Slow and fast flavor oscillations: 3 flavor picture

Sovan Chakraborty

Indian Institute of Technology, Guwahati.

SNnu Workshop, ICT
Trento, $14^{\text {th }}$ May, 2019

Neutrino Transport \& Flavor Oscillations:

Liouville like equations

$$
v^{\beta} \partial_{\beta} \rho=-i\left[H_{p}, \rho_{p}\right]
$$

$$
\begin{aligned}
& v^{\beta}=(1, \mathbf{v}) \\
& \beta=0, \ldots, 3
\end{aligned}
$$

Matrix of densities \& Hamiltonian

$$
\begin{gathered}
\rho_{\mathbf{p}}=\left(\begin{array}{ccc}
\rho_{\mathbf{p}}^{e e} & \rho_{\mathbf{p}}^{e \mu} & \rho_{\mathbf{p}}^{e \tau} \\
\rho_{\mathbf{p}}^{\mu e} & \rho_{\mathbf{p}}^{\mu \mu} & \rho_{\mathbf{p}}^{\mu \tau} \\
\rho_{\mathbf{p}}^{\tau e} & \rho_{\mathbf{p}}^{\tau \mu} & \rho_{\mathbf{p}}^{\tau \tau}
\end{array}\right) \& H_{\mathbf{p}}=\frac{M^{2}}{2 E}+H^{\text {matter }} \\
H^{\text {matter }}=v_{\beta} \lambda^{\beta} \\
\lambda_{l}^{\beta}=\sqrt{2} G_{F} \int d \mathbf{p}\left[2 v_{l}^{\beta}\left(f_{l, \mathbf{p}}-\bar{f}_{l, \mathbf{p}}\right)+v^{\beta}\left(\rho_{\mathbf{p}}^{l l}-\bar{\rho}_{\mathbf{p}}^{l l}\right)\right] \\
\text { are the diagonal parts of } \sqrt{2} G_{F}\left(F_{l}^{\beta}+F_{\nu}^{\beta}\right)
\end{gathered}
$$

Neutrino Transport \& Flavor Oscillations:

Liouville like equations

$$
\begin{array}{cl}
v^{\beta} \partial_{\beta} \rho=-i\left[H_{p}, \rho_{p}\right] & v^{\beta}=(1, \mathbf{v}) \\
\beta=0, \ldots, 3
\end{array}
$$

Taking into account the off-diagonals of ρ upto linear order,

$$
i v^{\beta} \partial_{\beta} \rho_{\mathrm{p}}^{e \mu}=\left[\frac{m_{1}^{2}-m_{2}^{2}}{2 E}+v_{\beta}\left(\lambda_{e}^{\beta}-\lambda_{\mu}^{\beta}\right)\right] \rho_{\mathrm{p}}^{e \mu}-\sqrt{2} G_{F}\left(\rho_{\mathrm{p}}^{e e}-\rho_{\mathrm{p}}^{\mu \mu}\right) v^{\beta} \int d \mathbf{p}^{\prime} v_{\beta}^{\prime}\left(\rho_{\mathrm{p}^{\prime}}^{e \mu}-\bar{\rho}_{\mathrm{p}^{\prime}}^{e \mu}\right)
$$

Similarly for ' $\mathrm{e}-\tau$ ' and ' $\mu-\tau$ '

2 Flavor System

Only for ' $\mathrm{e}-\mu$ '
Evolution of the off diagonal ' S_{p} ' holds all flavor coherence information,

$$
\varrho_{\mathrm{p}}=\frac{f_{\nu_{e}, \mathrm{p}}+f_{\nu_{\mu}, \mathrm{p}}}{2} \mathbb{1}+\frac{f_{\nu_{e}, \mathrm{p}}-f_{\nu_{\mu}, \mathrm{p}}}{2}\left(\begin{array}{cc}
s_{\mathrm{p}} & S_{\mathrm{p}} \\
S_{\mathrm{p}}^{*} & -s_{\mathrm{p}}
\end{array}\right)
$$

In the flavor Iso-spin picture,
To linear order $\mathrm{s}_{\mathrm{p}} \sim 1$

$$
g_{E, \mathrm{v}}=\sqrt{2} G_{\mathrm{F}} \begin{cases}f_{\nu_{e}, \mathrm{p}}-f_{\nu_{\mu}, \mathrm{p}} & \text { for } E>0, \\ f_{\bar{\nu}_{\mu}, \mathrm{P}}-f_{\bar{v}_{e}, \mathrm{P}} & \text { for } E<0 .\end{cases}
$$

$$
\int d \Gamma=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} \int \frac{d \mathbf{v}}{4 \pi},
$$

$$
i v^{\alpha} \partial_{\alpha} S_{E, \mathbf{v}}=\left(\omega_{E}+v^{\alpha} \Lambda_{\alpha}\right) S_{E, \mathbf{v}}-v^{\alpha} \int d \Gamma^{\prime} v_{\alpha}^{\prime} g_{E^{\prime}, \mathbf{v}^{\prime}} S_{E^{\prime}, \mathbf{v}^{\prime}}
$$

Normal Mode analysis to stability or dispersion picture

Linearized Stability Analysis:

$$
i\left(\partial_{t}+\vec{v} \cdot \vec{\nabla}_{x}\right) S_{t, \vec{x}, \omega, \vec{v}}=\left[\omega+\frac{\lambda+\epsilon \mu}{\uparrow} v^{2}\right] S_{t, \vec{x}, \omega, \vec{v}}-\mu \int_{\uparrow} d \Gamma^{\prime} g_{\omega^{\prime}, \vec{v}^{\prime}} \frac{\left(\vec{v}-\vec{v}^{\prime}\right)^{2}}{2} S_{t, \vec{x}, \omega^{\prime}, \vec{v}^{\prime}}
$$

Spatial Fourier transform $\vec{v} \cdot \vec{\nabla}_{x} \rightarrow i \vec{k} \cdot \vec{v}$. eigenmodes $S_{t, \vec{k}, \omega, \vec{v}}=Q_{\Omega, \vec{k}, \omega, \vec{v}} e^{-i \Omega t}$

$$
\begin{gathered}
\text { nu-nu interaction energy } \\
\sqrt{2} G_{\mathrm{F}} n_{\nu} R^{2} / r^{2} \\
\text { Matter effect } \\
\sqrt{2} G_{\mathrm{F}} n_{e} R^{2} / r^{2}
\end{gathered}
$$

$$
\left[\frac{\lambda+\epsilon \mu}{2} v^{2}+\vec{k} \cdot \vec{v}+\omega-\Omega\right] Q_{\Omega, \vec{k}, \omega, \vec{v}}=\mu \int d \Gamma^{\prime} g_{\omega^{\prime}, \vec{v}^{\prime}} \frac{\left(\vec{v}-\vec{v}^{\prime}\right)^{2}}{2} Q_{\Omega, \vec{k}, \omega^{\prime}, \vec{v}^{\prime}}
$$

