Flavor evolution of dense neutrinos as an emergent phenomenon

Georg Raffelt Max-Planck-Institut für Physik, München

Flavor Conversion in Core-Collapse Supernovae

Why worry about detailed neutrino transport?

- Explosion mechanism: Shock-wave revival by nu energy deposition
- Nucleosynthesis in neutrino irradiated outflows in SNe and NS-mergers depends on flavor (beta reactions!)
- Signal interpretation of DSNB and next nearby SN
- Collective flavor conversion: interesting theoretical problem in its own right

Kinetic Equation for Neutrino Transport

Flavor-dependent phase-space densities (occupation number matrices)

$$\varrho = \begin{pmatrix} f_{\nu_e} & f_{\langle \nu_e | \nu_\mu \rangle} & f_{\langle \nu_e | \nu_\tau \rangle} \\ f_{\langle \nu_\mu | \nu_e \rangle} & f_{\nu_\mu} & f_{\langle \nu_\mu | \nu_\tau \rangle} \\ f_{\langle \nu_\tau | \nu_e \rangle} & f_{\langle \nu_\tau | \nu_\mu \rangle} & f_{\nu_\tau} \end{pmatrix}$$

Diagonal: Usual occupation numbers Off-diag: Flavor coherence information

and similar for $\overline{\nu}$

Transport equation

$$\left(\partial_t + \vec{v} \cdot \vec{\nabla}_x - \vec{F} \cdot \vec{\nabla}_p\right) \varrho(t, \vec{x}, \vec{p}) = -\mathrm{i} \left[\mathcal{H}(t, \vec{x}, \vec{p}), \varrho(t, \vec{x}, \vec{p})\right] + \mathcal{C}[\varrho(t, \vec{x}, \vec{p})]$$

Streaming

Gravitational forces (redshift, deflection)

Typical approximations in numerical simulations:

(Angular moments, ray-by-ray, ...)

No flavor conversion (large matter effect!)

Reducing 6+1 dimensions

No gravitational deflection

• 3-species transport: v_e, \overline{v}_e, v_x

No muons

Flavor oscillations (vacuum, matter, vv) Collisions

•
$$e^- + p \rightleftharpoons n + v_e$$

• $e^+ + n \rightleftharpoons p + \bar{v}_e$

•
$$e^- + A \rightleftharpoons v_e + A^*$$

- $v + n, p \rightleftharpoons v + n, p$
- $\nu + A \rightleftharpoons \nu + A$
- $v + e^{\pm} \rightleftharpoons v + e^{\pm}$
- $N + N \rightleftharpoons N + N + \nu + \bar{\nu}$
- $e^+ + e^- \rightleftharpoons v + \bar{v}$
- $v_x + v_e, \bar{v}_e \rightleftharpoons v_x + v_e, \bar{v}_e$ $(v_x = v_\mu, \bar{v}_\mu, v_\tau, \text{ or } \bar{v}_\tau)$

• $v_e + \bar{v}_e \rightleftharpoons v_{\mu,\tau} + \bar{v}_{\mu,\tau}$

Kinetic Equation for Neutrino Transport

Flavor-dependent phase-space densities (occupation number matrices)

$$\varrho = \begin{pmatrix} f_{\nu_e} & f_{\langle \nu_e | \nu_\mu \rangle} & f_{\langle \nu_e | \nu_\tau \rangle} \\ f_{\langle \nu_\mu | \nu_e \rangle} & f_{\nu_\mu} & f_{\langle \nu_\mu | \nu_\tau \rangle} \\ f_{\langle \nu_\tau | \nu_e \rangle} & f_{\langle \nu_\tau | \nu_\mu \rangle} & f_{\nu_\tau} \end{pmatrix}$$

Diagonal: Usual occupation numbers Off-diag: Flavor coherence information

and similar for $\overline{\nu}$

Transport equation

$$\left(\partial_t + \vec{v} \cdot \vec{\nabla}_x - \vec{F} \cdot \vec{\nabla}_p\right) \varrho(t, \vec{x}, \vec{p}) = -\mathrm{i} \left[\mathcal{H}(t, \vec{x}, \vec{p}), \varrho(t, \vec{x}, \vec{p})\right] + \mathcal{C}[\varrho(t, \vec{x}, \vec{p})]$$

