DSNB detection in Water-based Liquid Scintillator

ECT* Workshop Trento, 16 May 19 Julia Sawatzki (TUM) Michael Wurm (Mainz)

KPC

GpC

DSNB prediction

DSNB spectrum and flux

Current status of DSNB (non-)detection

- DSNB provides for a very faint signal: ~1 IBD per year and 10 kt water (LS)
- Super-K only able to provide an upper limit → efficient IBD neutron tag missing

Backgrounds in pure water

- solar neutrinos (⁸B): E>16MeV
- IBDs from atmospheric v_e's
- Michel electrons from CC of low-energy atmospheric v_µ's (a.k.a. "invisible muons")
- NC elastic scattering of atm. v's
- π misidentifcation
- → resulting limit from SKI-III: φ_v < 2.9 cm⁻²s⁻¹ for E(e⁺)>16MeV

DSNB \bar{v}_e signal in water+Gd/scintillator

→ residual background: anything mimicking a fast coincidence signal (delayed neutron)

JG**U**

Current efforts towards DSNB discovery

Super-Kamiokande+Gadolinium

JUNO

- ightarrow lower detection threshold
- \rightarrow sees p(n, γ)d directly
- → detection efficiency close to 100%

BUT: nasty atm. ν NC background

- \rightarrow needs pulse shape discrimination
- \rightarrow detection efficiency: $\geq 50\%$

Atmospheric neutrino NC background

Atmospheric neutrinos: high energy (GeV+) \rightarrow no problem in CC, but sometimes in NC ...

12

10

First data on atm. NC BG from KamLAND

KamLAND data

atmospheric v CC

atmospheric v NC

25

accidental

spallation

fast-neutron

Background in liquid scintillator: quenched signals of p, α , γ ... mimic prompt in right E range \rightarrow needs PSD

Background in H2O+Gd: excited oxygen nuclei may produce prompt gamma rays

30

Current efforts towards DSNB discovery

Super-Kamiokande+Gadolinium

Detection efficiency: 65-80% **Atm. NC BG:** probably not too bad

JUNO

Detection efficiency: >50% (PSD) **Atm. NC BG:** S:B > 1:1

- \rightarrow Both have a very realistic perspective to detect the DSNB
- \rightarrow Acquiring statistics for DSNB spectroscopy needs a lot of time: SK-Gd+JUNO \rightarrow 3-4 yr⁻¹
- \rightarrow How to improve this situation?

Michael Wurm (Mainz)

Cherenkov detection in scintillator

- → Cherenkov light is particularly useful for reconstruction of direction and (multiple) tracks
- → Cherenkov photons are produced in liquid scintillators (~5%)
- → the majority is scattered or absorbed before reaching PMTs

To make use of it:

- \rightarrow reduce scattering/absorption
- → separation of Cherenkov and scintillation photons

Michael Wurm (Mainz)

Light propagation in organic scintillators

How to improve the (relative) Cherenkov photoelectron yield?

\rightarrow reduce fluor concentration

- impacts scintillation yield
- slows down scintillation (good! → see next slide)

→ reduce Rayleigh scattering

new transparent solvent,e.g. LAB (~20m)

and/or

dilution of solvent:
 Water-based scintillators
 Oil-diluted LS (LSND ...)

JG U

Water-based Liquid Scintillators (WbLS) JG

Michael Wurm (Mainz)

DSNB in WbLS

Separation of Cherenkov/scintillation photons JG U

Several handles available for discrimination of **Cherenkov** and **scintillation** photons:

Timing

"instantaneous" Cherenkov
vs. delayed scintillation light
→ ns resolution or better

Spectrum

UV/blue scintillation vs. blue/green Cherenkov → wavelength-sensitivity

Angular distribution

increased PMT hit density under Cherenkov angle → sufficient granularity

DSNB in WbLS

Julia Sawatzki (TUM) MW

MW (MZ)

- Julia's PhD: detailed MC study of DSNB detection in JUNO
- Study for WbLS performed for THEIA project (see later)
- JUNO-like detector w/ WbLS target (10% organic fraction)
 - Cherenkov (C) to Scintillation (S) 3:4
 - $\,\circ\,$ High PMT coverage of >70%
 - \rightarrow 90pe (C) + 120pe (S) / MeV $\rightarrow \Delta E/E \sim 7\%/\sqrt{E}$
 - <u>No</u> explicit event reco, assume C/S can be separated
- Important: detailed modeling of the atm. NC BG:
 Neutrino interactions by GENIE
 Nuclear excitations by TALYS
- Publication in preparation
- Note: Similar study on DSNB detection in slow scintillator (Jinping Neutrino Experiment)
 → finds very good signal/BG discrimination based on Cherenkov/scintillation ratio
- Wei, Wang, Chen, Phys.Lett. B769 (2017) 255-261

