
ECT* Workshop
Trento, 16 May 19
Julia Sawatzki (TUM)
Michael Wurm (Mainz)

kpc

Mpc

Gpc

DSNB detection in 
Water-based Liquid Scintillator



DSNB prediction
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DSNB prediction depends on
§ SN neutrino spectrum, <Eν>
§ redshift-dependent Supernova rate 

(or star formation and IMF)

John%Beacom,%Ohio%State%University% TAUP,%Munich,%Germany,%September%2011% 12%
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mean local SFR
    (see Figure 2)

Prediction from cosmic SFR

Cosmic SNR measurements

Horiuchi%et%al.%(2011);%
see%also%Hopkins,%Beacom%(2006),%
Bolcella%et%al.%(2008)%

Measured%cosmic%supernova%
rate%is%half%as%big%as%expected,%
a%greater%deviaBon%than%
allowed%by%uncertainBes%

Why?%

There%must%be%missing%
supernovae%–%are%they%faint,%
obscured,%or%truly%dark?%

Preliminary%Dahlen%(2010)%
points%near%solid%line,%below%
preliminary%Dahlen%(2008)%

Objectives of a DSNB measurement
à first of all: discovery
à average Supernova ν spectrum

(large variation on type expected)
à redshift-dependent SN rate
à fraction of hidden/failed SNe



DSNB spectrum and flux

Michael Wurm

S. Ando ‘04 § DSNB flux: ~102 /cm2s
§ equipartition between flavors
§ best possibility for detection in 

water and LS: inverse beta decay
§ expected rate: ~1 per 10 kt.yrs

3

Detected spectrum as function of <Ev>

DSNB in WbLS



Current status of DSNB (non-)detection
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§ DSNB provides for a very faint signal: ~1 IBD per year and 10 kt water (LS)

§ Super-K only able to provide an upper limit → efficient IBD neutron tag missing

positron energy [MeV] à resulting limit from SKI-III:
φν < 2.9 cm-2s-1 for E(e+)>16MeV

Backgrounds in pure water
§ solar neutrinos (8B): E>16MeV
§ IBDs from atmospheric νe‘s
§ Michel electrons from CC of

low-energy atmospheric νμ‘s
(a.k.a. “invisible muons“)

§ NC elastic scattering of atm. ν‘s
§ π misidentifcation

#

DSNB in WbLS



τ~250µs

DSNB (𝝂𝒆 signal in water+Gd/scintillator
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prompt positron
à 𝜈̅- energy

Inverse Beta Decay on H:
rate: ~1 IBD per 10 kt x yrs

background discrimination:
removes single events 
(e.g. invisible muons) 

à residual background: anything mimicking a fast coincidence signal (delayed neutron)

delayed neutron

visible in LS,

WbLS & H2O+Gd

Beacom
,	Vagins

DSNB in WbLS



Current efforts towards DSNB discovery
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Super-Kamiokande+Gadolinium

à add gadolinium
à enhanced neutron tag

(ΣEγ≈8MeV)
à detection efficiency: 65-80%

JUNO

à lower detection threshold
à sees p(n,𝛄)d	directly
à detection efficiency close to 100%

BUT: nasty atm. ν NC background
→	needs pulse shape discrimination
→	detection efficiency: ≥50%

atm. NC likely to pose 
some BG for water+Gd

DSNB in WbLS



Atmospheric neutrino NC background
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à prompt event: quenched signal
of radioactive decay + protons

à delayed event:
neutron capture on hydrogen

Background in liquid scintillator: 
quenched signals of p, α,	γ ...	mimic
prompt in right E range → needs PSD

First	data	on	atm.	NC	BG	from	KamLAND

Background in H2O+Gd: excited oxygen
nuclei may produce prompt gamma rays

DSNB in WbLS

Atmospheric neutrinos: high energy (GeV+) → no problem in CC, but sometimes in NC ...