Streaming

Gravitational forces (redshift, deflection)

Flavor oscillations (vacuum, matter, vv)

Collisions

Flavor evolution governed by "Hamiltonian matrix" (here for 2 flavors)

$$\mathcal{H} = \frac{\Delta m^2}{4E} \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} + \sqrt{2}G_F \begin{pmatrix} n_e & 0 \\ 0 & 0 \end{pmatrix} + \sqrt{2}G_F \int \frac{d^3\vec{p}}{(2\pi)^3}(\varrho + \overline{\varrho})$$
Vacuum oscillations
MSW effect
Nu-nu interactions,
nus feed back on each other

• Flavor evolution is caused by off-diagonal \mathcal{H} elements (vacuum or nu-nu term) • For $\Delta m^2 = 0$, nu-nu term can still cause run-away modes!

Self-Induced Flavor Conversion

Flavor conversion (vacuum or MSW) for a neutrino of given momentum p

 Requires lepton flavor violation by masses and mixing

$$\nu_{\boldsymbol{e}}(p) \to \nu_{\boldsymbol{\mu}}(p)$$

$$\frac{\Delta m_{\rm atm}^2}{2E} = 10^{-10} \,\rm eV = 0.5 \,\rm km^{-1}$$

Pair-wise flavor exchange by $\nu - \nu$ refraction (forward scattering)

- No net flavor change of pair
- Requires dense neutrino medium (collective effect of interacting neutrinos)
- Can occur without masses/mixing (and then does not depend on $\Delta m^2/2E$)
- Familiar as neutrino pair process $\mathcal{O}(G_F^2)$ Here as coherent refractive effect $\mathcal{O}(G_F)$

$$\begin{split} \nu_{e}(p) + \overline{\nu}_{e}(k) &\rightarrow \nu_{\mu}(p) + \overline{\nu}_{\mu}(k) \\ \nu_{e}(p) + \nu_{\mu}(k) &\rightarrow \nu_{\mu}(p) + \nu_{e}(k) \end{split}$$

$$\sqrt{2}G_{\rm F}n_{\nu} = 10^{-5}{\rm eV} = 0.5~{\rm cm}^{-1}$$

E = 12.5 MeV R = 80 km $L_{\nu} = 40 \times 10^{51} \text{erg/s}$

Transport of Particles and Flavor Coherence

How to interpret the Liouville operator (advection term)? $\oint \mathcal{D} \varrho(t, \vec{x}, \vec{p}) = -i \left[\mathcal{H}(t, \vec{x}, \vec{p}), \varrho(t, \vec{x}, \vec{p}) \right] + \mathcal{C}[\varrho(t, \vec{x}, \vec{p})]$

• Flavor evolution along trajectories (of individual neutrinos or wave packets)

$$\frac{d}{ds}\varrho(\underbrace{t,\vec{x}},\vec{p}) = -i \left[\mathcal{H}(t,\vec{x},\vec{p}), \varrho(t,\vec{x},\vec{p})\right] + \mathcal{C}[\varrho(t,\vec{x},\vec{p})]$$

$$\downarrow$$
Time and space coordinates related by neutrino velocity along trajectory

• Flavor evolution in space and time (of neutrino radiation field)

$$\partial_t \varrho + \frac{1}{2} \{ \underbrace{\vec{\nabla}_p \mathcal{H}}_{\downarrow}, \vec{\nabla}_x \varrho \} - \frac{1}{2} \{ \vec{\nabla}_x \mathcal{H}, \vec{\nabla}_p \varrho \} = -i [\mathcal{H}, \varrho] + \mathcal{C}[\varrho]$$

Velocity operator (matrix in flavor space)

Neutrino quantum field obeys the Dirac equation Kinetic equation for ϱ is always an approximation / simplification / expansion Different intuitive pictures should give the same answer for observables

Velocity in Advection Term

- Advection term after "separation of scales" between gradients and neutrino $ec{p}$
- Wigner function $\varrho(t, \vec{x}, \vec{p})$ makes sense as a phase-space density

$$\partial_t \varrho + \frac{1}{2} \{ \underbrace{\vec{\nabla}_p \mathcal{H}}_{\downarrow}, \vec{\nabla}_r \varrho \} - \frac{1}{2} \{ \vec{\nabla}_x \mathcal{H}, \vec{\nabla}_p \varrho \} = -i [\mathcal{H}, \varrho] + \mathcal{C}[\varrho]$$

$$\downarrow$$
Velocity operator (matrix in flavor space) $\vec{\nabla}_p E_{kin} = \vec{\nabla}_p \sqrt{\vec{p}^2 + m^2} = \frac{\vec{p}}{E} = \vec{v}$

