The Effects of Neutrino Oscillations on Core-Collapse Supernova Explosions

Charles Stapleford

North Carolina State University

May 16, 2019

Together with Carla Fröhlich & James Kneller

- How does the shock get revived after stalling to cause the explosion?
 - The neutrino mechanism: scattering and absorption in the gain region

- How does the shock get revived after stalling to cause the explosion?
 - The neutrino mechanism: scattering and absorption in the gain region
 - Requires careful multi-flavor neutrino transport

- How does the shock get revived after stalling to cause the explosion?
 - The neutrino mechanism: scattering and absorption in the gain region

 Requires careful multi-flavor neutrino transport

- ν_e strongest interactions lower mean energy
- ν_x weakest interactions higher mean energy

- How does the shock get revived after stalling to cause the explosion?
 - The neutrino mechanism: scattering and absorption in the gain region

- Requires careful multi-flavor neutrino transport
- Neutrino flavors interact differently:
 - ν_e strongest interactions lower mean energy
 - ν_x weakest interactions higher mean energy
- Mixing the flavors could affect the heating
- There is a need for self-consistent neutrino flavor oscillations in supernova simulations

Neutrino Oscillations

- Oscillations occur because the ν mass states are not the same as ν flavor states
- Neutrinos keep the same energy & momentum, only changing flavor

Neutrino Oscillations

- Oscillations occur because the ν mass states are not the same as ν flavor states
- Neutrinos keep the same energy & momentum, only changing flavor
- Supernovae are environments where a variety of different oscillation phenomenon can occur:
 - <u>Collective neutrino oscillations</u>(CνO)
 - Flavor evolution through shocks and turbulence
 - Fast-flavor conversions
 - Potential nonstandard interactions

Duan+ (2006)

Patton+ (2013) Xu+ (2014)

Sawyer+ (2005) Dasgupta+ (2015)

Esteban-Pretel+ (2007) Stapleford+ (2016)

Yang+ (2018)

Neutrino Oscillations

- Oscillations occur because the ν mass states are not the same as ν flavor states
- Neutrinos keep the same energy & momentum, only changing flavor
- Supernovae are environments where a variety of different oscillation phenomenon can occur:
 - <u>Collective neutrino oscillations</u>(CνO)
 - Flavor evolution through shocks and turbulence
 - Fast-flavor conversions
 - Potential nonstandard interactions

Duan+ (2006)

Patton+ (2013) Xu+ (2014)

Sawyer+ (2005) Dasgupta+ (2015)

Esteban-Pretel+ (2007) Stapleford+ (2016)

Yang+ (2018)

Conditions exist for possible flavor mixing behind the shock

C. Stapleford (cjstaple@ncsu.edu)

SNXroads, ECT*, Trento, IT

The Effects of Oscillations

- Some approximate treatment of CvO has been done to examine the effects on heating
 - Manual spectral swap was found to produce explosions if some critical heating rate was reached
 Suwa+ (2011)
 - Numerical post-processing found that the CvO mostly occurs beyond the shock where it can not aid heating
 Dasgupta+ (2012)
 - Assuming maximal flavor mixing found that CνO most effective for small M_{PNS}, M and large R_ν
 Pejcha+ (2012)
- We wish to improve upon these findings by dynamically coupling full oscillation calculations directly to the neutrino transport

Adding Oscillations

NC STATE UNIVERSITY

Initialize Codes

Begin Time Step

BOLTZTRAN

Agile

Finish Time Step

Our Codes

Agile-BOLTZTRAN

- 1-D Lagrangian GR Hydrodynamics
- $\mathcal{O}\left(\frac{v}{c}\right)$ Boltzmann Equation $(\nu_e, \bar{\nu}_e, \nu_x, \bar{\nu}_x)$
- Lattimer-Swesty EOS
- Implicit time evolution
- Adaptive Grid
- Transport Processes
 - $\nu_e + n \rightleftharpoons e^- + p$
 - $\nu_e + N(Z, A) \rightleftharpoons e^- + N(Z + 1, A)$
 - $\nu_{e} + e^{-} \rightarrow \nu_{e} + e^{-}$
 - "Isoenergetic" Scattering
 - Pair-production & Annihilation

Mezzacappa+ (1993) Liebendörfer+ (2001)

SQA

SNXroads, ECT*, Trento, IT

NC STATE UNIVERSITY

Our Codes

Sqa

- Multi-energy, single-angle, free-streaming, oscillation code for 6 flavors
 (ν_e, ν_e, ν_u, ν_u, ν_u, ν_τ, ν_τ)
- Solves Schrödinger Equation for evolution operator in a quasi-adiabatic basis:

$$rac{\partial S}{\partial x} = -rac{i}{\hbar c}HS$$
 $ho(x) = S
ho(o)S^{\dagger}$

• $H = H_{VAC} + V_{MSW} + V_{SI}$ with GR corrections • Limit how often Sqa is called:

- Only run after bounce & behind shock
- Run only as required, not every time step

Galais+ (2011) Yang+ (2017)

Integrating Oscillations

Oscillations are introduced as a source term in the transport
 Transition probabilities converted into an effective opacity:

1

$$\sigma_{i,k} = \frac{P_{i,k}^{\alpha \to \beta} c}{r_i - r_{i-1}}$$

Link absorption in one flavor to emission in the other:

$$\frac{df_{\alpha}}{dt} = \sigma_{i,k}(f_{\beta} - f_{\alpha}) \qquad \frac{df_{\beta}}{dt} = \sigma_{i,k}(f_{\alpha} - f_{\beta})$$

• $\sigma_{i,k}$ constant between calls to Sqa

Our Simulation

Shock Radius

Just after Bounce

Just after Bounce

C. Stapleford (cjstaple@ncsu.edu)

SNXroads, ECT*, Trento, IT

Stalled Shock

(13)

Stalled Shock

Mass Integrated Heating Rate

(14)

Conclusions & Outlook

- Neutrinos are very important in supernovae, but self-consistent effects of oscillations had not previously been studied
- We have developed a code that self-consistently couples neutrino oscillation calculations with neutrino transport and supernova hydrodynamics for the first time
- Neutrino oscillations do impact the dynamics of the simulations, but do not cause the explosion to occur
- In the future we wish to include additional effects such as fast-flavor conversion and nonstandard interactions

Thank You