## Algebraic approach to collective . neuitrino oscillations

A.B. Balantekin, University of Wisconsin

ECT*'Workshop on SN neutrinos at the crossroads: astrophysics, oscillations, and detection

May 2019

## ECT*

## Neutrinos from core-collapse supernovae



$$
\begin{gathered}
\cdot M_{\text {prog }} \geq 8 M_{\text {sun }} \Rightarrow \Delta E \approx 10^{53} \text { ergs } \approx \\
10^{59} \mathrm{MeV}
\end{gathered}
$$

-99\% of the energy is carried away by neutrinos and antineutrinos with $10 \leq E_{v} \leq 30 \mathrm{MeV} \Rightarrow 10^{58}$ neutrinos


## The origin of elements



Neutrinos not only play a crucial role in the dynamics of these sites, but they also control the value of the electron fraction, the parameter determining the yields of the $r$ process.

Possible sites for the r-process

Understanding a core-collapse supernova requires answers to a variety of questions some of which need to be answered, both theoretically and experimentally.

Balantekin and Fuller, Prog. Part. Nucl. Phys. 71162 (2013)


$$
Y_{e}=\frac{N_{p}}{N_{p}+N_{n}}=\frac{1}{1+\lambda_{p} / \lambda_{n}}
$$



## Collective Neutrino Oscillations

$$
\begin{gathered}
H=\sum_{\mathbf{p}} \omega_{\mathbf{p}} \vec{B} \cdot \vec{\jmath}_{\mathbf{p}}+\frac{\sqrt{2} G_{F}}{V} \sum_{\mathbf{p}, \mathbf{q}}\left(1-\cos \vartheta_{\mathbf{p q}}\right) \overrightarrow{\mathrm{p}}_{\mathbf{p}} \cdot \vec{\jmath}_{\mathbf{q}} \\
\vec{B}=(0,0,-1)_{\text {mass }}=(\sin 2 \theta, 0,-\cos 2 \theta)_{\text {flavor }}, \omega_{p}=\frac{\delta m^{2}}{2 p} \\
J_{\mathbf{p}}^{+}=a_{1}^{\dagger}(\mathbf{p}) a_{2}(\mathbf{p}) \\
J_{\mathbf{p}}^{-}=a_{2}^{\dagger}(\mathbf{p}) a_{1}(\mathbf{p}) \\
J_{\mathbf{p}}^{z}=\frac{1}{2}\left(a_{1}^{\dagger}(\mathbf{p}) a_{1}(\mathbf{p})-a_{2}^{\dagger}(\mathbf{p}) a_{2}(\mathbf{p})\right) \\
a_{e}(\mathbf{p})=\cos \theta a_{1}(\mathbf{p})+\sin \theta a_{2}(\mathbf{p}) \\
a_{\times}(\mathbf{p})=-\sin \theta a_{1}(\mathbf{p})+\cos \theta a_{2}(\mathbf{p})
\end{gathered}
$$

Two of the adiabatic eigenstates of this equation are easy to find in the single-angle approximation:

$$
\begin{gathered}
H=\sum_{p} \omega_{p} \vec{B} \cdot \vec{\jmath}_{p}+\mu(r) \vec{\jmath} \cdot \vec{\jmath} \\
|j,+j\rangle=|N / 2, N / 2\rangle=\left|\nu_{1}, \ldots, \nu_{1}\right\rangle \\
|j,-j\rangle=|N / 2,-N / 2\rangle=\left|\nu_{2}, \ldots, \nu_{2}\right\rangle \\
E_{ \pm N / 2}=\mp \sum_{p} \omega_{p} \frac{N_{p}}{2}+\mu \frac{N}{2}\left(\frac{N}{2}+1\right)
\end{gathered}
$$