2 Flavor system: Stability picture

2 Flavor system: Dispersion picture

$$
\begin{gathered}
i v^{\alpha} \partial_{\alpha} S_{E, \mathbf{v}}=\left(\omega_{E}+v^{\alpha} \Lambda_{\alpha}\right) S_{E, \mathbf{v}}-v^{\alpha} \int d \Gamma^{\prime} v_{\alpha}^{\prime} g_{E^{\prime}, \mathbf{v}^{\prime}} S_{E^{\prime}, \mathbf{v}^{\prime}} \\
S_{\Gamma, r}=Q_{\Gamma, K} e^{-i\left(K_{0} t-\mathbf{K} \cdot \mathbf{r}\right)}, \text { where } \Gamma=\{E, \mathbf{v}\}, r=(t, \mathbf{r}) \text { and } K=\left(K_{0}, \mathbf{K}\right) . \\
\left(v_{\alpha} k^{\alpha}-\omega_{E}\right) Q_{\Gamma, k}=v_{\alpha} A_{k}^{\alpha} \quad \text { with } \quad A_{k}^{\alpha}=-\int d \Gamma v^{\alpha} g_{\Gamma} Q_{\Gamma, k} \\
\Pi_{k}^{\alpha \beta}=h^{\alpha \beta}+\int \frac{d \mathbf{v}}{4 \pi} G_{\mathbf{v}} \frac{v^{\alpha} v^{\beta}}{v_{\gamma} k^{\gamma}} \quad \operatorname{det} \Pi_{k}^{\alpha \beta}=0
\end{gathered}
$$

This equation can be schematically written as a dispersion relation

$$
\mathrm{D}\left(\mathrm{~K}_{\mathrm{o}}, \mathbf{K}\right)=0
$$

Lepton number angle distribution

$$
G_{\mathrm{V}}=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} g_{E, \mathrm{v}}=\sqrt{2} G_{\mathrm{F}} \int_{0}^{\infty} \frac{E^{2} d E}{2 \pi^{2}}\left(f_{\nu_{e}, \mathrm{p}}-f_{\bar{\nu}_{e}, \mathrm{p}}-f_{\nu_{\mu}, \mathrm{p}}+f_{\bar{\nu}_{\mu}, \mathrm{p}}\right)
$$

2 Flavor system: Dispersion picture

FIG. 1. Dispersion relations (black lines) for two θ modes. The thick red line is $\operatorname{Re}(\omega)$ for real k_{z} or $\operatorname{Re}\left(k_{z}\right)$ for real ω. The width of the blob is $\pm \operatorname{Im}(\omega)$ or $\pm \operatorname{Im}\left(k_{z}\right)$. Left: Only outward modes. Right: One outward and one backward mode. Top: Both ν_{e} excess. Bottom: Forward mode $\bar{\nu}_{e}$ excess.

Temporal stability analysis

$\omega \in C, \vec{k} \in R$

Spatial stability analysis

$$
\vec{k} \in C, \omega \in R
$$

3 Flavor System

For ' $e-\mu$ ' and ' $e-\tau$ ' and ' $\mu-\tau$ '

$$
i v^{\beta} \partial_{\beta} \rho_{\mathrm{p}}^{e \mu}=\left[\frac{m_{1}^{2}-m_{2}^{2}}{2 E}+v_{\beta}\left(\lambda_{e}^{\beta}-\lambda_{\mu}^{\beta}\right)\right] \rho_{\mathrm{p}}^{e \mu}-\sqrt{2} G_{F}\left(\rho_{\mathrm{p}}^{e e}-\rho_{\mathrm{p}}^{\mu \mu}\right) v^{\beta} \int d \mathrm{p}^{\prime} v_{\beta}^{\prime}\left(\rho_{\mathrm{p}^{\prime}}^{e \mu}-\bar{\rho}_{\mathrm{p}^{\prime}}^{e \mu}\right)
$$

Evolution of the off-diagonal ' S_{p} ' holds all flavor coherence information,

$$
\begin{aligned}
\rho_{\mathbf{p}} & =\frac{f_{\nu_{e}, \mathbf{p}}+f_{\nu_{\mu}, \mathbf{p}}+f_{\nu_{\tau}, \mathbf{p}}}{3} 1+\frac{f_{\nu_{e}, \mathbf{p}}-f_{\nu_{\mu}, \mathbf{p}}}{3}\left(\begin{array}{ccc}
s_{\mathbf{p}} & S_{1 \mathbf{p}} & 0 \\
S_{1 \mathbf{p}}^{*} & -s_{\mathbf{p}} & 0 \\
0 & 0 & 0
\end{array}\right) \\
& +\frac{f_{\nu_{e}, \mathbf{p}}-f_{\nu_{\tau}, \mathbf{p}}}{3}\left(\begin{array}{ccc}
s_{\mathbf{p}} & 0 & S_{2 \mathbf{p}} \\
0 & 0 & 0 \\
S_{2 \mathbf{p}}^{*} & 0 & -s_{\mathbf{p}}
\end{array}\right)+\frac{f_{\nu_{\mu}, \mathbf{p}}-f_{\nu_{\tau}, \mathbf{p}}}{3}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & s_{\mathbf{p}} & S_{3 \mathbf{p}} \\
0 & S_{3 \mathbf{p}}^{*} & -s_{\mathbf{p}}
\end{array}\right)
\end{aligned}
$$

