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Motivation

Neutrinos are produced in the core during accretion and cooling
phase of a supernova (SN)

They are important for SN explosion mechanism and
nucleosynthesis, serve as messengers

Study of flavor composition and evolution
> High matter density (MSW)

> High neutrino density o, = 10%97%°
Flavor stability analysis (flavor conversion) mostly with 2 flavor

Extend analysis to three flavors and search for instabilities
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Neutrinos in dense medid

« Ensemble of neutrinos is described by a
density matrix p, (¢, v)

« The density matrix includes

« Flavor number densities « Flavor cross correlations

Paa Pap

« Time evolution given by Von Neumann eq.

10¢pi(t, v) = [Hi(t,v), pi(t, V)]
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r (km)

\/§GF dia’g(Nea an N'r)

Mirizzi et al: arXiv:1508.00785]
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Three flavor stability analysis

> Our interest: Flavor conversion

> Looking for: Instabilities in 3d-
flavor space (ansatz: plane wave)

> Assumptions:
Large matter potential

. . o Def.: () imaginary means
- |8?|? < 1 (linearization) instability

Neutrinos and anitheutrinos
have the same density

> Notation: . — 2m34 , _ amj >0:NO
wz E@. 77 Amgl <O: IO
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Three flavor stability analysis

Time-Derivative: O (
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Three flavor stability analysis

| . Q.
Time-Derivative: 0 (Q;y)
Quy
Qb
(h) Vac-Term: (wiA(bh2,613) + B(b13)nwi]| | Q%
Gy
A0 0\ /QL
() Matter-Term: 0 A Of | Qe
0 0 0/ \Q.,
N o (Qéx_ng)
() Nu-Nu-Term: 3pdim 9;(1 —v'v7) (Qéngiy)

: Solving the eigenvalue equation and looking for imaginary omega

) |
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Basis of propagating states

« How can we understand the instabilities for normal mass
ordering?

> Going into basis of propagating states
(instantaneous eigenstate basis)

> Diagonal Hamiltonian (ignore f7vv term) in the limit
A S>> wn

2
0 W;Clo 0

0 0 w; (812575 + Ncis)

H.. =

diag

()\ +wi(siacis +1s13) 0 0 )
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Basis of propagating states

. Leads to decoupling of the equations for S/,

« The Hamiltonian gives a vacuum contribution

wi(A(bh2,013)+1B(b13)) = w; diag (—cfa + clssTy + 1533, Cra(sTa — 1), ¢y — 52575 — 1ci3)

« System can be interpreted as three pairs of two-neutrino
systems

« Given the values of the mixing angles, NO n > 0 gives rise
to an effective two-neutrino system with 10
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Summary

For high neutrino densities as in a CcSN neutrino-neutrino
interactions must be considered

We studied collective oscillations in a large matter background
including all three flavors and search for flavor instabilities

Besides known flavor instabilities for 10, we find instabilities
also for NO in simple toy models

These new instabilities can be understood as originating from
an effective two-neutrino system with 10
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