To find the others will take a lot more work

## What is the mean-field approximation?

$\left[\hat{O}_{1}, \hat{O}_{2}\right] \cong 0$
$\hat{o}_{1} \hat{O}_{2} \approx \hat{O}_{1}\left\langle\hat{O}_{2}\right\rangle+\left\langle\hat{o}_{1}\right\rangle \hat{O}_{2}-\left\langle\hat{o}_{1} \hat{O}_{2}\right\rangle$
Expectation values should be calculated with a state $|\Psi\rangle$ chosen to satisfy: $\left\langle\hat{O}_{1} \hat{O}_{2}\right\rangle=\left\langle\hat{O}_{1}\right\rangle\left\langle\hat{O}_{2}\right\rangle$

This reduces the two-body problem to a one-body problem:

$$
a^{\dagger} a^{\dagger} a a \Rightarrow\left\langle a^{\dagger} a\right\rangle a^{\dagger} a+\left\langle a^{\dagger} a^{\dagger}\right\rangle a a+\text { h.c. }
$$

$$
\hat{H}_{v v}=\frac{\sqrt{2} G_{F}}{V} \int d p d q\left(1-\cos \theta_{p q}\right) \overrightarrow{\mathbf{J}}_{p} \cdot \overrightarrow{\mathbf{J}}_{q} \cong \frac{\sqrt{2} G_{F}}{V} \int d p d q\left(1-\cos \theta_{p q}\right)\left\langle\overrightarrow{\mathbf{J}}_{p}\right\rangle \cdot \overrightarrow{\mathbf{J}}_{q}
$$

Mean field
Neutrino-neutrino interaction

$$
\bar{\psi}_{v L} \gamma^{\mu} \psi_{v L} \bar{\psi}_{v L} \gamma_{\mu} \psi_{v L} \Rightarrow \bar{\psi}_{v L} \gamma^{\mu} \psi_{v L}\left\langle\bar{\psi}_{v L} \gamma_{\mu} \psi_{v L}\right\rangle+\cdots
$$

## Antineutrino-antineutrino interaction

$$
\bar{\psi}_{\bar{v} R} \gamma^{\mu} \psi_{\bar{v} R} \bar{\psi}_{\bar{v} R} \gamma_{\mu} \psi_{\bar{v} R} \Rightarrow \bar{\psi}_{\bar{v} R} \gamma^{u} \psi_{\bar{v} R}\left\langle\bar{\psi}_{\bar{v} R} \gamma_{\mu} \psi_{\bar{v} R}\right\rangle+\cdots
$$

Neutrino-antineutrino interaction

$$
\bar{\psi}_{v L} \gamma^{\mu} \psi_{v L} \bar{\psi}_{\bar{v} R} \gamma_{\mu} \psi_{\bar{v} R} \Rightarrow \bar{\psi}_{v L} \gamma^{\mu} \psi_{v L}\left\langle\bar{\psi}_{\bar{v} R} \gamma_{\mu} \psi_{\bar{v} R}\right\rangle+\cdots
$$

## Neutrino-antineutrino can also have an additional mean field

$\bar{\psi}_{v L} \gamma^{\mu} \psi_{v L} \bar{\psi}_{\bar{v} R} \gamma_{\mu} \psi_{\bar{v} R} \Rightarrow \bar{\psi}_{v L} \gamma^{\mu}\left\langle\psi_{v L} \bar{\psi}_{\bar{v} R} \gamma_{\mu}\right\rangle \psi_{\bar{v} R}+\cdots$
However note that
$\left\langle\psi_{v L} \bar{\psi}_{\bar{v} R} \gamma_{\mu}\right\rangle \propto m_{v}$ (negligible if the medium is isotropic)

Fuller et al.
Volpe

An example of an early mean field calculation

Equilibrium electron fraction with the inclusion of $v v$ interactions
$L^{51}=0.001,0.1,50$
Balantekin and Yuksel, 2005
$\mathrm{X}_{\alpha}=0,0.3,0.5$ (thin, medium, thick lines)


## Collective Oscillations within mean field for the vp process

Sasaki et al., Phys.Rev. D96 (2017) 043013



Impact of the production of p -nuclei

A system of $N$ particles each of which can occupy $k$ states

## Exact Solution <br>  <br> Mean-field approximation

| Entangled and |
| :---: |
| unentangled states |

$\longrightarrow$
Only unentangled states

Dimension of Hilbert
Space: $\mathrm{k}^{\mathrm{N}}$
Dimension of Hilbert Space: kN