Simulated spectra of signal plus all backgrounds that may mimic the IBD signature:

DSNB signal: based on model by Kresse, Ertl, Janka (in prep.) : ~3 IBDs per 10 kt·yr

JGU

Simulated spectra of signal plus all backgrounds that may mimic the IBD signature:

Reactor neutrinos (for Homestake, by Steve Dye): irreducible background

Michael Wurm (Mainz)

Simulated spectra of signal plus all backgrounds that may **mimic the IBD signature**:

Michael Wurm (Mainz)

Simulated spectra of signal plus all backgrounds that may **mimic the IBD signature**:

Defines DSNB observation window from 9 to 30 MeV

Simulated spectra of signal plus all backgrounds that may **mimic the IBD signature**: Cosmogenic ⁹Li: βn-emitter \rightarrow can be reduced by depth and muon coincidence veto scheme visible scintillation energy (MeV) 0 10³ 5 10 15 20 25 30 35 50 40 Events per 100 kt*yrs and 100 p.e. AtmNC BG DSNB **Reactor BG** 10² AtmCC BG Li9 BG **FastN BG** 10 1 10⁻¹ 10⁻² 2000 3000 1000 4000 5000 6000 0 prompt scintillation p.e.

Simulated spectra of signal plus all backgrounds that may mimic the IBD signature:

Michael Wurm (Mainz)

Simulated spectra of signal plus all backgrounds that may mimic the IBD signature:

Michael Wurm (Mainz)

AtmNC BG and C/S ratio

vs. IBD: large Cherenkov signal from prompt positron

→ discrimination based on Cherenkov/Scintillation (C/S) ratio

DSNB in WbLS

AtmNC events with high C/S ratio

JGU

Two event populations contributing:

(1) Oxygen de-excitation gammas

- atmospheric neutrino removes 1s_{1/2} neutron
- high-energy de-excitation γ's

(2) High-energy neutrons

- depositing 15-50 MeV in WbLS
- creating secondary particles: e,γ

e.g. two or more

- ¹⁶O(n,n)¹⁶O* → 6.13 MeV
- ¹⁶O(n,2n)¹⁵O* → 6.18 MeV
- ¹⁶O(n, np)¹⁵N* \rightarrow 6.32 MeV

→ these events form a potential background for water+Gd detection, too

Ring-counting for BG discrimination

IBD prompt positrons: single Cherenkov ring

High-energy event displays from SK:

AtmNC background: multiple particles (γ 's) $\rightarrow \geq 1$ ring

real life will be much harder ...

\rightarrow ring counting can be used for **discrimination of BG with high C/S ratio**

Simulation study: no ring reconstruction yet, so counting of final state particles that produce Cherenkov light

→ fraction of multi-ring AtmBG events: ~2/3 of high C/S events feature 2+ rings

→ what is required for recognizing 2nd ring? assuming 20% of all C photons is sufficient,
 60% of all AtmBG events can be tagged as multi-ring background

DSNB in WbLS

Signature for background tagging:

 \rightarrow three-fold coincidence of prompt, neutron and delayed decay signal

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					$ ightarrow u_x +$	ratio in $\%$		
(1)	n			+	$^{15}\mathrm{O}$	45.9	taggable	$\rightarrow \beta^+$: Q = 2.8 MeV
(2)	n	+	р	+	14 N	19.7	stable	τ = 2.2min
(3)	n	+	2p	+	$^{13}\mathrm{C}$	14.7	stable	
(4)	n	+	р	+ d +	$^{12}\mathrm{C}$	9.1	stable	
(5)	n	+	р	$+$ d $+ \alpha +$	$^{8}\mathrm{Be}$	2.0	too fast	
(6)	n	+	3p	+	$^{12}\mathrm{B}$	1.8	taggable	$\rightarrow \beta^{-}$: Q = 13.4 MeV
(7)	n			$+lpha+{}^{3}\mathrm{He}$ $+$	⁸ Be	1.6	too fast	τ = 20 msec
(8)	n	+	р	+lpha+	$^{10}\mathrm{B}$	1.4	stable	
(9)	n	+	2p	+lpha+	$^{9}\mathrm{Be}$	1.2	stable	

→ tagging of delayed decays provides 48% AtmBG rejection efficiency

JGU

Rates in observation window (i.e. 8-30 MeV) in 100 kt x yrs at Homestake

multi-neutron events already rejected

Spectral contribution	before cuts	Li veto	delayed decays	C/S cut	single-ring
DSNB signal	21.1	20.9	20.9	20.5	20.5
Reactor neutrinos	—	—	—	—	—
Atmospheric CC	2.1	2.1	2.1	2.0	2.0
Atmospheric NC	436	432	230	11.5	6.2
βn -emitters (⁹ Li)	55.1	—	—	—	—
fast neutrons	0.65	0.65	0.65	—	—
Signal-to-background	0.043	0.048	0.090	1.52	2.50

→ Signal efficiency at >95% → virtually full signal statistics!

