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T Stimer evolution of the topic:

Flavor

correlation @ self-induced flavor conversion
Chakraborty, Hansen, lzzaguirre, Raffelt (2016)
[arXiv:1602.00698]

@ classification of instabilities
Cappozzi, Dasgupta, Lisi, Marrone, Mirizzi (2017)
[arXiv:1706.03360]

@ critical points on the branch
Yi, Ma, Martin, Duan (2019) [arXiv:1901.01546]
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setting: 1D system with two neutrino flavors
Flavor
correlation

interpretation: ultra-relativistic neutrinos collectively source a
flavor matrix field

linearized EoM for flavor correlation Q:
(w— uk) Qu (w, k):—u/dv (1—-uv)GQy(w, k) (1)

with "lepton number” G, ~ [dE (f,, — f5, — £, + f3,)
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Dispersion relation

usually dispersion relation for collective mode w (k) derived
— critical points leading to instabilities

kK/u k/u

Figure: DR for no and small crossing of G,, cf. Yi, Ma, Martin, Duan
(2019)
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eigenfunction connects collective and non-collective modes

EV and EF non-collective modes densely fill out the " forbidden” region
— EV known, EF not

eigenfunction Q, = A; [W(w o + cos p §(w — uk)] + A
mutual consistency for O(1) and O(u) leads to matrix equation

(5 1 Gu ) A=0 2)
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Merging points

crossing at up, i.e.
Gy =0

Gy COS @ 20 gives
polynomial for p

— no real p
= no complex DR branch
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Single crossing

choose G, = (u — up) P(u) with sign[P(u)] = const.
equation for p:

(Pf — PoP2) i+ (Po — P2) p+1=0
with P; = f—ll du v’ P(u)

real solution for p if

/du (1+ )2 P(u)/du’ (1- )2 P() >0
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Double crossing

ansatz: G, = (v — u1)(u — w2)

use condition for real solution to derive condition on u,

demand positive discriminant Disk,,(u2) = u3 — % >0
— no instability for u, € [—3, 1]
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Summary

non-collective modes can help to understand the system

complex collective branches start where two non-collective
modes merge

single crossing always sources complex branch in dispersion
relation

in general: additional criterion needs to be satisfied
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