This problem is "exactly solvable" in the single-angle approximation

$$
H=\sum_{\mathbf{p}} \omega_{\mathbf{p}} \vec{B} \cdot \overrightarrow{\jmath_{\mathbf{p}}}+\frac{\sqrt{2} G_{F}}{V} \sum_{\mathbf{p}, \mathbf{q}}\left(1-\cos \vartheta_{\mathbf{p q}}\right) \overrightarrow{\jmath_{\mathbf{p}}} \cdot \overrightarrow{\jmath_{\mathbf{q}}}
$$



$$
H=\sum_{p} \omega_{p} \vec{B} \cdot \vec{\jmath}_{p}+\mu(r) \vec{\jmath} \cdot \vec{\jmath}
$$

## The duality between $H_{v v}$ and BCS Hamiltonians

## The $\nu-\nu$ Hamiltonian

$$
\hat{H}=\sum_{p} \frac{\delta m^{2}}{2 p} \hat{B} \cdot \vec{J}_{p}+\frac{\sqrt{2} G_{F}}{V} \vec{J} \cdot \vec{J}
$$

## The BCS Hamiltonian

$$
\hat{H}_{\mathrm{BCS}}=\sum_{k} 2 \epsilon_{k} \hat{t}_{k}^{0}-|G| \hat{T}^{+} \hat{T}
$$

Same symmetries leading to Analogous (dual) dynamics! Pehlivan, Balantekin, Kajino, and Yoshida, Phys.Rev. D 84, 065008 (2011)


This symmetry naturally leads to splits in the neutrino energy spectra and was used to find conserved quantities in the single-angle case.

This problem is "exactly solvable" in the single-angle approximation
Pehlivan, Balantekin, Kajino, Yoshida, PRD84 (2011) 065008

$$
\begin{gathered}
H=\sum_{p} \omega_{p} \vec{B} \cdot \vec{J}_{p}+\mu(r) \vec{\jmath} \cdot \vec{\jmath} \\
-\frac{1}{2 \mu}-\sum_{p=1}^{M} \frac{j_{p}}{\omega_{p}-\zeta_{\alpha}}=\sum_{\substack{\beta=1 \\
\beta \neq \alpha}}^{\kappa} \frac{1}{\zeta_{\alpha}-\zeta_{\beta}} \\
\left|\zeta_{1}, \ldots, \zeta_{\kappa}\right\rangle=\mathcal{N}\left(\zeta_{1}, \ldots, \zeta_{\kappa}\right)\left(\prod_{\alpha=1}^{\kappa} S_{\alpha}^{-}\right)|j,+j\rangle \\
\vec{S}\left(\zeta_{\alpha}\right) \equiv \sum_{p} \frac{\vec{J}_{p}}{\omega_{p}-\zeta_{\alpha}} \\
E=E_{+N / 2}+\sum_{\alpha=1}^{\kappa} \zeta_{\alpha}-\mu \kappa(N-\kappa+1)
\end{gathered}
$$

## Recall that two of the adiabatic eigenstates of this equation are easy to find:

$$
\begin{gathered}
H=\sum_{p} \omega_{p} \vec{B} \cdot \vec{\jmath}_{p}+\mu(r) \vec{\jmath} \cdot \vec{\jmath} \\
|j,+j\rangle=|N / 2, N / 2\rangle=\left|\nu_{1}, \ldots, \nu_{1}\right\rangle \\
|j,-j\rangle=|N / 2,-N / 2\rangle=\left|\nu_{2}, \ldots, \nu_{2}\right\rangle \\
E_{ \pm N / 2}=\mp \sum_{p} \omega_{p} \frac{N_{p}}{2}+\mu \frac{N}{2}\left(\frac{N}{2}+1\right)
\end{gathered}
$$