 \rightarrow AtmBG background rejection by a factor 70!

(stronger suppression can be bought in exchange for reduced signal efficiency)

- ightarrow All other BGs reduced to negligible level
- \rightarrow Final S:B ratio of 5:2

Prospects for WbLS in THEIA

Reference design

- Fiducial mass: 50-100 kt
- WbLS or oil-diluted LS
- up to 80% photo-coverage (90% PMTS / 10% LAPPDs)
- Isotope loading (Gd, Li, Te, Xe)

Reduced design

- fits into a free DUNE cavern
- Fiducial mass: ~20 kt
- 40% photo-coverage w/ possible LAPPD upgrade

Staged Approach

- Phase 1 Long-baseline neutrinos (LBNF) with "thin" WbLS (1%)
- Phase 2 Low-energy neutrino observation with "oily" LS
- Phase 3 multi-ton scale $0\nu\beta\beta$ search with loaded LS in suspended vessel —

THEIA proto-collaboration: ~30 Pl's from 5 countries (US,DE,UK,CA,FI)

Physics Goals \rightarrow arXiv:1409.5864

- LBL: CP violation
- Proton decay ($K^+\nu/\pi^0e^+$)
- Supernova neutrinos pointing (Δθ~1°)
- Diffuse SN neutrinos atm. NC BG reduction
- Solar neutrinos CNO, Li loading \rightarrow CC
- Geoneutrinos
- $0\nu\beta\beta$ on <10meV scale

Prospects for DSNB spectroscopy

Minimal scenario

- Det.Mass: SK-Gd 16kt* + JUNO 10kt* + small THEIA 18kt*
 → Integral DSNB rate: 9 events per year (4 from THEIA)
- WbLS: improved understanding of systematics for H₂O+Gd and oLS, too, because of C/S information

* already including detection efficiencies

Present detectors + reference THEIA

- Det.Mass: SK-Gd 16kt* + JUNO 10kt* + THEIA 95kt*
 → Integral DSNB rate: 25 events per year (20 from THEIA)
- order 100 events after 4 years! → DSNB spectroscopy

Optimistic scenario: HK+JUNO+THEIA

- Det.Mass: HK-Gd 200kt* + JUNO 10kt* + THEIA 95kt*
 → Integral DSNB rate: 60 events per year (40 from HK)
- WbLS still adds to understanding of most relevant BG

DSNB detection in WbLS

- C/S ratio gives a powerful handle to discriminate atmNC background signals
- can be supported by delayed-decay tag or multi-ring identification
- → S:B ratios of 2:1 or better are possible w/o significant loss of signal efficiency
- Even small WbLS detector (20kt) means substantial increase in event statistics when added to SK-Gd and JUNO
- In anya case, WbLS can be expected to have a large impact on the understanding of BG systematics for H₂O+Gd and oLS

Backup Slides

Table of Event Rates (all techniques)

Wei, Wang, Chen, arXiv:1607.01671

Table 2: Summary of the numbers of backgrounds and SRN events at neutrino energies of 10.8-30.8 MeV with an exposure of 20 kton-year of water, Gd-doped water, a typical liquid scintillator, and a slow liquid scintillator (LAB) at Jinping.

20 kton-year	Water ^a	Gd-w ^a	LS	Slow LS
Atmos. $\bar{\nu}_e$	0.040	0.21	0.28	0.26
Atmos. $\bar{\nu}_{\mu}/\nu_{\mu}$ CC	0.33	1.8	3.6	0.025
Atmos. NC	0.095	0.49	62	0.35
Total backgrounds	0.47	2.5	66	0.64
Signal ^b	0.54	2.8	4.2	4.1
Signal efficiency	13%	70%	92%	90%
S/B	1.1	1.1	0.064	6.4

^a with neutron tagging.

^b HBD model; water and Gd-w results corrected by a factor of ~0.9 due to differences in the fractions of free protons in water and LAB.

Different flavors of atm. NC background

There is a long list of final states with single neutrons ...