Current efforts towards DSNB discovery
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Super-Kamiokande+Gadolinium JUNO

Detection efficiency: 65-80%
Atm. NC BG: probably not too bad

Detection efficiency: >50% (PSD)
Atm. NC BG: S:B > 1:1

à Both have a very realistic perspective to detect the DSNB
à Acquiring statistics for DSNB spectroscopy needs a lot of time: SK-Gd+JUNO → 3-4 yr-1

à How to improve this situation? 
DSNB in WbLS



Cherenkov detection in scintillator

scintillation
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→ Cherenkov light is particularly
useful for reconstruction of
direction and (multiple) tracks

→ Cherenkov photons are produced
in liquid scintillators (~5%)

→ the majority is scattered or 
absorbed before reaching PMTs

To make use of it:
→ reduce scattering/absorption
→ separation of Cherenkov and

scintillation photons

courtesy of Ben Land
Michael Wurm (Mainz) 9DSNB in WbLS



Light propagation in organic scintillators
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Cherenkov spectrum

solvent
absorption

fluor
absorption

fluor
emission

Cherenkov
emission

Rayleigh scattering
off solvent (~1/𝛌4)

How to improve the (relative)
Cherenkov photoelectron yield?

→ reduce fluor concentration
– impacts scintillation yield
– slows down scintillation

(good! → see next slide)

→ reduce Rayleigh scattering
– new transparent solvent,

e.g. LAB (~20m)
and/or

– dilution of solvent:
Water-based scintillators
Oil-diluted LS (LSND …)

DSNB in WbLS



Water-based Liquid Scintillators (WbLS)
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Water-based Liquid Scintillator
Water-like
§ >70% water
§ Cherenkov+
scintillation

§ cost-effective

Oil-like
§ loading of
hydrophilic
elements
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WbLS composition
§ organic LS droplets

(solvent+fluor)
§ surfactant
§water

→ properties depend
on relative fractions:

§ Reduced light yield 
§ Increased transparency
§ Comparable timing

Minfang Yeh, BNL
DSNB in WbLS



Separation of Cherenkov/scintillation photons
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Several handles available for discrimination of Cherenkov and scintillation photons:

Timing
“instantaneous” Cherenkov
vs. delayed scintillation light
→ ns resolution or better

Spectrum
UV/blue scintillation vs. 
blue/green Cherenkov
→ wavelength-sensitivity

Angular distribution
increased PMT hit density
under Cherenkov angle
→ sufficient granularity

DSNB in WbLS



DSNB in WbLS
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Julia Sawatzki (TUM)      MW (MZ)

§ Julia‘s PhD: detailed MC study of DSNB detection in JUNO

§ Study for WbLS performed for THEIA project (see later)

§ JUNO-like detector w/ WbLS target (10% organic fraction)
o Cherenkov (C) to Scintillation (S) – 3:4
o High PMT coverage of >70% 

→ 90pe (C) + 120pe (S) / MeV → ΔE/E~7%/ 𝐸
o No explicit event reco, assume C/S can be separated

§ Important: detailed modeling of the atm. NC BG:
oNeutrino interactions by GENIE
oNuclear excitations by TALYS

§ Publication in preparation

§ Note: Similar study on DSNB detection in slow scintillator (Jinping Neutrino Experiment) 
→ finds very good signal/BG discrimination based on Cherenkov/scintillation ratio

§ Wei, Wang, Chen, Phys.Lett. B769 (2017) 255-261

DSNB in WbLS



Signals and backgrounds in THEIA
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Simulated spectra of signal plus all backgrounds that may mimic the IBD signature:

DSNB signal: based on model by Kresse, Ertl, Janka (in prep.) : ~3 IBDs per 10 kt.yr

DSNB in WbLS



Signals and backgrounds in THEIA

Michael Wurm (Mainz) 15

Simulated spectra of signal plus all backgrounds that may mimic the IBD signature:

Reactor neutrinos (for Homestake, by Steve Dye): irreducible background

DSNB in WbLS



Signals and backgrounds in THEIA
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Simulated spectra of signal plus all backgrounds that may mimic the IBD signature:

Atmospheric neutrino IBDs (for Homestake): irreducible background

DSNB in WbLS



Signals and backgrounds in THEIA
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Simulated spectra of signal plus all backgrounds that may mimic the IBD signature:

Defines DSNB observation window from 9 to 30 MeV

DSNB in WbLS



Signals and backgrounds in THEIA
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Simulated spectra of signal plus all backgrounds that may mimic the IBD signature:
Cosmogenic 9Li: βn-emitter
→ can be reduced by depth and muon coincidence veto scheme

DSNB in WbLS



Signals and backgrounds in THEIA
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Simulated spectra of signal plus all backgrounds that may mimic the IBD signature:

Fast neutrons generated by muons in surrouding rock
→ depth, fiducial volume cut, Cherenkov/scintillation (C/S) ratio

DSNB in WbLS



Signals and backgrounds in THEIA
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Simulated spectra of signal plus all backgrounds that may mimic the IBD signature:

Atmospheric NC events: 1-2 OoM higher than DSNB signal
→ C/S ratio, multi-ring selection, triple coincidence veto

DSNB in WbLS



AtmNC BG and C/S ratio
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à prompt event: 
quenched scintillation signal
but no Cherenkov signal

à delayed event:
neutron capture on hydrogen

vs. IBD: large Cherenkov signal from prompt positron
→ discrimination based on Cherenkov/Scintillation (C/S) ratio

16O

14N

DSNB in WbLS



Background discrimination with C/S ratio
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p.e. from scintillation

C/
S 

ra
tio DSNB

atmNC

Large MC sample of DSNB signal and atmospheric NC events with 1! neutron in final state

DSNB in WbLS



Background discrimination with C/S ratio
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p.e. from scintillation

C/
S 

ra
tio DSNB

atmNC

Large MC sample of DSNB signal and atmospheric NC events with 1! neutron in final state

DSNB in WbLS



Background discrimination with C/S ratio
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Large MC sample of DSNB signal and atmospheric NC events with 1! neutron in final state

atmNC

DSNB in WbLS



Background discrimination with C/S ratio
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Large MC sample of DSNB signal and atmospheric NC events with 1! neutron in final state

atmNC

Conclusion:
§ C/S discrimination works!
§ but: there are atmNC events

with high C/S ratios → why?

DSNB in WbLS



AtmNC events with high C/S ratio
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Two event populations contributing:

(1) Oxygen de-excitation gammas
§ atmospheric neutrino removes

1s1/2 neutron
§ high-energy de-excitation γ‘s

→ single gammas
w/ up to 20 MeV
observed

(2) High-energy neutrons
§ depositing 15-50 MeV in WbLS
§ creating secondary particles: e,γ

e.g. two or more
- 16O(n,n)16O* → 6.13 MeV
- 16O(n,2n)15O* → 6.18 MeV
- 16O(n, np)15N* → 6.32 MeV

→ these events form a
potential background for
water+Gd detection, too

DSNB in WbLS



Ring-counting for BG discrimination
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IBD prompt positrons:
single Cherenkov ring

→ ring counting can be used for discrimination of BG with high C/S ratio

AtmNC background:
multiple particles (γ‘s) → ≥1 ring

High-energy event displays from SK:											real	life will	be much harder ...

DSNB in WbLS



Multi-ring tagging
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Simulation study: no ring reconstruction yet,
so counting of final state particles that produce Cherenkov light

→ fraction of multi-ring AtmBG events:  ~2/3 of high C/S events feature 2+ rings

→ what is required for recognizing 2nd ring? assuming 20% of all C photons is sufficient,
60% of all AtmBG events can be tagged as multi-ring background

number of Cherenkov rings vs. energy fraction of light in leading ring

DSNB in WbLS



Delayed decay tagging
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Signature for background tagging: 
→ three-fold coincidence of prompt, neutron and delayed decay signal

→ tagging of delayed decays provides 48% AtmBG rejection efficiency

→ β+: Q = 2.8 MeV
τ = 2.2min

→ β-: Q = 13.4 MeV
τ = 20 msec

DSNB in WbLS



Signal vs. background rates
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Rates in observation window (i.e. 8-30 MeV) in 100 kt x yrs at Homestake
multi-neutron events already rejected

→ Signal efficiency at >95% → virtually full signal statistics!
→ AtmBG background rejection by a factor 70!

