Nuclear astrophysics in the era of multi-messenger observations at INFN-LNS

Marco La Cognata

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud

Outline

1. Very few words about the r-process

2. Constraining the r-process through a better understanding of the s-process

3. Study of nuclear reactions involved in the r-process

4. Studying the opacity of a plasma made up of lanthanides (nuclear methods and atomic physics)

r process nucleosynthesis

- It produces ~50% of the stable isotopes heavier than Fe
- Candidate site: neutron star mergers (cold r-process)
- Nuclear physics input:
- Masses, shell structure, half lives, fission parameter, P_n values (probability of neutron emission following β -decay)

https://fr.cdn.v5.futura-sciences.com/sources/images/dossier/rte/18FuturaSciences.gif

r process nucleosynthesis

Temperatures 10⁹ K (cold r-process \rightarrow NS mergers) (hot r-rpocess \rightarrow CC supernova)

Neutron densities 10²² n/cm³

Timescale < ms

Neutrons can be absorbed until the neutron separation energy is less than or equal to zero (drip line) $\rightarrow \rho$ decay and new sequence of neutron contures.

 $\rightarrow \beta$ -decay and new sequence of neutron captures

Photodisintegration can play an important role in the r-process path owing to the high temperatures

 \rightarrow (n, γ) - (γ ,n) equilibrium (less important for NS mergers)

At shell closure (n,γ) rates decrease and right beyond (γ,n) rates are very large.

 \rightarrow As a result of the r process path waiting at shell closures the abundance of nuclei in the corresponding mass range is increased

2. Constraining the r-process through a better understanding of the sprocess

Constraining r-process abundances

We have seen in the previous slide that individual abundances of rprocess nuclei *cannot* be deduced from the observational data of kilonovae expanding shells.

Key role of the s-process... *hopefully* **well known** Few r-process only nuclei to test the models

s-process: slow neutron capture, moving along the stability valley

→ Need of continuous/pulsed neutron source & complicated stellar structure to keep s-process on

Candidate neutron sources:

 $^{13}C(\alpha,n)^{16}O \rightarrow$ low neutron densities 10^6 n/cm^3

 22 Ne(α ,n) 25 Mg \rightarrow high neutron densities 10^9 n/cm 3

This is especially critical since comparatively high neutron fluxes might produces abundance pattern *close* to the one of the rprocess (at least close to the branching points)

Constraining r-process abundances

The r-process pattern is extracted from the solar system abundances by subtracting the s-process (and p-process) contributions through models, the elemental yield is used to get information of r-process sites (entropy, Y_e, explosion mechanism, role of hydrodynamics)

s-process nucleosynthesis plays a crucial to constrain the r-process. At LNS, an intense activity on the s-process is ongoing focusing on:

1. Investigating the neutron sources of the s-process: ${}^{13}C(\alpha,n){}^{16}O$ and ${}^{22}Ne(\alpha,n){}^{25}Mg$

2. Constraining astrophysical models of s-process by studying production and destruction of probe nuclei (mainly ¹⁹F) Fluorine is very sensitive on the stellar physical conditions, so its abundance allows us to see "inside" the s-process site

Red band: ¹³C(α,n)¹⁶O S-factor measured at LNS down to astrophysical energies

Astrophysical Journal 777 (2013) 143

Red band: ¹⁹F(p,α)¹⁶O S-factor measured at LNS down to astrophysical energies

Astrophysical Journal 845 (2017) 19

The Trojan Horse Method (for resonant reactions)

Using THM to better constrain the ${}^{13}C(\alpha,n){}^{16}O$

The 1/2⁺ excited state of ¹⁷O was recently shown to be centered at positive $E_{c.m.}$ values (at about 4.7 keV) by Faestermann et al. (2015) $\rightarrow \Gamma_n = 0.135 \text{ MeV}$

Avila et al. (2015) calculated with high accuracy the asymptotic normalization coefficient of the threshold resonance ANC(1/2⁺ state of ¹⁷O) ~ 3.6 ± 0.7 fm⁻¹ \rightarrow so we can derive the corresponding γ_{α}

We fitted THM HOES indirect data to obtained the γ values of the other two peaks (not taken from literature) at higher energies discriminating among the different direct datasets to unambiguously define the absolute value of *S*factor

Exploring the astrophysical energy region of the $^{19}F(p,\alpha)^{16}O$

The THM measurement has made it possible to explore the whole energy region of astrophysical interest, showing the occurrence of a 113 keV resonance

