysRevC.83.045809
- [8]Mumpower, M. R., McLaughlin, G. C., & Surman, R. (2012). Formation of the rare-earth peak: Gaining insight into late-time r-process dynamics. PHYSICAL REVIEW C, 85, 45801. https://doi.org/10.1103/PhysRevC.85.045801
- [9]Brett, S., Bentley, I., Paul, N., Surman, R., & Aprahamian, A. (2012). Sensitivity of the r-process to nuclear masses. Eur. Phys. J. A. https://doi.org/10.1140/epja/i2012-12184-4
- [10]Surman, R., Mumpower, M., Cass, J., Bentley, I., Aprahamian, A., & Mclaughlin, G. C. (2013). Sensitivity studies for r-process nucleosynthesis in three astro-physical scenarios. Retrieved from https://arxiv.org/pdf/1309.0059.pdf
- [11]Surman, R., Mumpower, M., Cass, J., Bentley, I., Aprahamian, A., & Mclaughlin, G. C. (2013). Sensitivity studies for r-process nucleosynthesis in three astro-physical scenarios. Retrieved from https://arxiv.org/pdf/1309.0059.pdf
- [12]Surman, R., Mumpower, M., Sinclair, R., Jones, K. L., Hix, W. R., & McLaughlin, G. C. (2014). Sensitivity studies for the weak r process: neutron capture rates. AIP Advances, 4(4), 041008. https://doi.org/10.1063/1.4867191
- [13]Mumpower, M. R., Surman, R., Fang, D.-L., Beard, M., Möller, P., Kawano, T., & Aprahamian, A. (2015). Impact of individual nuclear masses on r-process abundances. PHYSICAL REVIEW C, 92, 35807. https://doi.org/10.1103/PhysRevC.92.035807
- [14]Mumpower, M. R., Surman, R., Fang, D.-L., Beard, M., Möller, P., Kawano, T., & Aprahamian, A. (2015). Impact of individual nuclear masses on r-process abundances. PHYSICAL REVIEW C, 92, 35807. https://doi.org/10.1103/PhysRevC.92.035807
- [15] Mumpower, M. R., Surman, R., Fang, D.-L., Beard, M., Möller, P., Kawano, T., & Aprahamian, A. (2015). Impact of individual nuclear masses on r-process abundances. PHYSICAL REVIEW C, 92, 35807. https://doi.org/10.1103/PhysRevC.92.035807

Finite Difference & Related Methods

Finite differences are simple and effective, although their applicability is restricted to structured meshes. In this technique, variables are assigned to individual grid points (either located at the edges, corners, or centers of each computational cell), and the corresponding derivatives are evaluated as differences of variables in neighboring cells, in a Taylor series expansion.

Finite elements and finite volumes are particularly suited for arbitrary meshes (unstructured grids, in particular).

Finite elements operate by splitting the domain of the problem into a number of subdomains, called finite elements, each represented by a set of equations. But in contrast to the direct (strong-form) approach adopted in finite difference techniques (also in SPH), by which the partial differential equations are directly discretized and solved, finite element methods rely on an indirect or weak-form approach, in which the original equations are transformed, often in integral form, on the basis of trial solutions and weighting functions. The collection of local equations is then reassembled into a global system of equations through a transformation of coordinates.

Finite-volume methods [507, 1855] are gaining popularity as a suitable form of discretization in multidimensional codes. They are somewhat similar to finite-difference and finite-element methods, since they rely on the discretization of a system of partial differential equations onto a discrete set of points of a grid-based geometry. To this end, the computational domain is divided into a set of discrete, nonoverlapping discretization cells or control volumes, with physical variables assigned to the centroid of each control volume. The set of partial differential equations is then integrated over each control volume, resulting in balance equations that are subsequently discretized. The cornerstone of finite-volume methods is the discretization of the fluxes at the boundaries of each control volume. This discretization technique guarantees conservation of physical magnitudes for any control volume as well as for the overall computational domain. Note that discretization is again performed on local balance equations rather than on the original partial differential equations (as in finite-differences). For more information on these and other methods used in computational fluid dynamics, the reader is referred to LeVeque et al. [1083] and Toro [1812].

