#### The $\nu$ process with time-dependent neutrino spectra

A. Sieverding<sup>1</sup>, G. Martínez-Pinedo<sup>3,2</sup>, K. Langanke<sup>3,2</sup>, A. Heger<sup>4</sup>, R. Bollig<sup>5</sup>, H.-T. Janka<sup>5</sup>, W. R. Hix<sup>6,7</sup>, J.A. Harris<sup>6</sup>, Y.-Z. Qian<sup>1</sup> <sup>1</sup> University of Minnesota, Minneapolis <sup>2</sup> Technical University Darmstadt <sup>3</sup> GSI Helmholtzzentrum, Darmstadt <sup>4</sup> Monash Centre for Astrophysik, Garching <sup>6</sup> Oak-Ridge National Lab <sup>7</sup> University of Tennessee

> UNIVERSITY OF MINNESOTA Driven to Discover®



SN neutrinos at the crossroads, ECT\* May 15th 2019

# Neutrinos and supernovae

- Stellar processes and supernovae are an important site for nucleosynthesis
- During hydrostatic burning phases, energy release by nuclear reactions balances gravity
- ► Massive stars (> 8-10 M<sub>☉</sub>) complete all major burning phases
- ► "Onion" shell structure Fe, Si, O/Ne, O/C,C/O, He, H shells No energy release by fusion beyond iron → core-collapse





# Neutrinos and supernovae

- Collapse stops when nuclear densities are reached
- Convective neutrino heating revives standing accretion shock
- Explosive nucleosynthesis and ejection
- Neutrinos influence nucleosynthesis
  - $\blacktriangleright$   $\nu$  process
  - Conditions of the innermost ejecta









- ► Emission of 10<sup>58</sup> neutrinos from the proto-neutron star
- Produced by electron captures, pair annihilation, bremsstrahlung
- $\langle E_{\nu} \rangle \approx 8 20 \text{ MeV}$
- ► Inverse *β*-decay
- Particle evaporation
- Light reaction products induce further nuclear reactions



- ▶ Neutrino-nucleus interactions in the outer layers produce several key isotopes *Woosley et al. (1990)*
- Several studies have improved on individual reactions and included neutrino oscillations e.g. Heger et al. (2005), Yoshida et al. (2006), Suzuki et al. (2013), AS+ (2018), Kusakabe et al. (2019), Ko et al. (2019)

| Product           | Parent            | Reaction                                              |  |
|-------------------|-------------------|-------------------------------------------------------|--|
| <sup>7</sup> Li   | <sup>4</sup> He   | $^{4}$ He $( u,  u' p)^{3}$ H $(lpha, \gamma)^{7}$ Li |  |
|                   |                   | $^{4}$ He $( u, u'n)^{3}$ He $(lpha,\gamma)^{7}$ Be   |  |
| <sup>11</sup> B   | <sup>12</sup> C   | $^{12}C(\nu,\nu'n)^{11}C,$                            |  |
|                   |                   | $^{12}C(\nu,\nu'p)^{11}B$                             |  |
| <sup>19</sup> F   | <sup>20</sup> Ne  | $^{20}$ Ne $( u,  u'n)^{19}$ Ne $(eta^+)^{19}$ F,     |  |
|                   |                   | $^{20}Ne( u, u' ho)^{19}F$                            |  |
| <sup>138</sup> La | <sup>138</sup> Ba | $^{138}$ Ba $( u_e,e^-)^{138}$ La                     |  |
| <sup>180</sup> Ta | <sup>180</sup> Hf | $^{180}{ m Hf}( u_e,e^-)^{180}{ m Ta}$                |  |

- Evolution of isotopic abundances with an nuclear reaction network including neutrino-nucleus reactions
- ► Rate for a neutrino induced rection:  $r_{ij} \propto \phi_{\nu}(t) \int \sigma_{\nu,ij}(E_{\nu}) f_{\nu}(E_{\nu}, t) dE_{\nu}$
- Observational data on the neutrino emission spectra is very limited
- Commonly used approach:
  - Fixed spectrum  $r_{ij} = \phi_{\nu}(t) \langle \sigma_{\nu,ij} \rangle (\langle E_{\nu} \rangle)$
  - Parametrized flux:  $\phi_{
    u}(t) \propto e^{-t/ au}/r(t)^2$
  - Motivated by the long-term PNS cooling phase (10s)



#### Production factor

$$P_{A} = \left(\frac{X_{A}}{X_{A}^{\odot}}\right) / \left(\frac{X_{16_{O}}}{X_{16_{O}}^{\odot}}\right)$$