Three Different S_{p} 's

3 Flavor System

In the flavor Iso-spin picture,

$$
\begin{aligned}
& g_{1 E, \mathbf{v}}= \begin{cases}f_{\nu_{e}, \mathbf{p}}-f_{\nu_{\mu}, \mathbf{p}} & \text { for } E>0 \\
f_{\bar{\nu}_{\mu}, \mathbf{p}}-f_{\bar{\nu}_{e}, \mathbf{p}} & \text { for } E<0\end{cases} \\
& g_{2 E, \mathbf{v}}= \begin{cases}f_{\nu_{e}, \mathbf{p}}-f_{\nu_{\tau}, \mathbf{p}} & \text { for } E>0 \\
f_{\bar{\nu}_{\tau}, \mathbf{p}}-f_{\bar{\nu}_{e}, \mathbf{p}} & \text { for } E<0\end{cases} \\
& g_{3 E, \mathbf{v}}= \begin{cases}f_{\nu_{\mu}, \mathbf{p}}-f_{\nu_{\tau}, \mathbf{p}} & \text { for } E>0 \\
f_{\bar{\nu}_{\tau}, \mathbf{p}}-f_{\bar{\nu}_{\mu}, \mathbf{p}} & \text { for } E<0\end{cases}
\end{aligned}
$$

$$
\begin{array}{r}
i v^{\beta} \partial_{\beta} S_{1 E, \mathbf{v}}=\left(\omega_{12}+v^{\beta} \lambda_{1 \beta}\right) S_{1 E, \mathbf{v}}-\sqrt{2} G_{F} v^{\beta} \int d \Gamma^{\prime} v_{\beta}^{\prime} g_{1 E^{\prime}, \mathbf{v}^{\prime}} S_{1 E^{\prime}, \mathbf{v}^{\prime}} \\
i v^{\beta} \partial_{\beta} S_{2 E, \mathbf{v}}=\left(\omega_{13}+v^{\beta} \lambda_{2 \beta}\right) S_{2 E, \mathbf{v}}-\sqrt{2} G_{F} v^{\beta} \int d \Gamma^{\prime} v_{\beta}^{\prime} g_{2 E^{\prime}, \mathbf{v}^{\prime}} S_{2 E^{\prime}, \mathbf{v}^{\prime}} \\
i v^{\beta} \partial_{\beta} S_{3 E, \mathbf{v}}=\left(\omega_{13}-\omega_{12}+v^{\beta} \lambda_{3 \beta}\right) S_{3 E, \mathbf{v}}-\sqrt{2} G_{F} v^{\beta} \int d \Gamma^{\prime} v_{\beta}^{\prime} g_{3 E^{\prime}, \mathbf{v}^{\prime}} S_{3 E^{\prime}, \mathbf{v}^{\prime}}
\end{array}
$$

Normal Mode analysis to stability picture or dispersion

$$
\int d \Gamma=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} \int \frac{d \mathbf{v}}{4 \pi}
$$

3 Flavor System

$$
\begin{array}{r}
i v^{\beta} \partial_{\beta} S_{1 E, \mathbf{v}}=\left(\omega_{12}+v^{\beta} \lambda_{1 \beta}\right) S_{1 E, \mathbf{v}}-\sqrt{2} G_{F} v^{\beta} \int d \Gamma^{\prime} v_{\beta}^{\prime} g_{1 E^{\prime}, \mathbf{v}^{\prime}} S_{1 E^{\prime}, \mathbf{v}^{\prime}} \\
i v^{\beta} \partial_{\beta} S_{2 E, \mathbf{v}}=\left(\omega_{13}+v^{\beta} \lambda_{2 \beta}\right) S_{2 E, \mathbf{v}}-\sqrt{2} G_{F} v^{\beta} \int d \Gamma^{\prime} v_{\beta}^{\prime} g_{2 E^{\prime}, \mathbf{v}^{\prime}} S_{2 E^{\prime}, \mathbf{v}^{\prime}} \\
i v^{\beta} \partial_{\beta} S_{3 E, \mathbf{v}}=\left(\omega_{13}-\omega_{12}+v^{\beta} \lambda_{3 \beta}\right) S_{3 E, \mathbf{v}}-\sqrt{2} G_{F} v^{\beta} \int d \Gamma^{\prime} v_{\beta}^{\prime} g_{3 E^{\prime}, \mathbf{v}^{\prime}} S_{3 E^{\prime}, \mathbf{v}^{\prime}}
\end{array}
$$

- Three off diagonal modes evolve independently!
- Three flavor evolution is equivalent to three two flavor evolution
- $\left(\omega_{13}-\omega_{12}\right) \simeq \omega_{13}$

Slow Oscillations: 3 Flavor Stability Analysis

3 Flavor system: Stability Analysis

Stationary, homogeneous ($\mathrm{k}=0$), isotropic ($\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \boldsymbol{\lambda}_{3}=0$) and only slow modes

$$
\begin{aligned}
& i \partial_{r} S_{1 r, \omega 1, u, \phi}=\left[\omega_{1}+u\left(\lambda_{1}+\epsilon_{1} \mu\right)\right] S_{1 r, \omega, 1, u, \phi}-\mu \int d \Gamma_{1}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{1 \omega_{1}^{\prime}, u^{\prime}, \phi^{\prime}} S_{1 r, \omega_{1}^{\prime}, u^{\prime}, \phi^{\prime}} \\
& i \partial_{r} S_{2 r, \omega_{2}, u, \phi}=\left[\omega_{2}+u\left(\lambda_{2}+\epsilon_{2} \mu\right)\right] S_{2 r, \omega_{2}, u, \phi}-\mu \int d \Gamma_{2}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{2 \omega_{1}^{\prime}, u^{\prime}, \phi^{\prime}, S_{2 r, \omega_{2}^{\prime}, u^{\prime}, \phi^{\prime}}} \\
& i \partial_{r} S_{3 r, \omega \omega_{2}, u, \phi}=\left[\omega_{2}+u\left(\lambda_{3}+\epsilon_{3} \mu\right)\right] S_{3 r, \omega_{2}, u, \phi^{\prime}-\mu} \int d \Gamma_{2}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{3 \omega_{w^{\prime}, u^{\prime}, \phi^{\prime}} S_{3 r, w_{2}^{\prime}, u^{\prime}, \phi^{\prime}}}
\end{aligned}
$$