(stronger suppression can be bought in exchange for reduced signal efficiency)
→ All other BGs reduced to negligible level
→ Final S:B ratio of 5:2

DSNB in WbLS



Staged Approach
Phase 1 Long-baseline neutrinos (LBNF)

with ”thin” WbLS (1%)
Phase 2 Low-energy neutrino 

observation with “oily” LS
Phase 3 multi-ton scale 0νββ search with 

loaded LS in suspended vessel 

Prospects for WbLS in THEIA
Reference design
§ Fiducial mass: 50-100 kt
§ WbLS or oil-diluted LS
§ up to 80% photo-coverage

(90% PMTS / 10% LAPPDs)
§ Isotope loading (Gd, Li, Te, Xe)

THEIA proto-collaboration:
~30 PI’s from 5 countries (US,DE,UK,CA,FI)

Physics Goals

§ LBL: CP violation
§ Proton decay (K+ν/π0e+)

§ Supernova neutrinos
pointing (Δθ~1°)

§ Diffuse SN neutrinos
atm. NC BG reduction

§ Solar neutrinos
CNO, Li loading → CC

§ Geoneutrinos
§ 0νββ on <10meV scale

Michael Wurm (Mainz) 31

→ arXiv:1409.5864

Reduced design
§ fits into a free DUNE cavern
§ Fiducial mass: ~20 kt
§ 40% photo-coverage

w/ possible LAPPD upgrade

DSNB in WbLS



Prospects for DSNB spectroscopy

Michael Wurm (Mainz) 32

Minimal scenario
§ Det.Mass: SK-Gd 16kt* + JUNO 10kt* + small THEIA 18kt*

→ Integral DSNB rate: 9 events per year (4 from THEIA)
§ WbLS: improved understanding of systematics for H2O+Gd 

and oLS, too, because of C/S information

Present detectors + reference THEIA
§ Det.Mass: SK-Gd 16kt* + JUNO 10kt* + THEIA 95kt*

→ Integral DSNB rate: 25 events per year (20 from THEIA)
§ order 100 events after 4 years! → DSNB spectroscopy

Main aspects: event statistics, understanding of residual background.

* already including detection efficiencies

Optimistic scenario: HK+JUNO+THEIA
§ Det.Mass: HK-Gd 200kt* + JUNO 10kt* + THEIA 95kt*

→ Integral DSNB rate: 60 events per year (40 from HK)
§ WbLS still adds to understanding of most relevant BG

DSNB in WbLS



Conclusions
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DSNB detection in WbLS

§ C/S ratio gives a powerful handle to discriminate atmNC background signals

§ can be supported by delayed-decay tag or multi-ring identification

→ S:B ratios of 2:1 or better are possible w/o significant loss of signal efficiency

§ Even small WbLS detector (20kt) means substantial increase in event statistics
when added to SK-Gd and JUNO

§ In anya case, WbLS can be expected to have a large impact on the
understanding of BG systematics for H2O+Gd and oLS

DSNB in WbLS
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Table of Event Rates (all techniques)

Michael Wurm (Mainz) DSNB in LSCDs 35

Wei,	Wang,	Chen,	arXiv:1607.01671



Different flavors of atm. NC background
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There is a long list of final states with single neutrons ...