- ► Production factors averaged for stars with 13-30 M<sub>☉</sub>
- Piston-driven supernova models with parametrized neutrino emission
- Further contributions to radioactive isotopes (e.g. AS+ 2018)



#### Improved treatment

- Neutrino emission as predicted by a supernova simulation with spectral neutrino transport (Simulation by R. Bollig, published in Mirizzi et al. 2016)
- Distinct characteristics of Deleptonization burst, accretion phase and cooling
- Time-dependent average energy
- "pinched" neutrino spectra

   (α(t))



# Pinched spectra



- Neutrino spectra are expected to be pinched (e.g., Janka et al. 1989)
- ► Simple fit  $f_{\nu}(E_{\nu}) \propto \left(\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right)^{\alpha} \exp\left[-(\alpha+1)E_{\nu}/\langle E_{\nu} \rangle\right]$ (e.g., Keil et al. 2003)
- with  $\frac{\langle E_{\nu}^2 \rangle}{\langle E_{\nu} \rangle^2} = \frac{2+\alpha}{1+\alpha}$ ,  $\alpha \approx 2.3$  is close to Fermi-Dirac
- ► Models typically find α > 2.3, i.e., the high energy tail of the distribution is depleted



- Neutrino nucleus cross-sections are reduced
- Need to calculate  $\langle \sigma_{\nu,ij} \rangle$  on the fly (for a limited set of reactions)

#### Production factors



$$P = rac{X_*(A,Z)/X_{\odot}(A,Z)}{X_*(^{16}\text{O})/X_{\odot}(^{16}\text{O})}$$

| • Results for a 27 $M_{\odot}$ progenitor model |                          |                   |          |  |  |
|-------------------------------------------------|--------------------------|-------------------|----------|--|--|
|                                                 | parametrized PNS cooling | early phases      | pinching |  |  |
|                                                 | +fixed spectrum          | + time-dependence |          |  |  |
| <sup>7</sup> Li                                 | 0.02                     | 0.04              | 0.04     |  |  |
| <sup>11</sup> B                                 | 0.18                     | 0.31              | 0.30     |  |  |
| <sup>19</sup> F                                 | 0.10                     | 0.12              | 0.12     |  |  |
| <sup>138</sup> La                               | 0.41                     | 0.74              | 0.69     |  |  |
| $^{180}$ Ta $^{ m m}$                           | 1.09                     | 1.33              | 1.32     |  |  |

- $\blacktriangleright$  Up to 40% of the  $\nu\text{-}\mathrm{process}$  production due to the first 500 ms
- Pinching leads to a small reduction, strongest for charged current reactons of v<sub>e</sub>

AS+ (2019)



- Explore sensitivity to modifications of the accretion phase
- <sup>138</sup>La is the most sensitive
- Very fast or prompt explosions as well as very late explosions would lead to an overproduction or lack of <sup>138</sup>La compared to the solar abundances

# Self-consistent simulations

- Innermost ejecta can only be modeled self-consistently in multidimensional simulaitons
- Subject to the most intense neutrino irradiation
- Post-processing of tracer particles
- Large fraction of the innermost ejecta are α-rich and affected by the ν process
- Neutrino fluxes and energies consistent with the explosion
- ► Tracer particles from a 2D axisymmetric simulation with CHIMERA (Bruenn et al. 2016, Harris et al. 2017)

2019









- Small contribution from the innermost ejecta to the production of <sup>7</sup>Li and <sup>11</sup>B
- Low explosion energy gives large  $\nu$  process yields (AS+ (2018))

A. Sieverding



- ► Study of *v* process nucleosynthesis for the first time using the full wealth of information from modern supernova simulations
- High energy neutrinos from the early phases of neutrino emission are important for the ν-process yields
- Spectral pinching has minor effects
- Nucleosynthesis based on self-consistent multidimensional simulations become possible
- Small contribution of the ν process from the innermost supernova ejecta (based on 2D simulations)

# Neutrino oscillations

- Neutrino mass eigenstates are not the same as flavor eigenstates
- Neutrino-matter interactions lead to strong flavor conversion (MSW effect)
- Neutrino-neutrino interactions induce collective oscillations



Figure: courtesy M.-R. Wu

#### Effects on the $\nu$ process

- Effects of MSW flavor transformations have been studied (e.g. Yoshida et al. 2006)
- Recent works include collective oscillations and find and increased production of  $^{138}$ La by a factor 3 (Ko et al. 2019)
- Currently no fully consistent models for collective oscillations
- "Fast" oscillations may happen very close to the neutrino-sphere (e.g. Sawyer 2016, Sen et al. 2019)

2019







