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Neutrinos from 
core-collapse 
supernovae

•Mprog ≥  8 Msun ! "E ≈ 1053 ergs ≈ 
1059 MeV

•99% of the energy is carried away 
by neutrinos and antineutrinos with          
10 ≤ E# ≤ 30 MeV  ! 1058 neutrinos
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Possible sites for the r-process

The origin of elements

Neutrinos not only 
play a crucial role 
in the dynamics of 
these sites, but 
they also control 
the value of the 

electron fraction, 
the parameter 

determining the 
yields of the r-

process. 



Balantekin)and)Fuller,)Prog.)Part.)Nucl.)Phys.)71 162)(2013)

Understanding a core-collapse supernova requires answers to a 
variety of questions some of which need to be answered, both 

theoretically and experimentally.
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Collective Neutrino Oscillations
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Two of the adiabatic eigenstates of this equation are easy to find 
in the single-angle approximation:

To find the others will take a lot more work
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Ô1Ô2 ≈ Ô1 Ô2 + Ô1 Ô2 − Ô1Ô2

Expectation values should be calculated 
with a state Ψ chosen to satisfy:

Ô1Ô2 = Ô1 Ô2

This reduces the two-body problem 
to a one-body problem:

a†a†aa⇒ a†a a†a+ a†a† aa+ h.c.

What is the mean-field approximation?

Ĥνν =
2GF

V
dpdq 1− cosθ pq( )

!
J p ⋅
!
Jq∫ ≅

2GF

V
dpdq 1− cosθ pq( )

!
J p ⋅
!
Jq∫



ψνLγ
µψνLψνLγµψνL ⇒ψνLγ

µψνL ψνLγµψνL +

ψνRγ
µψνRψνRγµψνR ⇒ψνRγ

µψνR ψνRγµψνR +

ψνLγ
µψνLψνRγµψνR ⇒ψνLγ

µψνL ψνRγµψνR +

Neutrino-neutrino interaction

Antineutrino-antineutrino interaction

Neutrino-antineutrino interaction

Balantekin and Pehlivan, JPG 34,1783 (2007)

Mean field



ψνLγ
µψνLψνRγµψνR ⇒ψνLγ

µ ψνLψνRγµ ψνR +!

However note that 

ψνLψνRγµ ∝mν   (negligible if the medium is isotropic)

Neutrino-antineutrino can also have an additional 
mean field

Fuller et al. 
Volpe 
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An example of an 
early mean field 

calculation



Collective Oscillations within mean field for the !p process
Sasaki&et#al., Phys.Rev.&D96&(2017)&&043013

Early outflow (t=0.6 s.) Later outflow (t=1.1 s.)



Impact of the production of p-nuclei

Sasaki&et#al., Phys.Rev.&D96&(2017)&&043013



A system of N particles each of which can occupy k states

Exact Solution Mean-field approximation

Entangled and 
unentangled states Only unentangled states

Dimension of Hilbert 
Space: kN

Dimension of Hilbert 
Space: kN
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This problem is “exactly solvable” in the single-angle approximation 
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The duality between Hνν and BCS Hamiltonians

This symmetry naturally leads to splits in the neutrino energy spectra 
and was used to find conserved quantities in the single-angle case. 
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This problem is “exactly solvable” in the single-angle approximation 

Pehlivan,*Balantekin,*Kajino,*Yoshida,*PRD84#(2011)*065008
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Recall that two of the adiabatic eigenstates of this 
equation are easy to find:



Away from the mean-field: First adiabatic solution of 
the exact many-body Hamiltonian

• Solutions)of)the)Bethe)ansatz equations)for)250)neutrinos.)Same)behavior)as)the)
mean9field.

• Two)flavors)only
• Inverted)hierarchy,)no)matter)effect 2015



Birol, Pehlivan, Balantekin, Kajino
arXiv:1805.11767

PRD98 (2018) 083002



Adiabatic evolution of an 
initial thermal distribution 
(T = 10 MeV) of electron 
neutrinos. 108 neutrinos 
distributed over 1200 
energy bins with solar 

neutrino parameters and 
normal hierarchy.

Birol, Pehlivan, Balantekin, Kajino
arXiv:1805.11767

PRD98 (2018) 083002

initial

final



Birol, Pehlivan, Balantekin, Kajino
arXiv:1805.11767

Adiabatic evolution of an initial 
thermal distribution of electron 

neutrinos (T=10 MeV) and 
antineutrinos of another flavor 

(T=12MeV). 108 neutrinos 
distributed over 1200 energy 
bins both for neutrinos and 

antineutrinos with solar neutrino 
parameters and normal 

hierarchy.

Initial

Final
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A more practical approach

Patwardhan,*Cervia,*Balantekin,*arXiv:1905.04386
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expected for κ = 6
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• Full many-body Hamiltonian describing collective neutrino 
oscillations is exactly solvable in the single-angle approximation in 
the sense that eigenvalues and eigenvectors can be expressed in 
terms of solutions of a Bethe ansatz equations. 

• However, obtaining solutions of these Bethe ansatz equations is 
notoriously difficult for neutrinos in more than three energy bins. 

CONCLUSIONS
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• Full many-body Hamiltonian describing collective neutrino 
oscillations is exactly solvable in the single-angle approximation in 
the sense that eigenvalues and eigenvectors can be expressed in 
terms of solutions of a Bethe ansatz equations. 

• However, obtaining solutions of these Bethe ansatz equations is 
notoriously difficult for neutrinos in more than three energy bins. 

• Many-body literature contains several prescriptions with varying 
degrees of numerical difficulty to obtain eigenvalues.

• We provided an approach to calculate eigenstates (crucial for 
astrophysical calculations) and demonstrated its numerical 
feasibility. We are now ready to compare with mean-field 
calculations.

• Next step is to carry out three-flavor, neutrino-antineutrino 
calculations in realistic supernova scenarios. 

• The last two steps will be carried out with the participation of 
three N3AS postdoctoral fellows: A. Patwardhan, E. Rrapaj, and 
M. Sen.

CONCLUSIONS



Thank you very much!