Three different $\lambda, \varepsilon, \& g$

3 Flavor system: Stability Analysis

Stationary, homogeneous ($\mathrm{k}=0$), isotropic $\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \boldsymbol{\lambda}_{3}=0\right)$ and only Slow modes

$$
\begin{aligned}
& i \partial_{r} S_{1 r, \omega_{1}, u, \phi}=\left[\omega_{1}+u\left(\lambda_{1}+\epsilon_{1} \mu\right)\right] S_{1 r, \omega_{1}, u, \phi}-\mu \int d \Gamma_{1}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{1 \omega_{1}^{\prime}, u^{\prime}, \phi^{\prime}} S_{1 r, \omega_{1}^{\prime}, u^{\prime}, \phi^{\prime}} \\
& i \partial_{r} S_{2 r, \omega_{2}, u, \phi}=\left[\omega_{2}+u\left(\lambda_{2}+\epsilon_{2} \mu\right)\right] S_{2 r, \omega_{2}, u_{,}-\mu} \int d \Gamma_{2}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{2 \omega_{1}^{\prime}, u^{\prime}, \phi^{\prime} \phi_{2 r, \omega_{2}^{\prime}, u^{\prime}, \phi^{\prime}}} \\
& i \partial_{r} S_{3 r, \omega_{2}, u, \phi}=\left[\omega_{2}+u\left(\lambda_{3}+\epsilon_{3} \mu\right)\right] S_{3 r, \omega_{2}, u, \phi}-\mu \int d \Gamma_{2}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{3 \omega_{2}^{\prime}, u^{\prime}, \phi^{\prime}} S_{3 r, \omega_{2}^{\prime}, u^{\prime}, \phi^{\prime}}
\end{aligned}
$$

$$
S_{1 r, \omega_{1}, u, \phi}=Q_{1 \omega_{1}, u, \phi} e^{-i \Omega_{1} r}, S_{2 r, \omega_{2}, u, \phi}=Q_{2 \omega_{2}, u, \phi} e^{-i \Omega_{2} r} \text { and } S_{3 r, \omega_{2}, u, \phi}=Q_{3 \omega_{2}, u, \phi} e^{-i \Omega_{3} r}
$$

eigenvalue equations in Q's

$$
\begin{aligned}
& {\left[\omega_{1}+u\left(\lambda_{1}+\epsilon_{1} \mu\right)-\Omega_{1}\right] Q_{1}=\mu \int d \Gamma_{1}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{1} Q_{1}} \\
& {\left[\omega_{2}+u\left(\lambda_{2}+\epsilon_{2} \mu\right)-\Omega_{2}\right] Q_{2}=\mu \int d \Gamma_{2}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{2} Q_{2}} \\
& {\left[\omega_{2}+u\left(\lambda_{3}+\epsilon_{3} \mu\right)-\Omega_{3}\right] Q_{3}=\mu \int d \Gamma_{2}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{3} Q_{3}}
\end{aligned}
$$

3 Flavor system: Stability Analysis

eigenvalue equations in Q's

$$
\begin{aligned}
& {\left[\omega_{1}+u\left(\lambda_{1}+\epsilon_{1} \mu\right)-\Omega_{1}\right] Q_{1}=\mu \int d \Gamma_{1}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{1} Q_{1}} \\
& {\left[\omega_{2}+u\left(\lambda_{2}+\epsilon_{2} \mu\right)-\Omega_{2}\right] Q_{2}=\mu \int d \Gamma_{2}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{2} Q_{2}} \\
& {\left[\omega_{2}+u\left(\lambda_{3}+\epsilon_{3} \mu\right)-\Omega_{3}\right] Q_{3}=\mu \int d \Gamma_{2}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{3} Q_{3}}
\end{aligned}
$$

Normal Stellar collapse like scenario,

$$
N_{\nu_{\mu}}=N_{\bar{\nu}_{\mu}} \text { and } N_{\nu_{\tau}}=N_{\bar{\nu}_{\tau}} \quad \& \quad n_{\mu}=n_{\tau}=0
$$

$$
\begin{aligned}
& \lambda_{1}=\frac{\sqrt{2} G_{F} R^{2}}{2 r^{2}}\left[\left(n_{e}-\overline{n_{e}}\right)-\left(n_{\mu}-\bar{n}_{\mu}\right)\right] \\
& \lambda_{2}=\frac{\sqrt{2} G_{F} R^{2}}{2 r^{2}}\left[\left(n_{e}-\overline{n_{e}}\right)-\left(n_{\tau}-\bar{n}_{\tau}\right)\right] \\
& \lambda_{3}=\frac{\sqrt{2} G_{F} R^{2}}{2 r^{2}}\left[\left(n_{\mu}-\bar{n}_{\mu}\right)-\left(n_{\tau}-\bar{n}_{\tau}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon_{1}=\frac{\int d \Gamma_{1}\left(f_{\nu_{e}}-f_{\nu_{\mu}}\right)}{N}=\frac{\left(N_{\nu_{e}}-N_{\bar{v}_{e}}\right)-\left(N_{\nu_{\mu}}-N_{\bar{\nu}_{\mu}}\right)}{N} \\
& \epsilon_{2}=\frac{\int d \Gamma_{2}\left(f_{\nu_{e}}-f_{\nu_{\tau}}\right)}{N}=\frac{\left(N_{\nu_{e}}-N_{\bar{v}_{e}}\right)-\left(N_{\nu_{\tau}}-N_{\bar{v}_{\tau}}\right)}{N} \\
& \epsilon_{3}=\frac{\int d \Gamma_{3}\left(f_{\nu_{\mu}}-f_{\nu_{\tau}}\right)}{N}=\frac{\left(N_{\nu_{\mu}}-N_{\bar{\nu}_{\mu}}\right)-\left(N_{\nu_{\tau}}-N_{\bar{v}_{\tau}}\right)}{N}
\end{aligned}
$$

$$
\mu=\sqrt{2} G_{F} \frac{\left[2\left(N_{\nu_{e}}+N_{\bar{\nu}_{e}}\right)-\left(N_{\nu_{\tau}}+N_{\bar{\nu}_{\tau}}+N_{\nu_{\mu}}+N_{\bar{\nu}_{\mu}}\right)\right]}{4 \pi r^{2}} \frac{R^{2}}{2 r^{2}}
$$

$$
\lambda_{1}=\lambda_{2}=\lambda, \lambda_{3}=0 \quad \& \quad \epsilon_{1}=\epsilon_{2}=\epsilon, \epsilon_{3}=0
$$

3 Flavor system: Stability Analysis

Eigenvalue equations in Q's

$$
\begin{gathered}
\lambda_{1}=\lambda_{2}=\lambda, \lambda_{3}=0 \quad \& \quad \epsilon_{1}=\epsilon_{2}=\epsilon, \epsilon_{3}=0 \\
{\left[\omega_{1}+u(\lambda+\epsilon \mu)-\Omega_{1}\right] Q_{1}=\mu \int d \Gamma_{1}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{1} Q_{1}} \\
{\left[\omega_{2}+u(\lambda+\epsilon \mu)-\Omega_{2}\right] Q_{2}=\mu \int d \Gamma_{2}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{2} Q_{2}} \\
{\left[\omega_{2}-\Omega_{3}\right] Q_{3}=\mu \int d \Gamma_{2}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{3} Q_{3}}
\end{gathered}
$$

