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Neutrinos and supernovae

I Stellar processes and
supernovae are an
important site for
nucleosynthesis

I During hydrostatic burning
phases,energy release by
nuclear reactions balances
gravity

I Massive stars (> 8-10 M�)
complete all major burning
phases

I “Onion” shell structure
Fe, Si, O/Ne, O/C,C/O,
He, H shells
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Neutrinos and supernovae

I Collapse stops when nuclear
densities are reached

I Convective neutrino heating
revives standing accretion
shock

I Explosive nucleosynthesis
and ejection

I Neutrinos influence
nucleosynthesis

I ν process
I Conditions of the

innermost ejecta
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I Inset from Pan et al. (2016)
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The ν process
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I Emission of 1058 neutrinos from
the proto-neutron star

I Produced by electron captures,
pair annihilation, bremsstrahlung

I 〈Eν〉 ≈ 8− 20 MeV

I Inverse β-decay

I Particle evaporation

I Light reaction products induce
further nuclear reactions
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Neutrino nucleosynthesis

I Neutrino-nucleus interactions in the outer layers produce several key
isotopes Woosley et al. (1990)

I Several studies have improved on individual reactions and included
neutrino oscillations e.g. Heger et al. (2005), Yoshida et al. (2006), Suzuki et al.

(2013), AS+ (2018), Kusakabe et al. (2019), Ko et al. (2019)

Product Parent Reaction
7Li 4He 4He(ν, ν ′p)3H(α, γ)7Li

4He(ν, ν ′n)3He(α, γ)7Be
11B 12C 12C(ν, ν ′n)11C,

12C(ν, ν ′p)11B
19F 20Ne 20Ne(ν, ν ′n)19Ne(β+)19F,

20Ne(ν, ν ′p)19F
138La 138Ba 138Ba(νe , e

−)138La
180Ta 180Hf 180Hf(νe , e

−)180Ta
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Neutrinos in a nuclear reaction network

I Evolution of isotopic abundances with an nuclear reaction network
including neutrino-nucleus reactions

I Rate for a neutrino induced rection:
rij ∝ φν(t)

∫
σν,ij(Eν)fν(Eν , t)dEν

I Observational data on the neutrino emission spectra is very limited

I Commonly used approach:

I Fixed spectrum rij = φν(t) 〈σν,ij〉(〈Eν〉)
I Parametrized flux: φν(t) ∝ e−t/τ/r(t)2

I Motivated by the long-term PNS cooling phase (10s)
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Production factor

PA =
(

XA

X�
A

)
/

(
X16O

X�
16O

)

I Production factors
averaged for stars with
13-30 M�

I Piston-driven supernova
models with
parametrized neutrino
emission

I Further contributions to
radioactive isotopes (e.g.

AS+ 2018)

2019 Neutrino Nucleosynthesis A. Sieverding



Neutrino spectra

Improved treatment

I Neutrino emission as predicted
by a supernova simulation with
spectral neutrino transport
(Simulation by R. Bollig, published in

Mirizzi et al. 2016)

I Distinct characteristics of
Deleptonization burst,
accretion phase and cooling

I Time-dependent average
energy

I “pinched” neutrino spectra
(α(t))
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Pinched spectra

I Neutrino spectra are expected to
be pinched (e.g., Janka et al. 1989)

I Simple fit fν(Eν) ∝(
Eν
〈Eν〉

)α
exp [−(α + 1)Eν/〈Eν〉]

(e.g., Keil et al. 2003)

I with 〈E2
ν〉

〈Eν〉2 = 2+α
1+α , α ≈ 2.3 is

close to Fermi-Dirac

I Models typically find α > 2.3,
i.e., the high energy tail of the
distribution is depleted
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= 2.3
= 4.0
= 6.0
(E)

I Neutrino nucleus
cross-sections are reduced

I Need to calculate 〈σν,ij〉 on the fly (for a limited set of reactions)
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Production factors

P =
X∗(A,Z )/X�(A,Z )

X∗(16O)/X�(16O)

I Results for a 27M� progenitor model
parametrized PNS cooling early phases pinching

+fixed spectrum +time-dependence
7Li 0.02 0.04 0.04
11B 0.18 0.31 0.30
19F 0.10 0.12 0.12
138La 0.41 0.74 0.69
180Tam 1.09 1.33 1.32

I Up to 40% of the ν-process production due to the first 500 ms

I Pinching leads to a small reduction, strongest for charged current
reactons of νe

AS+ (2019)
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Variation of the peak luminosity and accretion time
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I Explore sensitivity to
modifications of the
accretion phase

I 138La is the most sensitive

I Very fast or prompt
explosions as well as very
late explosions would lead
to an overproduction or
lack of 138La compared to
the solar abundances
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Self-consistent simulations

I Innermost ejecta can only be
modeled self-consistently in
multidimensional simulaitons

I Subject to the most intense
neutrino irradiation

I Post-processing of tracer
particles

I Large fraction of the innermost
ejecta are α-rich and affected
by the ν process

I Neutrino fluxes and energies
consistent with the explosion

I Tracer particles from a 2D
axisymmetric simulation with
CHIMERA (Bruenn et al. 2016,
Harris et al. 2017)
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Production of light elements
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I Small contribution from the innermost ejecta to the production of 7Li
and 11B

I Low explosion energy gives large ν process yields (AS+ (2018))
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Conclusions & Outlook

I Study of ν process nucleosynthesis for the first time using the full
wealth of information from modern supernova simulations

I High energy neutrinos from the early phases of neutrino emission are
important for the ν-process yields

I Spectral pinching has minor effects

I Nucleosynthesis based on self-consistent multidimensional simulations
become possible

I Small contribution of the ν process from the innermost supernova
ejecta (based on 2D simulations)
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Neutrino oscillations

I Neutrino mass eigenstates are not the same as flavor eigenstates

I Neutrino-matter interactions lead to strong flavor conversion (MSW effect)

I Neutrino-neutrino interactions induce collective oscillations

Figure: courtesy M.-R. Wu

2019 Neutrino Nucleosynthesis A. Sieverding



Effects on the ν process

I Effects of MSW flavor
transformations have been
studied (e.g. Yoshida et al. 2006)

I Recent works include
collective oscillations and
find and increased
production of 138La by a
factor 3 (Ko et al. 2019)

I Currently no fully consistent
models for collective
oscillations

I “Fast” oscillations may
happen very close to the
neutrino-sphere (e.g. Sawyer

2016, Sen et al. 2019)
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I Minor effects on 7Li and 11B
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