Ultrarelativistic limit and ignore gravity or refractive deflection

Leading-order effect of ν masses on the rhs in the usual oscillation term

Stirner, Sigl & Raffelt: *Liouville term for neutrinos: Flavor structure and wave interpretation*, JCAP 1805 (2018) 016 [arXiv:1803.04693]

Georg Raffelt, MPI Physics, Munich

Kinetic equations for flavor transport

Rudszky: *Kinetic equations for neutrino spin- and type-oscillations in a medium,* Astrophys. Space Sci. 165 (1990) 65

Raffelt & Sigl: *General kinetic description of relativistic mixed neutrinos*, NPB 406 (1993) 423

Sirera & Perez: *Relativistic Wigner function approach to neutrino propagation in matter,* PRD 59 (1999) 125011 [hep-ph/9810347]

Yamada: **Boltzmann equations for neutrinos with flavor mixings**, PRD 62 (2000) 093026 [astro-ph/0002502]

Cardall: *Liouville equations for neutrino distribution matrices,* PRD 78 (2008) 085017 [arXiv:0712.1188]

Vlasenko, Fuller & Cirigliano: *Neutrino quantum kinetics*, PRD 89 (2014) 105004 [arXiv:1309.2628]

Serreau & Volpe: *Neutrino-antineutrino correlations in dense anisotropic media,* PRD 90 (2014) 125040 [arXiv:1409.359]

Hansen & Smirnov: *The Liouville equation for flavour evolution of neutrinos and neutrino wave packets,* JCAP 1612 (2016) 019 [arXiv:1610.00910]

Stirner, Sigl & Raffelt: *Liouville term for neutrinos: Flavor structure and wave interpretation,* JCAP 1805 (2018) 016 [arXiv:1803.04693]

Correlated Trajectories vs. Field of Flavor Coherence

Assume globally spherically symmetric neutrino emission from SN core

- Every ν meets every other ν at most once
- Nonlinear feedback on flavor evolution?

- Oscillating (or unstable) field $\varrho(r)$ of flavor coherence, acting back upon itself
- Do not worry about individual neutrinos

Evolution of the Questions

Bulb model of neutrino emission:

- Nu-nu interaction determined by aspect ratio of emission surface
- Instability as a function of radius adiabatic conversion possible
- Flavor pendulum, spectral splits, multi-angle matter effect, three-flavor effects, ...
- Spurious instabilities (need many angle bins in numerical studies)
- Instability in the transverse direction: Spontaneous symmetry breaking

Evolution of the Questions

Halo effect:

- Small re-scattered flux, much larger angular leverage
- Impact on collective effects?
- How to deal with backward flux?

Evolution of the Questions

Non-stationarity:

- Time-variation (of SN emission) in source region?
- Self-induced time variation, "pulsating modes" more unstable than stationary ones?

Fast Flavor Conversion

Flavor evolution governed by "Hamiltonian matrix" (here for 2 flavors)

$$\mathcal{H}_{\vec{p}} = \frac{\Delta m^2}{4E} \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} + \mathcal{H}_{mat} + \sqrt{2}G_F \int \frac{d^3\vec{p}'}{(2\pi)^3} (1 - \vec{v} \cdot \vec{v}') \begin{pmatrix} f_{\nu_e} & f_{\langle \nu_e | \nu_x \rangle} \\ f_{\langle \nu_x | \nu_e \rangle} & f_{\nu_x} \end{pmatrix}$$

Flavor conversion caused by off diagonals

Energy scales of the problem:

 $\begin{array}{ll} \mu = \sqrt{2} \ G_{\rm F} \ n_{\nu \overline{\nu}} & \mbox{Required for any collective effects} \\ \omega_E = \Delta m^2 / 2E & \mbox{Vacuum oscillation frequency} \\ \lambda = \sqrt{2} \ G_{\rm F} \ n_{\rm e} & \mbox{Matter effect} \end{array}$

Slow modes:

