HALO-1kT: a lead-based supernova detector

Andrea Gallo Rosso , Laurentian University On behalf of HALO Collaboration 16th May 2019

Learning from supernovae

ASTROPHYSICS

- Explosion mechanism
- Black hole formation
- Neutron star EoS
- Microphysics and neutrino transport
- Nucleosynthesis

PARTICLE PHYSICS

- Neutrino flavor transformation in dense environments
- Non-standard properties (indirect)

THEORY

- Importance of combining channels
- + SNEWS is dominated by $\overline{\nu}_{\mathbf{e}}$ sensitive detectors

EXPERIMENT

- Down-time of current kt-scale detectors
 - $\,\hookrightarrow\,$ calibration, reconfiguration, end of life...
- Cost of big detectors (100 kton)
 - \hookrightarrow some features might be sacrificed

NEED FOR LOW-COST, LOW-MAINTENANCE, LONG LIFETIME DETECTORS

Lead as supernova detector

- + $\nu_{\rm e}$ sensitive
 - + Pauli-blocking of $\overline{\nu}_{\rm e}~{\rm CC}$
 - Complementary to protons (IBD)
- Neutron production
 - High Coulomb barrier \Rightarrow no (α , n)
 - \cdot Low neutron absorption
- CC electrons
 - Spectral information
 - Very difficult to detect

²⁰⁸Pb $(v_e,e^-)^{207}$ Bi +n ²⁰⁸Pb $(v_x,v_x)^{207}$ Pb +n ²⁰⁸Pb $(\overline{v}_x,\overline{v}_x)^{207}$ Pb +n ²⁰⁸Pb $(\overline{v}_e,\overline{v}_x)^{207}$ Pb +n ²⁰⁸Pb $(v_e,e^-)^{206}$ Bi +2n ²⁰⁸Pb $(v_x,v_x)^{206}$ Pb +2n ²⁰⁸Pb $(\overline{v}_x,\overline{v}_x)^{206}$ Pb +2n

the Helium And Lead Observatory at SNOLAB

the Helium And Lead Observatory at SNOLAB

- 32 columns of lead (79 ton)
- 128 SNO's NCD counters
 - \cdot 1465 l atm of ³He
 - $\cdot \ ^{3}\text{He} + n \rightarrow p + \text{t} + 764 \, \text{keV}$
- Operating since May 2012
- High livetime, low maintenance

the Helium And Lead Observatory at SNOLAB

- Simulated, calibrated, understood
- $\cdot\,$ Neutron capture efficiency $\sim 28\%$
- Some dozen events @ 10 kpc

NEXT GENERATION: HALO-1kT at LNGS

- (4.33² \times 5.5) m³ lead core
- \cdot 28² × (5.5 m) array of ³He
- 8 mm PS moderator
- 30 cm graphite reflector
- 30 cm water shielding
- Almost final configuration

- Lead from decommissioned OPERA
 - ×12.7 mass (1 kton) w.r.t. HALO
- Improved efficiency
 - + from 28% to $\sim 50\%$
- \cdot $\times 20$ more statistics

Neutrino-lead cross section

- Large cross section $\sim (10^{-41} \div 10^{-39}) \, \mathrm{cm}^2$
- Unmeasured (calculated)
- Systematic uncertainties
 - Different calculations
 - Nuclear uncertainties
- Neutrino beam @ SNS
 - Measurement planned

Accessible measurements

- $\cdot \nu_{\rm e}$ thermometer
 - Flavor swapping
 - Collective $\nu \nu$ effects
 - Neutrino thermalization
- $\Phi(\nu_e)/\Phi(\overline{\nu}_e)$ ratios
 - Of interest for r-processes
- Pinching parameter ^[1]
 - Neutrinosphere radii
 - Equation of state

¹A. Gallo Rosso et al. JCAP 1812 (2018), JCAP 1804 (2018), JCAP 1711 (2017).

Reducing the parameter space

Väänänen and Volpe, JCAP 1110 (2011) 019.

John F. Crenshaw, Duke U. (2018).

WATER CHERENKOV

- IBD only: flux degeneracies
- Breaking through eES
- $\cdot \ \overline{\nu}_{e}$, u_{χ} under control
 - $\cdot \ \mathcal{E}_{\overline{\nu}_{e}} \sim 10\% \ (4\%) \\ \cdot \ \langle E_{\overline{\nu}_{e}} \rangle \sim 6\% \ (2\%)$
- ν_e flux almost undetermined (And pinching too)

WATER CHERENKOV

- IBD only: flux degeneracies
- Breaking through eES
- $\cdot \ \overline{\nu}_{e}$, u_{χ} under control
 - $\begin{array}{l} \cdot \hspace{0.1 cm} \mathcal{E}_{\overline{\nu}_{e}} \sim 10\% \hspace{0.1 cm} (4\%) \\ \cdot \hspace{0.1 cm} \langle E_{\overline{\nu}_{o}} \rangle \sim 6\% \hspace{0.1 cm} (2\%) \end{array}$
- ν_e flux almost undetermined (And pinching too)

WATER CHERENKOV

- IBD only: flux degeneracies
- Breaking through eES
- + $\overline{\nu}_{e}$, $\nu_{\rm X}$ under control
 - $\begin{array}{l} \cdot \hspace{0.1 cm} \mathcal{E}_{\overline{\nu}_{e}} \sim 10\% \hspace{0.1 cm} (4\%) \\ \cdot \hspace{0.1 cm} \langle E_{\overline{\nu}_{o}} \rangle \sim 6\% \hspace{0.1 cm} (2\%) \end{array}$
- ν_e flux almost undetermined (And pinching too)

WATER CHERENKOV

- IBD only: flux degeneracies
- Breaking through eES
- $\cdot \ \overline{\nu}_{e}$, u_{χ} under control
 - $\cdot \ \mathcal{E}_{\overline{\nu}_{e}} \sim 10\% \ (4\%) \\ \cdot \ \langle E_{\overline{\nu}_{e}} \rangle \sim 6\% \ (2\%)$
- ν_{e} flux almost undetermined (And pinching too)

PNS properties

HALO-1KT

- SN detectors need to be low maintenance, high livetime, and long lifetime
- Importance to have a $\nu_{\rm e}$ sensitive detector
 - Medium/little statistics is essential
 - $\boldsymbol{\cdot}$ Especially when it brings complementary information
- HALO-1kT proposal will be submitted LNGS scientific committee