## Away from the mean-field: First adiabatic solution of the exact many-body Hamiltonian



- Solutions of the Bethe ansatz equations for 250 neutrinos. Same behavior as the mean-field.
- Two flavors only
- Inverted hierarchy, no matter effect

$$
\begin{aligned}
& \mathbf{H}=\sum_{\omega} \omega \mathbf{B} \cdot \mathbf{J}_{\omega}+\mu(r) \mathbf{J} \cdot \mathbf{J} \\
& |\psi\rangle_{\mu \rightarrow \infty}=\sum_{m=-n / 2}^{m=+n / 2} c_{m}\left|\frac{1}{2}, m\right\rangle \longrightarrow|\psi\rangle_{\mu \rightarrow 0}=\sum_{m} c_{m} \phi_{m}|\underbrace{\nu_{1}, \nu_{1}, \cdots, \nu_{i}}_{n / 2+m} \underbrace{}_{n / 2-\nu_{2}, \nu_{2}, \cdots, \nu_{2}}\rangle
\end{aligned}
$$

Adiabatic evolution of an initial thermal distribution ( $\mathrm{T}=10 \mathrm{MeV}$ ) of electron neutrinos. $10^{8}$ neutrinos distributed over 1200 energy bins with solar neutrino parameters and normal hierarchy.

Birol, Pehlivan, Balantekin, Kajino arXiv:1805.11767
PRD98 (2018) 083002



Adiabatic evolution of an initial thermal distribution of electron neutrinos ( $\mathrm{T}=10 \mathrm{MeV}$ ) and antineutrinos of another flavor ( $\mathrm{T}=12 \mathrm{MeV}$ ). $10^{8}$ neutrinos distributed over 1200 energy bins both for neutrinos and antineutrinos with solar neutrino parameters and normal hierarchy.

Birol, Pehlivan, Balantekin, Kajino arXiv:1805.11767



## A more practical approach

$$
\begin{gathered}
\Lambda(\lambda)=\sum_{\alpha=1}^{\kappa} \frac{1}{\lambda-\zeta_{\alpha}} \\
\Lambda(\lambda)^{2}+\Lambda^{\prime}(\lambda)+\frac{1}{\mu} \Lambda(\lambda)=\sum_{q=1}^{M} 2 j_{q} \frac{\Lambda(\lambda)-\Lambda\left(\omega_{q}\right)}{\lambda-\omega_{q}} \\
\Lambda_{p}^{2}+\left(1-2 j_{p}\right) \Lambda_{p}^{\prime}+\frac{1}{\mu} \Lambda_{p}=\sum_{\substack{q=1 \\
q \neq p}}^{M} 2 j_{q} \frac{\Lambda_{p}-\Lambda_{q}}{\omega_{p}-\omega_{q}}, \quad \Lambda_{k}=\Lambda\left(\omega_{k}\right) \\
E=E_{N / 2}-2 \mu \sum_{p=1}^{M} j_{p} \omega_{p} \Lambda_{p} .
\end{gathered}
$$

## These $\Lambda\left(\omega_{p}\right)=\Lambda_{p}$ are eigenvalues of the invariants, $h_{p}$ :

$$
\begin{gathered}
h_{p}=-J_{p}^{z}+2 \mu \sum_{\substack{q=1 \\
q \neq p}}^{N} \frac{\mathbf{J}_{p} \cdot \mathbf{J}_{q}}{\omega_{p}-\omega_{q}}, \quad\left[h_{p}, h_{q}\right]=0, p \neq q \\
\sum_{p} \omega_{p} h_{p}=-\sum_{p=1}^{N} \omega_{p} J_{p}^{z}+\mu \sum_{\substack{p, q=1 \\
p \neq q}}^{N} \mathbf{J}_{p} \cdot \mathbf{J}_{q} \\
h_{p}\left|\xi_{1}, \ldots, \xi_{\kappa}\right\rangle=\left(2 \mu \sum_{\substack{q=1 \\
q \neq p}}^{N} \frac{j_{p} j_{q}}{\omega_{p}-\omega_{q}}+j_{p}-2 \mu j_{p} \wedge\left(\omega_{p}\right)\right)\left|\xi_{1}, \ldots, \xi_{\kappa}\right\rangle
\end{gathered}
$$