Require $\omega_E \neq 0$ Possible growth rate: $\kappa \sim \sqrt{\mu \omega_E}$, requires "crossing" of ω_E distribution

Fast modes:

Dynamical even for $\omega_E = 0$ Growth rate: $\kappa \sim \sqrt{\mu \omega_E}$ slow growth $\kappa \sim \mu$ fast growth, requires "crossing" of angle distribution

Neutrino gas in the near-free streaming regime

Linearisation for Fast Flavor Modes

Evolution equation: $iv^{\alpha}\partial_{\alpha}\varrho = [\mathcal{H}, \varrho]$ with $v^{\alpha} = (1, \vec{v})$

Linearisation to find (propagating or unstable) collective modes:

$$\varrho = \begin{pmatrix} f_{\nu_e} & f_{\langle \nu_e | \nu_x \rangle} \\ f_{\langle \nu_x | \nu_e \rangle} & f_{\nu_x} \end{pmatrix} = \frac{f_{\nu_e} + f_{\nu_x}}{2} + \frac{f_{\nu_e} - f_{\nu_x}}{2} \begin{pmatrix} s & S \\ S^* & -s \end{pmatrix}$$
 Field of flavor coherence

Linearised EOM for field of flavor coherence

$$iv^{\alpha}\partial_{\alpha}S_{\vec{p}} = \underbrace{\left(\frac{\Delta m^{2}}{2E} + v^{\alpha}\Lambda_{\alpha}\right)}_{QE}S_{\vec{p}} - \mu v^{\alpha}\int \underbrace{\frac{d^{3}\vec{p}'}{(2\pi)^{3}}v_{\alpha}'\left(g_{\vec{p}'}S_{\vec{p}'} - \overline{g}_{\vec{p}'}\overline{S}_{\vec{p}'}\right)}_{QE}$$

Ignore for fast modes

Same for all *E* and ν and $\overline{\nu}$

Angle distribution of electron lepton number (ELN) carried by neutrinos

$$G_{\vec{v}} = \int \frac{dE \ E^2}{2\pi^2} \frac{f_{\nu_e,\vec{p}} - f_{\overline{\nu}_e,\vec{p}} - f_{\nu_x,\vec{p}} + f_{\overline{\nu}_x,\vec{p}}}{2}$$

Linearised EOM for field of flavor coherence

$$iv^{\alpha}(\partial_{\alpha} + i\Lambda_{\alpha})S_{\vec{v}} = -\mu v^{\alpha} \int \frac{d\vec{v}'}{4\pi} v_{\alpha}' G_{\vec{v}'} S_{\vec{v}'}$$

Matter effect, "rotate away" by including it in derivative if medium is homogeneous and stationary

Georg Raffelt, MPI Physics, Munich

Dispersion Relation for Fast Flavor Modes

Linearised EOM for field of flavor coherence – a wave equation

$$iv^{\alpha}\partial_{\alpha}S_{\vec{v}} = -\mu v^{\alpha} \int \frac{d\vec{v}'}{4\pi} v_{\alpha}' G_{\vec{v}'} S_{\vec{v}'}$$

Plane-wave ansatz

$$S_{\vec{v}}(t,\vec{r}) = Q_{\vec{v}}(\Omega,\vec{K}) e^{-i(\Omega t - \vec{K} \cdot \vec{r})}$$

EOM in Fourier space

$$\left(\Omega - \vec{v} \cdot \vec{K}\right)Q_{\vec{v}} = -\mu \int \frac{d\vec{v}'}{4\pi} (1 - \vec{v} \cdot \vec{v}') G_{\vec{v}'}Q_{\vec{v}'}$$

Non-collective solutions:

 (Ω, \vec{K}) real and "below the light cone" $(\Omega - \vec{v} \cdot \vec{K}) = 0$ for some mode \vec{v}

Collective solutions:

$$(\Omega - \vec{v} \cdot \vec{K}) \neq 0$$
 for all \vec{v} modes

 (Ω, \vec{K}) real and "outside the light cone" or imaginary part

Dispersion relation:

 $\Omega = \vec{v} \cdot \vec{K}$ for every \vec{K} continuos infinity of frequencies

Eigenfunctions
$$Q_{\vec{v}} \propto \frac{\vec{a} \cdot \vec{v} + b}{\Omega - \vec{v} \cdot \vec{K}}$$