- Evolution of first two off diagonal differ by ω
- Third one is independent of matter effect!
- Decoupled solar \& atmospheric evolution for $N_{\nu_{\mu_{\mu}}}=N_{\bar{\nu}_{\mu}}=N_{\nu_{T}}=N_{\bar{\nu}_{T}}$ as g_{3} vanishes

$$
g_{3 E, \mathrm{v}}= \begin{cases}f_{\nu_{\mu}, \mathrm{p}}-f_{\nu_{\tau}, \mathrm{p}} & \text { for } E>0 \\ f_{\bar{\nu}_{\tau}, \mathrm{p}}-f_{\bar{\nu}_{\bar{\nu}}, \mathrm{p}} & \text { for } E<0\end{cases}
$$

3 Flavor system: Stability Analysis

Eigenvalue equations in Q's

$$
\lambda_{1}=\lambda_{2}=\lambda, \lambda_{3}=0 \quad \& \quad \epsilon_{1}=\epsilon_{2}=\epsilon, \epsilon_{3}=0
$$

$$
\left[\omega_{1}+u(\lambda+\epsilon \mu)-\Omega_{1}\right] Q_{1}=\mu \int d \Gamma_{1}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{1} Q_{1}
$$

$$
\left[\omega_{2}+u(\lambda+\epsilon \mu)-\Omega_{2}\right] Q_{2}=\mu \int d \Gamma_{2}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{2} Q_{2}
$$

$$
\left[\omega_{2}-\Omega_{3}\right] Q_{3}=\mu \int d \Gamma_{2}^{\prime}\left[u+u^{\prime}-2 \sqrt{u u^{\prime}} \cos \left(\phi-\phi^{\prime}\right)\right] g_{3} Q_{3}
$$

$$
g_{j}=h_{j}(\omega) f_{j}(u) \quad j=1,2,3
$$

$$
h_{j}(\omega)=\left(1+\frac{\epsilon_{j}}{2}\right) \delta\left(\omega_{j}-\omega_{j}^{\prime}\right)-\left(1-\frac{\epsilon_{j}}{2}\right) \delta\left(\omega_{j}+\omega_{j}^{\prime}\right)
$$

3 Flavor system: Stability Analysis

$\bar{\lambda}=0, K=0$

Atmospheric

$$
\begin{aligned}
& \varepsilon_{2}=0.5, \\
& \omega_{2}=0.5
\end{aligned}
$$

In preparation, M. Chakraborty \& $\underline{\mathbf{S . C}}$

3 Flavor system: Stability Analysis

Decoupled solar \& atmospheric evolution!

3 Flavor system: Stability Analysis

$\bar{\lambda}=0, K=0$

$$
\begin{aligned}
& \varepsilon_{3}=10^{-2} \\
& \omega_{12}=0.05
\end{aligned}
$$

Coupling the solar and atmospheric sector

3 Flavor system: Stability Analysis

$$
\bar{\lambda}=0, \mathrm{~K}=0
$$

B. Dasgupta, A. Mirizzi, I. Tamborra \& R. Tomàs, PRD 2010

Fast oscillations: 3 Flavor Dispersion picture

Go back to

Fast oscillations: 3 Flavor Dispersion picture

 the linearized equations$$
\begin{array}{r}
i v^{\beta} \partial_{\beta} S_{1 E, \mathbf{v}}=\left(\omega_{12}+v^{\beta} \lambda_{1 \beta}\right) S_{1 E, \mathbf{v}}-\sqrt{2} G_{F} v^{\beta} \int d \Gamma^{\prime} v_{\beta}^{\prime} g_{1 E^{\prime}, v^{\prime}} S_{1 E^{\prime}, \mathrm{v}^{\prime}} \\
i v^{\beta} \partial_{\beta} S_{2 E, \mathbf{v}}=\left(\omega_{13}+v^{\beta} \lambda_{2 \beta}\right) S_{2 E, \mathbf{v}}-\sqrt{2} G_{F} v^{\beta} \int d \Gamma^{\prime} v_{\beta}^{\prime} g_{2 E^{\prime}, \mathbf{v}^{\prime} S_{2 E^{\prime}, \mathbf{v}^{\prime}}} \\
i v^{\beta} \partial_{\beta} S_{3 E, \mathbf{v}}=\left(\omega_{13}-\omega_{12}+v^{\beta} \lambda_{3 \beta}\right) S_{3 E, \mathrm{v}}-\sqrt{2} G_{F} v^{\beta} \int d \Gamma^{\prime} v_{\beta}^{\prime} g_{3 E^{\prime}, \mathbf{v}^{\prime} S_{3 E^{\prime}, \mathrm{v}^{\prime}}}
\end{array}
$$

$$
S_{1 \Gamma, r}=Q_{1 \Gamma, K} e^{-i\left(K_{1}^{0} t-\mathbf{K}_{1} \cdot \mathbf{r}\right)}, S_{2 \Gamma, r}=Q_{2 \Gamma, K} e^{-i\left(K_{2}^{0} t-\mathbf{K}_{2} \cdot \mathbf{r}\right)}, S_{3 \Gamma, r}=Q_{3 \Gamma, K} e^{-i\left(K_{3}^{0} t-\mathbf{K}_{3} \cdot \mathbf{r}\right)}
$$

Fast oscillation
limit $\omega \rightarrow 0$

$$
\begin{aligned}
& \Pi_{1 K, \lambda}^{\alpha \beta}=\eta^{\alpha \beta}+\int \frac{d \mathbf{v}}{4 \pi} G_{1 \mathrm{v}} \frac{v^{\alpha} v^{\beta}}{v_{\gamma}\left(K_{1}^{\gamma}-\lambda_{1}^{\gamma}\right)} \\
& \Pi_{2 K, \lambda}^{\alpha \beta}=\eta^{\alpha \beta}+\int \frac{d \mathrm{v}}{4 \pi} G_{2 \mathrm{v}} \frac{v^{\alpha} v^{\beta}}{v_{\gamma}\left(K_{2}^{\gamma}-\lambda_{2}^{\gamma}\right)} \\
& \Pi_{3 K, \lambda}^{\alpha \beta}=\eta^{\alpha \beta}+\int \frac{d \mathrm{v}}{4 \pi} G_{3 v} \frac{v^{\alpha} v^{\beta}}{v_{\gamma}\left(K_{3}^{\gamma}-\lambda_{3}^{\gamma}\right)}
\end{aligned} \quad \eta^{\alpha \beta}=\operatorname{diag}(+,-,,-,)
$$

