

ANTARES and KM3NeT programs for the supernova neutrino detection

V. Kulikovskiy (INFN Genova) on behalf of KM3NeT

Detection strategies

- ANTARES and KM3NeT are v telescopes made of 3D PMT arrays in the deep sea water well shielded from atmospheric muons.
 - **Prompt SN emission** (20 MeV neutrinos) should produce the increase of PMT rates in the detector. No event reconstruction but high sensitivity in time domain.
 - Hidden jets (~GeV-TeV neutrinos) can be promptly detected (fast event reconstruction, v direction and energy estimation). Alerts can be forwarded to the followers (GCN, ASTERICS-CLEOPATRA...).
 - Supernova Remnants can be efficient high energy hadron accelerators (~GeV-TeV neutrinos). (Steady) point-source searches on the sky, candidate list searches with long-term statistics (~years).

Undersea neutrino telescope sizes

Supernova prompt neutrino detection

- The main channel inverse beta decay.
- e⁺ of ~10 MeV instantly populate the detector volume.
 - Event reconstruction is not possible.
 - Coherent increase of the light in the detector can be seen.
 - KM3NeT DOM PMT coincidence level (total p.e. charge) gives an indication about the released energy.
- ⁴⁰K decay represents the main source of the optical background.
 - Usage of coincidences between PMTs to suppress it.

ANTARES

8

ORCA geometry 97% inverse Beta Decay (IBD), 3% elastic scattering, <1% CC on ¹⁶O either by selection of correlated coincidences or by exploiting the physics triggers 40K dominates multiplicity up to 6-7, Atmospheric muons starting from 8. Rate (Hz Rate (Hz) 10 ORCA bkg ORCA bkg before filter ARCA bkg SN 10kpc, 27M . ORCA bkg after filter SN 10kpc, 11M ⊙ 10 10^{-1} **KM3NeT** Preliminary 10^{-1} 10⁻²

KM3NeT sensitivities (I)

- 3D CCSN flux simulation from MPA Garching Group (only accretion phase considered in this analysis).
- An increase in coincidence rates is observable especially in the multiplicity range 6-10 (used for SN trigger).

 10^{-3}

 10^{-4}

10⁻⁵

2

Muon filter for

10^{-₹}

 10^{-4}

10

~500m

M. Colomer-Molla @ VLVnT 2019

12

Multiplicity

14

10

8

SN rates are average rates over 543ms for 27M and 340ms 10M.

6

8

10

12

Multiplicity

14

KM3NeT sensitivities (II)

 Full galaxy coverage for the 27 M progenitor and beyond the galactic center for the 11 M progenitor!

A sliding time window of width = 400 ms is updated with a $f_s = 10$ Hz sampling frequency. • Optimum time window from the sensitivity optimisation is 543ms for 27M and 340ms for 10M models. • (500 me window)

KM3NeT real time search

• This turns the p-value into a false alert rate: $+\infty$

$$R_B(X \ge X_D) = f_S \sum_{X=X_D} P(\rho_B \cdot \tau, X)$$

- The sampling f_s is optimised in order to:
 - minimise the signal loss due to the time discretisation;
 - avoid unnecessary increase of the number of time-trials.
- Batch analysis of few months of ORCA (1 line deployed) and ARCA data (2 lines deployed) show that the approach is stable and follows very well the Poisson expectation.

Offline processing of ORCA 1 line data (500 ms window, ~75 days of livetime)

KM3NeT Preliminary snTrigger5TS_DF2 Trigger / weel Entries 4.925891e+07 0.4895 BMS 0.7013 10⁵ 10⁴ 10^{3} 10² 10 = 10 20 SN trigger level (PMul cut 6-10), DF2 5TS Observation rate vs. trigger level

Joining SNEWS

- Global network combining in real-time alerts from different detectors.
- Online trigger performance for full ORCA block has coverage up to galactic center.
- Time detection of SN arrival at different sites (detectors) can provide direction via triangulation.

SN light curve studies

- Having CCSN detection at several sites one can estimate the direction of the neutrino flux using arrival time delays.
- Instead of comparing detected neutrino "light" curves with a model to derive arrival times (UV. Brdar *et al* JCAP 1804 (2018) 025) one could directly compare light curves between experiments to guess lag between them (τ).
 - Model independent (fitting to the model requires that every detector agrees on the common model and what to call arrival time - peak time, time above some threshold etc).
 - Sites using different detection channels (IBD, ES) can be harder to directly compare together.
- Joint sensitivity study between KM3NeT and IceCube is started to test the approach!
 - Number of events is binned with 1-10ms bins (equal for both detectors) histograms n_i and m_i). One of the histograms (m_i) is shifted by j number of bins to try to match with other histogram (n_i) .
 - Bin by bin summed Chi-square test statistic between two histograms is minimized to find $\tau = j\Delta$ (where τ is the arrival lag, Δ is the time bin width):
 - Cross-correlation is tried as well.
- In KM3NeT multiplicities of 2 PMTs seems to be promising for this study (cleaning from bioluminescence, reasonable statistics in 1-10ms bins).
 - This data is also studied for SASI oscillations search!

High E_v : Neutrino events reconstruction

Angular resolution: ANTARES: <0.4° (full, E>10 TeV) ARCA: <0.2° (full, E>10 TeV) ORCA: < 5° (zenith, E> 10 GeV)

Energy resolution: ANTARES: <0.5 (log E_{μ}) ARCA: <27% (E_{μ}) ORCA: <30% (E_{ν})

 $v_{\mu}(NC), v_{e}, v_{\tau}$

Angular resolution: ANTARES: ~3° (full, E>10 TeV) ARCA: ~2° (full, E>10 TeV) ORCA: < 5° (zenith, E> 10 GeV)

Energy resolution (E_v): ANTARES: ~25% ARCA: <5% ORCA: <26%

Multi-messenger programs

following ANTARES

- KM3NeT sensitivity for point-like sources with unbroken E⁻² spectrum. ANTARES upper limits.
- Shower channel is also promising (especially for N.H.).
- SNRs are almost point-like sources for the v telescopes.

RXJ1713 (test case SNR)

Neutrino fluxes estimation from the measured gamma-ray flux (H.E.S.S.) and assuming a pure hadron model

F. Vissani, Astropart. Phys. 26, 310 (2006).
S. R. Kelner et al, Phys. Rev. D 78 039901 (2009)

Even few neutrinos detection would be an ultimate argument for hadronic/leptonic accelerator debates.

Summary and Perspectives

- ANTARES:
 - Prompt low E_ν: SNEWS alert receiving, modest sensitivity (~5σ at 5 kpc).
 - Hidden jets: broad real time multi-messenger programs (in particular, to/from optical, X-ray, V.H.E. gamma telescopes).
 - Long term point sources searches (SNR).
 - ANTARES is still taking the data (after 10 years of operation in the sea).
- KM3NeT: phased construction of a next-generation neutrino detectors (ARCA & ORCA).
 - Both detectors: encouraging preliminary sensitivities for galactic SN prompt emission (future big player in time domain).
 - Triangulation with SNEWS partners is under study.
 - Possibly, sensitive to SASI and neutrino energy spectrum fit.
 - ORCA: optimised for low energy (GeV) neutrinos (hidden jets).
 - ARCA: great capabilities for point-like search (SNRs).
 - ARCA and ORCA are currently taking data with one DU each and more lines will be deployed this year.