Total rate found in KamLAND: 3.6±1.0 kt-1yr-1

à none of the final state particles will produce Cherenkov light! (except γ‘s)



DSNB study performed for Jinping

Michael Wurm (Mainz) DSNB in LSCDs 37

à discrimination of e+ and NC-prompt seems effortless above 10 MeV

Wei,	Wang,	Chen,	arXiv:1607.01671

→ protons and heavier
nuclear fragments

→ electron-like
(positrons)



DSNB event spectrum in sLS

Michael Wurm (Mainz) DSNB in LSCDs 38

à comes close to background-free observation (excl. terrestrial 𝜈̅- sources)

Wei,	Wang,	Chen,	arXiv:1607.01671

20 kt∙yr # [11-31 MeV]

atm. 𝜈̅- 0.26

atm. νµ 0.025

atm. NC 0.35

total BG 0.64

signal 4.1

efficiency 90%

S/B 6.4

Expected energy spectrum: 𝑬𝝂 =18MeV
Event rates in 

observation window
E𝛎 𝛜 [10.8;30.8]	MeV



LSCDs vs. other techniques

Michael Wurm (Mainz) DSNB in LSCDs 39

Wei,	Wang,	Chen,	arXiv:1607.01671

Significance of DSNB discovery vs. exposure

→ Gd-water:	BG	2.5/20kt∙yr,	ε~70%
S/B	~	1.1

some caveats:

→ LS:	no PSD!
S/B	~	0.064	

LS+PSD

→ LS+PSD:	S/B	~	2.3

JUNO	Yellow	Book,	arXiv:1507.0561



Signals and backgrounds in THEIA

Michael Wurm (Mainz) 40SN and DSNB in THEIA

Julia performed a detailed study of all backgrounds that may mimic the IBD signature:
§ Reactor antineutrinos -- irreducible
§ Cosmogenic βn-emitters: 9Li/8He -- somewhat reduced compared to oLS/muon veto
§ Fast neutrons from rock muons -- can be rejected by fiducial volume cut, 

but better to use C/S ratio
§ Atmospheric 𝛎 CC interactions -- in part irreducible
§ Atmospheric 𝛎 NC interactions -- the headache

reactor IBDs
thanks to Steve Dye!

atmospheric CC



Fast light detectors: LAPPDs
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Schematic of LAPPD

LAPPD test for ANNIE

For fast scintillators (e.g. WbLS), 
sub-ns time resolution will be crucial

Large-Area Picosecond Photo-Detectors:
§ flat, large area (20cm x 20cm) detectors
§ standard photocathode, MCP-based amplification
§ time resolution: ~60 ps
§ spatial resolution: <1cm
§ Manufactured by US company, Incom Inc.

→ posters by A. Elagin, M. Wetstein



CHESS: CHErenkov-Scintillation Separation

Michael Wurm (Mainz) New Detection Techniques 42

Caravaca et al., PRC  95 055801 (2017)



CHESS results on LAB+PPO

Michael Wurm (Mainz) New Detection Techniques 43

Caravaca et al., Eur. Phys. J. C (2017) 77: 811



CHESS results on WbLS (1%)
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WbLS development path → ANNIE
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ANNIE: Accelerator Neutrino Neutron Interaction Experiment
§ Fermilab-based R&D facility for Water-Cherenkov(+Gd)/scintillator detection
§ Physics motiviation: measurement of nuclear final states from neutrino 

interactions (NuMi-beam) in water: production and multiplicity of final-state neutrons

Phase I an engineering run of the detector and measurement of beam correlated 
neutron backgrounds, was completed in summer of 2017

Phase II the full physics and R&D run, starts construction this summer with the data 
taking to planned start in Fall 2018

Phase III (planned) R&D run with WbLS fill or separated target vessel (ton-scale)
→ posters by J. Eisch/M. Wetstein



WbLS development path → WATCHMAN/AIT
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WATCHMAN: WATer Cherenkov Monitor for Anti Neutrinos
§ Phase I of the Advanced Instrumentation Testbed (AIT)
§ kiloton-scale H2O+Gd Cherenkov detector for reactor monitoring
§ from 2022: detection of ON/OFF power cycle of single reactor (3σ at 25km)
→ later phases (2024+): upgrade with WbLS and LAPPDs

→ poster by E. Kneale