Dispersion relations:
Connecting $K_{\mathbf{i}}{ }^{0} \& \mathbf{K}_{\mathbf{i}}$

Fast oscillations: 3 Flavor Dispersion picture

Fast oscillation

limit $\omega \rightarrow 0$

$$
\begin{aligned}
& \Pi_{1 K, \lambda}^{\alpha \beta}=\eta^{\alpha \beta}+\int \frac{d v}{4 \pi} G_{1 \mathrm{v}} \frac{v^{\alpha} v^{\beta}}{v_{\gamma}\left(K_{1}^{\gamma}-\lambda_{1}^{\gamma}\right)} \\
& \Pi_{2 K, \lambda}^{\alpha \beta}=\eta^{\alpha \beta}+\int \frac{d \mathrm{v}}{4 \pi} G_{2 \mathrm{v}} \frac{v^{\alpha} v^{\beta}}{v_{\gamma}\left(K_{2}^{\gamma}-\lambda_{2}^{\gamma}\right)} \\
& \Pi_{3 K, \lambda}^{\alpha \beta}=\eta^{\alpha \beta}+\int \frac{d \mathrm{v}}{4 \pi} G_{3 \mathrm{v}} \frac{v^{\alpha} v^{\beta}}{v_{\gamma}\left(K_{3}^{\gamma}-\lambda_{3}^{\gamma}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& G_{1 \mathbf{v}}=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} g_{1 E, \mathbf{v}}=\sqrt{2} G_{F} \int_{0}^{\infty} \frac{E^{2} d E}{2 \pi^{2}}\left(f_{\nu_{e}, \mathrm{p}}-f_{\bar{\nu}_{e}, \mathrm{p}}-f_{\nu_{\mu}, \mathrm{p}}+f_{\bar{\nu}_{\mu}, \mathrm{p}}\right) \\
& G_{2 \mathbf{v}}=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} g_{2 E, \mathbf{v}}=\sqrt{2} G_{F} \int_{0}^{\infty} \frac{E^{2} d E}{2 \pi^{2}}\left(f_{\nu_{e}, \mathrm{p}}-f_{\bar{\nu}_{e}, \mathrm{p}}-f_{\nu_{\tau}, \mathrm{p}}+f_{\bar{\nu}_{\tau}, \mathrm{p}}\right) \\
& G_{3 \mathbf{v}}=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} g_{3 E, \mathbf{v}}=\sqrt{2} G_{F} \int_{0}^{\infty} \frac{E^{2} d E}{2 \pi^{2}}\left(f_{\nu_{\mu}, \mathrm{p}}-f_{\bar{\nu}_{\mu}, \mathrm{p}}-f_{\nu_{\tau}, \mathrm{p}}+f_{\bar{\nu}_{\tau}, \mathrm{p}}\right)
\end{aligned}
$$

$$
\begin{gathered}
\lambda_{1 \beta}=\left(\lambda_{e}^{\beta}-\lambda_{\mu}^{\beta}\right)=\sqrt{2} G_{F} \int d \mathrm{p}\left[2\left(v_{e}^{\beta}\left(f_{e, \mathrm{p}}-\bar{f}_{e, \mathrm{p}}\right)-v_{e}^{\beta}\left(f_{\mu, \mathrm{p}}-\bar{f}_{\mu, \mathrm{p}}\right)\right)+v^{\beta}\left(\left(f_{\nu_{e}, \mathrm{p}}-\bar{f}_{\nu_{e}, \mathrm{p}}-f_{\nu_{\mu}, \mathrm{p}}+\bar{f}_{\nu_{\mu}, \mathrm{p}}\right)\right)\right] \\
\lambda_{2 \beta}=\left(\lambda_{e}^{\beta}-\lambda_{\tau}^{\beta}\right) \text { and } \lambda_{3 \beta}=\left(\lambda_{\mu}^{\beta}-\lambda_{\tau}^{\beta}\right)
\end{gathered}
$$

In preparation, M. Chakraborty \& $\underline{\mathbf{S . C}}$

Fast oscillations: 3 Flavor Dispersion picture

$$
\begin{aligned}
& G_{1 \mathbf{v}}=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} g_{1 E, \mathbf{v}}=\sqrt{2} G_{F} \int_{0}^{\infty} \frac{E^{2} d E}{2 \pi^{2}}\left(f_{\nu_{e}, \mathrm{p}}-f_{\bar{\nu}_{e}, \mathrm{p}}-f_{\nu_{\mu}, \mathrm{p}}+f_{\bar{\nu}_{\mu}, \mathrm{p}}\right) \\
& G_{2 \mathbf{v}}=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} g_{2 E, \mathbf{v}}=\sqrt{2} G_{F} \int_{0}^{\infty} \frac{E^{2} d E}{2 \pi^{2}}\left(f_{\nu_{e}, \mathrm{p}}-f_{\bar{\nu}_{e}, \mathrm{p}}-f_{\nu_{\tau}, \mathrm{p}}+f_{\bar{\nu}_{\tau}, \mathrm{p}}\right) \\
& G_{3 \mathbf{v}}=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} g_{3 E, \mathbf{v}}=\sqrt{2} G_{F} \int_{0}^{\infty} \frac{E^{2} d E}{2 \pi^{2}}\left(f_{\nu_{\mu}, \mathbf{p}}-f_{\bar{\nu}_{\mu}, \mathrm{p}}-f_{\nu_{\tau}, \mathrm{p}}+f_{\bar{\nu}_{\tau}, \mathrm{p}}\right)
\end{aligned}
$$

In a stellar collapse scenario spectra of muon and tau neutrinos spectra

$$
G_{3 \mathrm{v}}=0 \text { and } G_{1 \mathrm{v}}=G_{2 \mathrm{v}}
$$ is same as there antineutrinos,

