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Formalism

For N¢ flavours N¢xN¢ density matrices are defined as (ngner'
distributions)

d3

(2m)?

p(T,p) = Jd3r’ e o <aj’f(r —r/2)a(r + r’/2)> i J oA T <aj(p — A/2)a(p + A/2)> ,

and analogously for anti-neutrinos. The equations of motion are Liouville
equations with vacuum terms and refractive terms from a background
medium and from self-interactions:

0,p(x,p) +Vv(r,p) - V,.p(r,p) = —1i [QS +Q,(r) + Q3(r, p), pp] :
where €),0 is the vacuum term, {2n is the matter term, and

QS(r,p) = u(r) Y (1-v,- vq){ Gslp(r, @) — p(r, @)1Gs + GsTr [(p(r, q) — 5(r, q))Gg] } ,
q7p

where in general Gs=diag(1,...,1) for active neutrinos.
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In general the Liouville term is

% { V. p(r, p), V€T, P)} % % { Vpp(r, p), VL, p)} '

Charged current source terms (no scattering
implemented yet) have the form

p(r,p)
fo(r, p)

atp(r’ p)coll,CC T F(l‘, p)’ T

with fo(r,p) the equilibrium occupation nhumbers
(r,p) the rate which typically projects on one
flavor, e.g. the electron flavour.




Numerical Setup

Typically we use N¢ =2 flavours, momentum modes with equal energy and
one spatial dimension x with a one-dimensional array of N, momentum
modes whose velocity projections onto the x (radial) direction are
isotropically distributed between -1 and +1,

(i) 1+1+i”_1 52 . =1,---,N,,with N
v.(i)=— ——1, i.=1,-- N, wi even .
e b N, )R ; 7

The source term then is

L At P, i)
atp(x?l)coll,CC_jiy(x)f(xal)< (0 0>,<1_f0(x,z)>} s

\

and analogously for anti-neutrinos. The vacuum term is

o Am? (cos 20, —sin 290>
VESET 4 ’

—sin 26, —cos 26,

where Am2 >0, cos 260 >0 corresponds to the inverted hierarchy.

The matter term is 10
Q (x) = Ax) (O O) :
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The self-interaction coefficients are normalised as

gi’ i ;
Lo 3 - ) — VN

which assures that the average coupling of one momentum mode summed
over all other modes is unity and thus does not depend on N, before being
multiplied with the characteristic self-coupling p(x).

As initial conditions we typically put pure flavour eigenstates,

pt = 0.x,0,) = fi0)f (x, i )<(1) 8) , Pt =0.x,i,) = f)f(x, i )<(1) 8) :

where f(x,i,)and f(x,i,) can contain a modulation in i, and an asymmetry
between neutrinos and anti-neutrinos, e.g. a crossing, a switch of sign
as a function of direction n of the flavour 1 lepton number density

2

G(n) = r, 0o~ om)]
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The modulation function was defined by

fh L) = %[1 —ah(x,i)][1 — bh(x,i,)], f(x,i i %[1 —ah(x,i)][1 + bh(x,i.)],

where a and b are parameters and

et b
(X, lp) S Np & 1 e g(X) ’

with g(x) a function which vanishes at the boundaries, g(x=0)=g(x=Lx)=0. Note that

Y [f(x, i)+ fx, ip)] =N, .

p

Usually we set a=0. A crossing can be induced by setting b>0.



At x=Lx the boundary condition for the incoming modes, vx<0, is given in ferms of the
initial condition (to make them consistent),

pit;x =L v, <) =plt=8x =1L v <O)={ (L ip) <(1) 8) ;

and analogously for anti-neutrinos. Idea is to make them close to zero (ho neutrinos
coming from outside).

At x=0 the boundary conditions for the incoming modes, vx<0O, are given in ferms of a
reflective boundary,

pt,x=0v)=pt,x=0,—v), plt,x=0v)=pEXx=0,—v ).

Anti-neutrino initial and equilibrium densities and production rates are typically
assumed to be equal to the ones of neutrinos. Flavor perturbations are initially
driven by the vacuum frequency.

Partial differential equations are integrated within O<x<Lx and O<t<tmax
Mathematica 11.1 was used with the NDSolve routine.
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_ Resuts

We show the following quantities:
Total number of neutrinos

N = S b + 2t b

off diagonal terms

ZV P12(X, V) + pro(x, vy)
F o(t,x) = — ;
o> %) N(t, x) |

and total flavour asymmetry

va 21106 v) = P, v) + 5y, (x, v,) = P, 1)
N(t, x)

Ly ) =



We consider the following cases:

models 1-2 show slow transitions with constant p(x) without and with constant A(x),
00=0.01

models 3-6 show slow transitions for u(x) profiles, for ©0=0.01 and ©0=34°,
without and with A(x) matter profile

model 7 shows a fast transition with an angular crossing and large matter term

models 8-9 show slow transitions for larger hierarchies of frequencies,
©0=34°, without and with A(x) matter profile



Model 1

Results for a simulation with N,=20 isotropically distributed angular modes,
pure flavor 1 for neutrinos and anti-neutrinos with initial total number
N(t=0,x)=N,fi(x)=20exp(-x) and injected with a rate fs(x)=exp(-x) and
equilibrium occupation numbers characterised by fo(x)=1 (identical for anti-
neutrinos). No anisotropy or crossing of lepton flavor in the momentum modes
is assumed here, i.e. f(x,i)=f(x,i)=1/2

Further, Am2=1, ©0=0.01, u(x)=10, A(x)=0, Lx=20 with integration up to t=30.