¹⁹F \rightarrow probe of AGB stars interiors

Astrophysical consequences under investigation

Also: the ¹⁹F+alpha destruction channel also studied using the THM

→ D'Agata et al. APJ 860 (2018) 61

What next? Exploring the role of ¹⁶O excited states \rightarrow high resolution necessary New experiment performed at the 2000 mm chamber @ LNS

3. Study of nuclear reactions involved in the r-process

Nuclear physics input: n-capture reactions

100

50

-50

-100

% Difference

Little or no data on n-capture cross sections available \rightarrow too short T_{1/2} Cross section calculations necessary. How reliable? Often, worse than 1 order of magnitude

How to perform measurements? → Indirect methods e.g. Trojan Horse Method, Surrogate reactions

Important <u>neutron capture rates</u> in neutron star mergers

- Along the hot r-process path no sensitivity on cross sections owing to $(n,\gamma) \Leftrightarrow (\gamma,n)$ equilibrium - **Enhanced sensitivity for neutron star mergers** since neutrons are available when (γ,n) reactions become negligible

Prog. Part. Nucl. Phys. 86 (2016) 86

The THM for n+radioactive nucleus reactions

Nuclear physics input: β -delayed n-emission

 S_n (neutron separation energy) < Q_β (Q-value β -decay)

"Delayed": emission with β -decay half-life of the precursor nucleus ^AZ

Important nuclear structure information:

- Time-dependence of n-emission $\rightarrow T_{1/2}(^{A}Z) \approx$ few ms tens of s
- Emission probability P_n and neutron spectrum: β -strength above S_n

Important β -delayed neutron emitters in neutron star mergers

Influence on nucleosynthesis:

- Injection of neutrons during freezeout
- Production of less-neutron-rich nuclei

Reshuffle of r-process yields

Prog. Part. Nucl. Phys. 86 (2016) 86

Nuclear physics input: β -delayed n-emission

PRC83, 045809 (2011)

Cold scenario: the case of neutron star mergers

Production of additional neutrons vs. depletion of neutron rich nuclei

Cold evolutions have a greater availability of neutrons at late times than hot scenarios, from fission and/or from the extra β -delayed neutron emission

Thus we find the most favored solutions tend to initially populate a rare earth peak at lower A, and late-time neutron captures shift the peak to the correct placement.

POLYFEMO @ LNS

FRIBs: in-flight fragment separator

Cocktail beams

→ Possibility to measure many β n emitters at the same time.

Candidate nuclei to test the approach: ⁶⁶Co ($T_{1/2} \simeq 0.2$ s) and ⁷²Ni ($T_{1/2} \simeq 1.6$ s)

Journal of Physics: Conf. Series 1014 (2018) 012016

FRIBs will be coupled with the Polycube neutron detector for P_n measurements

In the next future, improvements in the ECR sources, Cyclotron and FRIBS (FRAISE) upgrade will extend the range of the measured nuclei

Neutron detection with POLYFEMO

Efficiency measured with sources and reactions, as well as simulated with GEANT4

Implantation chamber under construction, including beta and gamma counters

Simulation of the whole system under development using GROOT

4. Studying the opacity of a plasma made up of lanthanides.

Atomic physics: measurement of opacities

What is opacity? Photon cross section per unit mass of absorbing _ _ material

 $\rightarrow \propto$ to the number of atomic transition in the heated matter

 $\rightarrow \propto$ to the square of number of atomic levels

The opacity of matter containing a small fraction of lanthanides is orders of magnitude larger than one containing iron peak elements

The Astrophysical Journal 774 (2013) 25

$$\kappa_{\rm Fe} \sim 0.1 \, cm^2 \, g^{-1}; \ \kappa_{\rm light-r} \sim 1 \, cm^2 \, g^{-1}; \ \kappa_{\rm heavy-r} \sim 10 \, cm^2 \, g^{-1}$$

Summary

1. Increasingly accurate observations call for more accurate nuclear data on the r-process

Constraining the r-process through a better understanding of the s-process:

 a. study of the neutron sources
 b. study of production/destruction of critical elements

3. Study of nuclear reactions involved in the r-process

- a. indirect study of n+RIB reactions
- b. Investigation of the beta-delayed neutron emission

4. Studying the opacity of a plasma made up of lanthanides in a controlled enviroments, where physical conditions similar to the ones in the ejecta can be produced.

THANKS for your attention!