Fast oscillations: 3 Flavor Dispersion picture

$$
\begin{gathered}
\lambda_{1 \beta}=\left(\lambda_{e}^{\beta}-\lambda_{\mu}^{\beta}\right)=\sqrt{2} G_{F} \int d \mathrm{p}\left[2\left(v_{e}^{\beta}\left(f_{e, \mathrm{p}}-\bar{f}_{e, \mathrm{p}}\right)-v_{e}^{\beta}\left(f_{\mu, \mathrm{p}}-\bar{f}_{\mu, \mathrm{p}}\right)\right)+v^{\beta}\left(\left(f_{\nu_{e, \mathrm{p}}}-\bar{f}_{\nu_{e, \mathrm{P}}}-f_{\nu_{\mu}, \mathrm{p}}+\bar{f}_{\nu_{\mu}, \mathrm{p}}\right)\right)\right] \\
\lambda_{2 \beta}=\left(\lambda_{e}^{\beta}-\lambda_{\tau}^{\beta}\right) \text { and } \lambda_{3 \beta}=\left(\lambda_{\mu}^{\beta}-\lambda_{\tau}^{\beta}\right)
\end{gathered}
$$

In a stellar collapse scenario spectra of mu and tau neutrinos (and leptons) spectra is same as there anti particles

$$
\lambda_{3 \beta}=0 \text { and } \lambda_{1 \beta}=\lambda_{2 \beta}
$$

Fast oscillations: 3 Flavor Dispersion picture

$$
\begin{aligned}
& \Pi_{1 K, \lambda}^{\alpha \beta}=\eta^{\alpha \beta}+\int \frac{d \mathbf{v}}{4 \pi} G_{1 \mathbf{v}} \frac{v^{\alpha} v^{\beta}}{v_{\gamma}\left(K_{1}^{\gamma}-\lambda_{1}^{\gamma}\right)} \\
& \Pi_{2 K, \lambda}^{\alpha \beta}=\eta^{\alpha \beta}+\int \frac{d \mathbf{v}}{4 \pi} G_{2 \mathbf{v}} \frac{v^{\alpha} v^{\beta}}{v_{\gamma}\left(K_{2}^{\gamma}-\lambda_{2}^{\gamma}\right)} \\
& \Pi_{3 K, \lambda}^{\alpha \beta}=\eta^{\alpha \beta}+\int \frac{d \mathbf{v}}{4 \pi} G_{3 \mathbf{v}} \frac{v^{\alpha} v^{\beta}}{v_{\gamma}\left(K_{3}^{\gamma}-\lambda_{3}^{\gamma}\right)}
\end{aligned}
$$

In a stellar collapse scenario, $\lambda_{3 \beta}=0$ and $\lambda_{1 \beta}=\lambda_{2 \beta}$

$$
G_{3 \mathbf{v}}=0 \stackrel{\&}{\text { and }} G_{1 \mathbf{v}}=G_{2 \mathbf{v}}
$$

- Only one dispersion relation.
- Consistent with 2 Flavor scenario.

Fast oscillations: 3 Flavor Dispersion picture

However, λ 's and G's may not be exactly equal or vanish, Say some muon-antimuon flux

$$
\begin{gathered}
\lambda_{1 \beta}=\left(\lambda_{e}^{\beta}-\lambda_{\mu}^{\beta}\right)=\sqrt{2} G_{F} \int d \mathrm{p}\left[2\left(v_{e}^{\beta}\left(f_{e, \mathrm{p}}-\bar{f}_{e, \mathrm{p}}\right)-v_{e}^{\beta}\left(f_{\mu, \mathrm{p}}-\bar{f}_{\mu, \mathrm{p}}\right)\right)+v^{\beta}\left(\left(f_{\nu_{e, \mathrm{p}}}-\bar{f}_{\nu_{e, \mathrm{p}}}-f_{\nu_{\mu}, \mathrm{p}}+\bar{f}_{\nu_{\mu}, \mathrm{p}}\right)\right)\right] \\
\lambda_{2 \beta}=\left(\lambda_{e}^{\beta}-\lambda_{\tau}^{\beta}\right) \text { and } \lambda_{3 \beta}=\left(\lambda_{\mu}^{\beta}-\lambda_{\tau}^{\beta}\right)
\end{gathered}
$$

$$
\text { we consider } \lambda_{1}^{\gamma}=0.9 \lambda_{2}^{\gamma} \quad \& \quad \lambda_{3}^{\gamma}=0.1 \lambda_{2}^{\gamma}
$$

$$
\lambda_{2}^{0}=10, \lambda_{2}=10, \lambda_{1}^{0}=9, \lambda_{1}=9, \lambda_{3}^{0}=1, \lambda_{3}=1
$$

Fast oscillations: 3 Flavor Dispersion picture

However, λ 's and G's may not be exactly equal or vanish, Say some muon-antimuon flux

$$
\begin{aligned}
& G_{1 \mathrm{v}}=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} g_{1 E, \mathrm{v}}=\sqrt{2} G_{F} \int_{0}^{\infty} \frac{E^{2} d E}{2 \pi^{2}}\left(f_{v_{\epsilon}, \mathrm{P}}-f_{\bar{v}_{\epsilon}, \mathrm{P}}-f_{\nu_{\mu, \mathrm{p}}}+f_{\bar{\nu}_{\mu}, \mathrm{P}}\right) \\
& G_{2 \mathrm{v}}=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} g_{2 E, \mathrm{v}}=\sqrt{2} G_{F} \int_{0}^{\infty} \frac{E^{2} d E}{2 \pi^{2}}\left(f_{\nu_{\epsilon}, \mathrm{P}}-f_{\overline{\tau 匕}_{\epsilon}, \mathrm{P}}-f_{\nu_{\nu}, \mathrm{p}}+f_{\bar{v}_{\mathrm{r}}, \mathrm{p}}\right) \\
& G_{3 \mathrm{v}}=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} g_{3 E, \mathrm{v}}=\sqrt{2} G_{F} \int_{0}^{\infty} \frac{E^{2} d E}{2 \pi^{2}}\left(f_{\nu_{u}, \mathrm{P}}-f_{\bar{\nu}_{\nu, \mathrm{p}}}-f_{\nu_{r}, \mathrm{p}}+f_{\bar{\tau}, \mathrm{p}}\right) \\
& G_{1 v}=0.9 G_{2 v} \text { and } G_{3 v}=0.1 G_{2 v}
\end{aligned}
$$

Fast oscillations: 3 Flavor Dispersion picture

Two beam neutrino ELN spectra, $\quad G_{\mathbf{v}}=4 \pi\left[G_{1} \delta\left(\mathbf{v}-\mathbf{v}_{1}\right)+G_{2} \delta\left(\mathbf{v}-\mathbf{v}_{2}\right)\right]$

$g_{3}^{\prime}=-0.04, g_{3}^{\prime \prime}=0.06, v_{1}=0.07, v_{2}=0.02$.

