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Introduction

evolution of the topic:

self-induced flavor conversion
Chakraborty, Hansen, Izzaguirre, Raffelt (2016)
[arXiv:1602.00698]

classification of instabilities
Cappozzi, Dasgupta, Lisi, Marrone, Mirizzi (2017)
[arXiv:1706.03360]

critical points on the branch
Yi, Ma, Martin, Duan (2019) [arXiv:1901.01546]
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Equation of motion

setting: 1D system with two neutrino flavors

interpretation: ultra-relativistic neutrinos collectively source a
flavor matrix field

linearized EoM for flavor correlation Qu:

(ω − uk)Qu (ω, k) = −µ
∫

dv (1− uv)GvQv (ω, k) (1)

with ”lepton number” Gv ∼
∫

dE
(
fνe − fν̄e − fνµ + fν̄µ

)
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Dispersion relation

usually dispersion relation for collective mode ω (k) derived
→ critical points leading to instabilities

k / μ

ω

k / μ
ω

Figure: DR for no and small crossing of Gv , cf. Yi, Ma, Martin, Duan
(2019)
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Eigenfunction ansatz

eigenfunction connects collective and non-collective modes

non-collective modes densely fill out the ”forbidden” region
→ EV known, EF not

eigenfunction Qu = A1

[
sinϕ

π(ω−uk) + cosϕ δ(ω − uk)
]

+ A2

mutual consistency for O(1) and O(u) leads to matrix equation

M̂
(ω
k
, µ, Gu, ϕ

)
A = 0 (2)
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Merging points

crossing at u0, i.e.
Gu0 = 0

Gu0 cosϕ
!

= 0 gives
polynomial for µ

→ no real µ
=̂ no complex DR branch

μ

ω
/
k
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Single crossing

choose Gu = (u − u0)P(u) with sign[P(u)] = const.

equation for µ:(
P2

1 − P0P2

)
µ2 + (P0 − P2)µ+ 1 = 0 (3)

with Pi =
∫ 1
−1 du uiP(u)

real solution for µ if∫
du (1 + u)2 P(u)

∫
du′
(
1− u′

)2
P(u′) > 0 (4)
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Double crossing

ansatz: Gu = (u − u1)(u − u2)

use condition for real solution to derive condition on u2

demand positive discriminant Diskµ(u2) = u2
2 − 1

4 > 0
→ no instability for u2 ∈

[
−1

2 ,
1
2

]
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Summary

non-collective modes can help to understand the system

complex collective branches start where two non-collective
modes merge

single crossing always sources complex branch in dispersion
relation

in general: additional criterion needs to be satisfied
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