Reaction channel	Branching ratio
(1) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm n} + {}^{11}{\rm C}$	38.8%
(2) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm p} + {\rm n} + {}^{10}{\rm B}$	20.4%
(3) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm n} + {}^{9}{\rm Be}$	15.9%
(4) $\nu_{\mathbf{x}} + {}^{12}\mathrm{C} \rightarrow \nu_{\mathbf{x}} + \mathrm{p} + \mathrm{d} + \mathrm{n} + {}^{8}\mathrm{Be}$	7.1%
(5) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + \alpha + p + n + {}^{6}{\rm Li}$	6.6%
(6) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm d} + {\rm n} + {}^{7}{\rm Li}$	1.3%
(7) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 3{\rm p} + 2{\rm n} + {}^{7}{\rm Li}$	1.2%
(8) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm d} + {\rm n} + {}^{9}{\rm B}$	1.2%
(9) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm t} + {\rm n} + {}^{6}{\rm Li}$	1.1%
(10) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + \alpha + n + {}^{7}{\rm Be}$	1.1%
(11) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 3{\rm p} + {\rm n} + {}^{8}{\rm Li}$	1.1%
other reaction channels	4.2%

Total rate found in KamLAND: **3.6±1.0 kt⁻¹yr⁻¹**

 \rightarrow none of the final state particles will produce Cherenkov light! (except γ 's)

DSNB study performed for Jinping

Wei, Wang, Chen, arXiv:1607.01671

\rightarrow discrimination of e⁺ and NC-prompt seems effortless above 10 MeV

DSNB in LSCDs

DSNB event spectrum in sLS

Wei, Wang, Chen, arXiv:1607.01671

Expected energy spectrum: $\langle E_{\nu} \rangle = 18 \text{MeV}$

Event rates in observation window $E_{\nu} \in [10.8; 30.8]$ MeV

20 kt∙yr	# [11-31 MeV]
atm. $\bar{\nu}_e$	0.26
atm. ν_{μ}	0.025
atm. NC	0.35
total BG	0.64
signal	4.1
efficiency	90%
S/B	6.4

\rightarrow comes close to **background-free** observation (excl. terrestrial $\bar{\nu}_e$ sources)

LSCDs vs. other techniques

Wei, Wang, Chen, arXiv:1607.01671 JUNO Yellow Book, arXiv:1507.0561

Julia performed a detailed study of all backgrounds that may **mimic the IBD signature**:

- Reactor antineutrinos
- Cosmogenic βn-emitters: ⁹Li/⁸He
- Fast neutrons from rock muons
- Atmospheric v CC interactions
- Atmospheric v NC interactions

- -- irreducible
- -- somewhat reduced compared to oLS/muon veto
- -- can be rejected by fiducial volume cut, but better to use C/S ratio
- -- in part irreducible
- -- the headache

Fast light detectors: LAPPDs

For fast scintillators (e.g. WbLS), sub-ns time resolution will be crucial

Large-Area Picosecond Photo-Detectors:

- flat, large area (20cm x 20cm) detectors
- standard photocathode, MCP-based amplification
- time resolution: ~60 ps
- spatial resolution: <1cm</p>
- Manufactured by US company, Incom Inc.

Schematic of LAPPD

CHESS: CHErenkov-Scintillation Separation JG

Select vertical cosmic muon events Image Cherenkov ring in Q and T on fast-PMT array

Allows charge- and time-based separation

12 1-inch H11934 PMI's (300ps FWHM, 42% QE) CAEN V1742 (5GHz) 675 samples (135ns window) CAEN V1730 (500MHz)

Х

CHESS results on LAB+PPO

	LAB (time)	LAB (charge)	LAB/PPO (time)	LAB/PPO (charge)
Cherenkov detection efficiency	83 ± 3 %	96 ± 2 %	70 ± 3 %	63 ± 8 %
Scintillation contamination	11 ± 1 %	6±3%	36 ± 5 %	38 ± 4 %

CHESS results on WbLS (1%)

Michael Wurm (Mainz)

WbLS development path \rightarrow ANNIE

ANNIE: Accelerator Neutrino Neutron Interaction Experiment

- Fermilab-based R&D facility for Water-Cherenkov(+Gd)/scintillator detection
- Physics motiviation: measurement of nuclear final states from neutrino interactions (NuMi-beam) in water: production and multiplicity of final-state neutrons

- **Phase I** an engineering run of the detector and measurement of beam correlated neutron backgrounds, was completed in summer of 2017
- **Phase II** the full physics and R&D run, starts construction this summer with the data taking to planned start in Fall 2018
- **Phase III** (planned) R&D run with WbLS fill or separated target vessel (ton-scale)

Michael Wurm (Mainz)

New Detection Techniques

WbLS development path -> WATCHMAN/AIT

WATCHMAN: WATer Cherenkov Monitor for Anti Neutrinos

- Phase I of the Advanced Instrumentation Testbed (AIT)
- kiloton-scale H₂O+Gd Cherenkov detector for reactor monitoring
- from 2022: detection of ON/OFF power cycle of single reactor (3σ at 25km)

→ later phases (2024+): upgrade with WbLS and LAPPDs

WATCHMAN detector at the Boulby mine

- 3500 tons, ~3000 photomultiplier tubes
- Water Cherenkov detector, doped with gadolinium
- Detects antineutrinos via the process

 $\overline{v} + p = e^+ + n$

ightarrow poster by E. Kneale