Fast oscillations: 3 Flavor Dispersion picture

Two beam neutrino ELN spectra, $\quad G_{\mathbf{v}}=4 \pi\left[G_{1} \delta\left(\mathbf{v}-\mathbf{v}_{1}\right)+G_{2} \delta\left(\mathbf{v}-\mathbf{v}_{2}\right)\right]$

In preparation,
M. Chakraborty \& S.C $\quad g_{1}^{\prime}=-0.44, g_{1}^{\prime \prime}=0.66, v_{1}=0.77, v_{2}=0.22$ and $g_{2}^{\prime}=-0.4, g_{2}^{\prime \prime}=0.6, v_{1}=0.7, v_{2}=0.2$.

Conclsuion:

- 3 flavor picture consistent with the 2 flavor results in both slow and fast
- $N_{\nu_{\mu}}=N_{\bar{\nu}_{\mu}}$ and $N_{\nu_{\tau}}=N_{\bar{\nu}_{\tau}}$ gives effective two flavor solutions!
- Slow oscillations: 3 flavor effect can speed up effects of solar sector
- Fast oscillations: In principle three different dispersion relation ??
- Does it help overall instability or are the triggered modes are far apart?
- Open questions:
- Mixing of slow and fast modes
- Triggering of the modes \& matter inhomogeneity
- Collisons

> Thank you!

NEUTRINO TRANSPORT \& FLAVOR OSCILLATIONS:

Liouville like equations

$$
\begin{aligned}
v^{\beta} \partial_{\beta} \rho=-i\left[H_{p}, \rho_{p}\right] & v^{\beta}=(1, \mathbf{v}) \\
& \beta=0, \ldots, 3
\end{aligned}
$$

Matrix of densities \& Hamiltonian

$$
H_{\mathrm{p}}=\frac{M^{2}}{2 E}+\sqrt{2} G_{F} v_{\beta}\left(F_{l}^{\beta}+F_{\nu}^{\beta}\right)
$$

Neutrino Flux,

$$
F_{\nu}^{\beta}=\int d \mathbf{p} v^{\beta}\left(\rho_{\mathbf{p}}-\bar{\rho}_{\mathbf{p}}\right)
$$

Charged lepton Flux,

$$
F_{l}^{\beta}=\int 2 d \mathbf{p}\left(\begin{array}{ccc}
v_{e}^{\beta}\left(f_{e, \mathbf{p}}-\bar{f}_{e, \mathbf{p}}\right) & 0 & 0 \\
0 & v_{\mu}^{\beta}\left(f_{\mu, \mathbf{p}}-\bar{f}_{\mu, \mathbf{p}}\right) & 0 \\
0 & 0 & v_{\tau}^{\beta}\left(f_{\tau, \mathbf{p}}-\bar{f}_{\tau, \mathbf{p}}\right)
\end{array}\right)
$$

Liouville like equations

$$
v^{\beta} \partial_{\beta} \rho=-i\left[H_{p}, \rho_{p}\right]
$$

$$
\begin{aligned}
& v^{\beta}=(1, \mathbf{v}) \\
& \beta=0, \ldots, 3
\end{aligned}
$$

Define overall matter effect,

$$
\begin{gathered}
H^{\text {matter }}=v_{\beta} \lambda^{\beta} \\
\lambda_{l}^{\beta}=\sqrt{2} G_{F} \int d \mathbf{p}\left[2 v_{l}^{\beta}\left(f_{l, \mathbf{p}}-\bar{f}_{l, \mathbf{p}}\right)+v^{\beta}\left(\rho_{\mathbf{p}}^{l}-\bar{\rho}_{\mathbf{p}}^{l}\right)\right]
\end{gathered}
$$

are the diagonal parts of $\sqrt{2} G_{F}\left(F_{l}^{\beta}+F_{\nu}^{\beta}\right)$

2 Flavor system

Only for ' $\mathrm{e}-\mu$ '
Evolution of the off diagonal ' S_{p} ' holds all flavor coherence information,

$$
\begin{gathered}
\varrho_{\mathrm{p}}=\frac{f_{\nu_{e}, \mathrm{p}}+f_{\nu_{\mu}, \mathrm{p}}}{2} \mathbb{1}+\frac{f_{\nu_{e}, \mathrm{p}}-f_{\nu_{\mu}, \mathrm{p}}}{2}\left(\begin{array}{cc}
s_{\mathrm{p}} & S_{\mathrm{p}} \\
S_{\mathrm{p}}^{*}-s_{\mathrm{p}}
\end{array}\right) \\
i v^{\alpha} \partial_{\alpha} S_{\mathbf{p}}=\left(\omega_{E}+v^{\alpha} \Lambda_{\alpha}\right) S_{\mathbf{p}}-v^{\alpha} \int d \mathbf{p}^{\prime} v_{\alpha}^{\prime}\left(S_{\mathbf{p}^{\prime}} g_{\mathbf{p}^{\prime}}-\bar{S}_{\mathbf{p}^{\prime}} \bar{g}_{\mathbf{p}^{\prime}}\right)
\end{gathered}
$$

In the flavor Iso-spin picture,

$$
g_{E, v}=\sqrt{2} G_{\mathrm{F}} \begin{cases}f_{v_{e}, \mathrm{p}}-f_{\nu_{\mu}, \mathrm{p}} & \text { for } E>0, \\ f_{\bar{\nu}_{\mu}, \mathrm{P}}-f_{\bar{\nu}_{e}, \mathrm{P}} & \text { for } E<0 .\end{cases}
$$

$$
\begin{aligned}
& i v^{\alpha} \partial_{\alpha} S_{E, \mathbf{v}}=\left(\omega_{E}+v^{\alpha} \Lambda_{\alpha}\right) S_{E, \mathbf{v}}-v^{\alpha} \int d \Gamma^{\prime} v_{\alpha}^{\prime} g_{E^{\prime}, \mathbf{v}^{\prime}} S_{E^{\prime}, \mathbf{v}^{\prime}} \\
& \qquad \int d \Gamma=\int_{-\infty}^{+\infty} \frac{E^{2} d E}{2 \pi^{2}} \int \frac{d \mathbf{v}}{4 \pi},
\end{aligned}
$$

Normal Mode analysis to stability picture or dispersion