## Adiabatic Eigenstates

$$
\begin{gathered}
\Lambda(\lambda)^{2}+\frac{1}{\mu} \Lambda(\lambda)=\sum_{q=1}^{M} 2 j_{q} \frac{\Lambda(\lambda)-\Lambda\left(\omega_{q}\right)}{\lambda-\omega_{q}} \\
S_{1}^{-} S_{2}^{-}|j,+j\rangle=\frac{1}{2} \sum_{\substack{p, q=1 \\
p \neq q}}^{M}\left(\Lambda_{p} \Lambda_{q}+\frac{\Lambda_{p}-\Lambda_{q}}{\omega_{p}-\omega_{q}}\right) J_{p}^{-} J_{q}^{-}|j,+j\rangle \\
S_{1}^{-} S_{2}^{-} S_{3}^{-}|j,+j\rangle=\frac{1}{3!} \times \\
\sum_{\substack{p, q, r=1 \\
\text { ai, } \\
\text { distinct }}}^{M}\left[\Lambda_{p} \Lambda_{q} \Lambda_{r}+3 \Lambda_{r} \frac{\Lambda_{p}-\Lambda_{q}}{\omega_{p}-\omega_{q}}+\frac{2}{\omega_{p}-\omega_{q}}\left(\frac{\Lambda_{p}-\Lambda_{r}}{\omega_{p}-\omega_{r}}-\frac{\Lambda_{q}-\Lambda_{r}}{\omega_{q}-\omega_{r}}\right)\right] J_{p}^{-} J_{q}^{-} J_{r}^{-}|j,+j\rangle
\end{gathered}
$$

## One of the 210 solutions for $\kappa=6$ for 10 neutrinos in 10 bins with $\omega_{p}=p \omega_{0}$



Energy eigenvalues for the same system for $\kappa=4$


All the energy levels for 3 neutrinos in three bins with $\kappa=0$ (black dotted line), $\kappa=1$ (green solid lines), $\kappa=2$ (brown dashed lines), and $\kappa=3$ (red dot-dashed line)


Decomposition of the fourth excited $\kappa=1$ state with 3 neutrinos in 3 bins


## CONCLUSIONS

- Full many-body Hamiltonian describing collective neutrino oscillations is exactly solvable in the single-angle approximation in the sense that eigenvalues and eigenvectors can be expressed in terms of solutions of a Bethe ansatz equations.
- However, obtaining solutions of these Bethe ansatz equations is notoriously difficult for neutrinos in more than three energy bins.


## CONCLUSIONS

- Full many-body Hamiltonian describing collective neutrino oscillations is exactly solvable in the single-angle approximation in the sense that eigenvalues and eigenvectors can be expressed in terms of solutions of a Bethe ansatz equations.
- However, obtaining solutions of these Bethe ansatz equations is notoriously difficult for neutrinos in more than three energy bins.
- Many-body literature contains several prescriptions with varying degrees of numerical difficulty to obtain eigenvalues.


## CONCLUSIONS

- Full many-body Hamiltonian describing collective neutrino oscillations is exactly solvable in the single-angle approximation in the sense that eigenvalues and eigenvectors can be expressed in terms of solutions of a Bethe ansatz equations.
- However, obtaining solutions of these Bethe ansatz equations is notoriously difficult for neutrinos in more than three energy bins.
- Many-body literature contains several prescriptions with varying degrees of numerical difficulty to obtain eigenvalues.
- We provided an approach to calculate eigenstates (crucial for astrophysical calculations) and demonstrated its numerical feasibility. We are now ready to compare with mean-field calculations.
- Next step is to carry out three-flavor, neutrino-antineutrino calculations in realistic supernova scenarios.
- The last two steps will be carried out with the participation of three N3AS postdoctoral fellows: A. Patwardhan, E. Rrapaj, and M. Sen.


## Thank you very much!