Upper left: Normalized flavor asymmetry.

Upper right: Normalized off-diagonal elements.

Lower left: Cuts through flavor asymmetry from upper left
at x=0, x=4, x=8, x=12, x=16, and x=20.

Lower right: Total neutrino+anti-neutrino number.
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Model 2

Same as Model 1, but a matter potential of the form A(x)=20 was added. No
significant effect of matter is observed.
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Model 3

Results for a simulation with N,=20 isotropically distributed angular modes,
pure flavor 1 for neutrinos and anti-neutrinos with initial total nhumber
N(t=0,x)=Nyfi(x)=20exp(-x) and injected with a rate fs(x)=exp(-x) and
equilibrium occupation numbers characterised by fo(x)=1 (identical for anti-
neutrinos). No anisotropy or crossing of lepton flavor in the momentum modes
is assumed here, ie. f(x.i,) = f(x,i,) = 1/2

Further, Am2=1, 60=0.01, , A(x)=0, Lx=20 with integration
up to t=30.

Upper left: Normalized flavor asymmetry.

Upper right: Normalized off-diagonal elements.

Lower left: Cuts through flavor asymmetry from upper left
at x=0, x=4, x=8, x=12, x=16, and x=20.

Lower right: Total neutrino+anti-neutrino number.
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Model 4

Same as Model 1, but a matter potential of the form
added. A strong matter potential thus suppresses the transition.
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Model 5

Same as Model 1, i.e. no matter potential, but for a realistically large vacuum
mixing angle ©9=34°
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Model 6

Same as Model 2, i.e. for a matter potential of the form ;
but for a realistically large vacuum mixing angle ©9=34¢°. Thus for a large vacuum
mixing angle a strong matter potential suppresses the transitions less.
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Model 7

Results for a simulation with N,=20 isotropically distributed angular modes,
pure flavor 1 for neutrinos and anti-neutrinos with initial fotal number
N(t=0,x)=Npfo(Lx) and injected with a rate fs(x)=exp(-x) and equilibrium
occupation humbers characterised by fo(x)=1./(x/10+1)* (identical for anti-
heutrinos).

Further, Am2=1., ©9=34c, Lx=20 with
integration up to t=30.

Upper left: Normalized flavor asymmetry.

Upper right: Normalized off-diagonal elements.

Lower left: equidistant cuts through flavor asymmetry increasing in x from
top to bottom

Lower right: Total neutrino+anti-neutrino number.
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Model 8

Results for a simulation with Ny,=10 isotropically distributed angular modes,
pure flavor 1 for neutrinos and anti-neutrinos with initial fotal number
N(t=0,x)=Npfo(Lx) and injected with a rate fs(x)=0.1/(x/10+1)* and equilibrium
occupation humbers characterised by fo(x)=0.8/(x/10+1)* (identical for anti-
neutrinos). No anisotropy or crossing of lepton flavor in the momentum modes
is assumed here, i.e. f(x,i,) = f(x,i,) = 1/2

Further, Am2=0.1, ©0=34°, , A(x)=0, Lx=40 with
integration up to t=500.

Upper left: Normalized flavor asymmetry.

Upper right: Normalized off-diagonal elements.

Lower left: equidistant cuts through flavor asymmetry increasing in x from
top to bottom

Lower right: Total neutrino+anti-neutrino number.
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Model 9

Same as Model 5, but a matter potential of the form
added. A strong matter potential thus suppresses the transition.
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Some general Tendencies

A large A(x) seems to strongly suppress transitions for a steep x-profile,
but not for a flat/constant profile.

For large 60 and steep (exponential) u(x) and A(x) profiles, at large x
one seems to get essentially vacuum oscillations initially after which the
distribution tends to relax to flavor equilibration.

A angular flavor crossing is not necessary/does not make a big

difference for flavour conversions for the profiles we considered (slow
conversions)
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Conclusions

1.) Toy models can be used to understand the interplay between
self-interaction, matter, vacuum, source terms and boundary
conditions, although in general they are prohibitive for realistic
conditions

2.) Consistent initial and boundary conditions are important and
sometimes not completely straightforward

3.) Matter terms may not be trivially "rotated away” for profiles
with significant slopes; probably depends on relation between
profile scale height and oscillation lengths

4.) Flavor crossing may have limited influence
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