Nuclear Net Theory

Differential equation of species change:

$$\frac{\partial n_i}{\partial t} + \frac{\partial n_1 u}{\partial x} = -n_1 n_2 \langle \sigma v \rangle$$

$$n_i = \rho N_a Y_i$$

nuc ↑ term mix ↑ term

n

- Reactions $\frac{dY_{i}}{dt} = -\lambda_{i}Y_{i}$ $\frac{dY_{i}}{dt} = -\rho N_{A}Y_{i}Y_{j}\langle \sigma \nu \rangle \qquad \frac{dY_{i}}{dt} = -\rho^{2}N_{A}^{2}Y_{i}Y_{j}Y_{l}\langle \sigma \nu \rangle_{j,k,l}$
- Total differential equation

$$\dot{Y}_{i} = \sum_{j} N_{j}^{i} \lambda_{j} Y_{j} + \sum_{j,k} N_{j,k}^{i} \rho N_{A} \langle \sigma \nu \rangle_{j,k} Y_{j} Y_{k} + \sum_{j,k,l} N_{j,k,l}^{i} \rho^{2} N_{A}^{2} \langle \sigma \nu \rangle_{j,k,l} Y_{j} Y_{k} Y_{l}$$

• Euler's method

$$\frac{\vec{Y}(t+\Delta t)-\vec{Y}(t)}{\Delta t} = (1-\Theta)\vec{Y}(t+\Delta t)+\Theta\vec{Y}(t)$$

Stellar Evolution & Hydrodynamics

• SE- Conservation of momentum

Conservation of mass

Energy Transport

Conservation of energy

$$\begin{aligned} \frac{\partial P}{\partial M_r} &= -\frac{GM_r}{4\pi r^4} - \frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2}, & \text{Hydrostatic} \\ \frac{\partial r}{\partial M_r} &= \frac{1}{4\pi r^2 \rho}, \\ \frac{\partial T}{\partial M_r} &= -\frac{3\kappa L_r}{64\pi^2 a c T^3 r^4}, \\ \frac{\partial L_r}{\partial M_r} &= \epsilon - T \frac{\partial S}{\partial t}. \end{aligned}$$

Stellar Evolution & Hydrodynamics

• SE- Conservation of momentum

Conservation of mass

Energy Transport

Conservation of energy

Stellar Evolution & Hydrodynamics

• SE- Conservation of momentum

Conservation of mass

Energy Transport

Conservation of energy

• Fluid dynamics (Eulerian)-

R-process Reaction Rates:

- Rate Types:
 - Fast Neutron Captures
 - Photidisintegration
 - β decay
- What do we know about these rates:
 - For R-process: Nothing*.

WE RELY ON THEORETICAL RATE CALCULATIONS Mass models

*Almost

Nuclear Net Theory

Differential equation of species change:

$$\frac{\partial n_i}{\partial t} + \frac{\partial n_1 u}{\partial x} = -n_1 n_2 \langle \sigma v \rangle \qquad n_i = \rho N_a Y_i$$

nuc ↑ term mix ↑ term no. density & avg ↑ cross section

• Mixing term handled by hydrodynamic code

• Reactions

$$\frac{dY_i}{dt} = -\lambda_i Y_i \frac{dY_i}{dt} = -\rho N_A Y_i Y_j \langle \sigma \nu \rangle \frac{dY_i}{dt} = -\rho^2 N_A^2 Y_i Y_j Y_l \langle \sigma \nu \rangle_{j,k,l}$$

• Total differential equation

$$\dot{Y}_{i} = \sum_{j} N_{j}^{i} \lambda_{j} Y_{j} + \sum_{j,k} N_{j,k}^{i} \rho N_{A} \langle \sigma \nu \rangle_{j,k} Y_{j} Y_{k} + \sum_{j,k,l} N_{j,k,l}^{i} \rho^{2} N_{A}^{2} \langle \sigma \nu \rangle_{j,k,l} Y_{j} Y_{k} Y_{l}$$

Euler's method

$$\frac{\vec{Y}(t+\Delta t)-\vec{Y}(t)}{\Delta t} = (1-\Theta)\dot{\vec{Y}}(t+\Delta t)+\Theta\dot{\vec{Y}}(t)$$
⁴¹