Dispersion relation: det $\Pi = 0$
 $\Pi^{\mu\nu} = \eta^{\mu\nu} + \int \frac{d\vec{v}}{4\pi} G_{\vec{v}} \frac{v^{\mu}v^{\nu}}{\Omega - \vec{v} \cdot \vec{K}}$

Fast Pairwise Conversion of Supernova Neutrinos: A Dispersion Relation Approach

Ignacio Izaguirre,¹ Georg Raffelt,¹ and Irene Tamborra²

¹Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany ²Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark (Received 10 October 2016; published 10 January 2017)

Classification of instabilities of "flavor waves" (Two-beam model)

Classification of instabilities of plasma waves (Two-beam model)

Landau & Lifshitz, Vol.10, Physical Kinetics Chapter VI, Instability Theory

Georg Raffelt, MPI Physics, Munich

SN Neutrinos at the Cross Roads, Trento, 13–17 May 2019

Dispersion Relation for Neutrino Flavor Waves

Fast Flavor Waves

Non-collective modes: Infinitely many $\Omega = \vec{v} \cdot \vec{K}$

- Flavor coherence carried by every neutrino mode separately
- Quick kinematical decoherence

Collective modes: $\Omega(\vec{K})$ according to collective dispersion relation • Flavor wave (or wave packet) propagates and/or grows

Dispersion Relation for Isotropic Case

Dispersion Relation for Isotropic Case

Fast Flavor Waves

Non-collective modes:

Collective modes

- Infinitely many neutrino velocity projections on \vec{K}
- Each carries along its initial flavor coherence
- Kinematical decoherence of initial wave packet (Does not happen in two-beam model)
- Fast dissipation of any initial wave packet

- Infinitely many neutrino velocity projections on \vec{K}
- Move through wave packet (here taken with vanishing central wave number)
- Wave packet moves in neutrino gas,
- independently of velocities of neutrino "beams"

Wave packet of flavor coherence

Dispersion Relation vs. Eigenvalues of Hamiltonian

Dispersion relation:

For fixed μ find $\Omega(K)$ from

$$\left(\Omega - \vec{v} \cdot \vec{K}\right)Q_{\vec{v}} = -\mu \int \frac{d\vec{v}'}{4\pi} (1 - \vec{v} \cdot \vec{v}') G_{\vec{v}'}Q_{\vec{v}'}$$

Eigenvalues of Hamiltonian:

For fixed *K* find eigenvalues $w = \Omega(\mu)/K$ of \mathcal{H}

$$i\partial_t S_{\vec{v}}(t,\vec{K}) = \mathcal{H}(S_{\vec{v}})$$

$$\mathcal{H}(S_{\vec{v}}) = \vec{v} \cdot \vec{K} \, S_{\vec{v}} - \mu \int \frac{d\vec{v}'}{4\pi} (1 - \vec{v} \cdot \vec{v}') \, G_{\vec{v}'} S_{\vec{v}'}$$

Bound vs Scattering States

Continuum limit: Box size $\rightarrow \infty$

Continuum of scattering states

Continuum of scattering states (with phase shifts) + Bound state

Non-collective modes~ Scattering statesCollective modes~ Bound states

No spectral crossing

"Weak" spectral crossing

"Strong" spectral crossing

Spectral crossing – Continuous Limit

Energy levels

- Solutions with complex eigenvalues appear as merging of two real eigenvalues
- With increasing μ must emerge below the light cone

Continuous limit of vanishing mode spacing:

- Critical points at $w = \cos(\theta_0)$, i.e. at crossing where $G(\cos \theta_0) = 0$
- Interaction strength $\mu_{1,2}$ of critical points follow easily from $G(\cos \theta)$
- Single crossing: Complex solution guaranteed
- Several crossings: Not guaranteed

 \rightarrow See Tobias Stirner's talk

Summary

- Neutrino-neutrino interactions lead to emergence of collective modes of flavor coherence (propagating or unstable)
- Need not exist for every \vec{K}/μ (dispersion relations can end)
- Co-exist with non-collective modes
- "Wave packet of flavor coherence" dissipates by kinematical decoherence between non-collective modes
- Contains non-dissipating (propagating or growing) projection for sufficiently strong nu-nu interaction effect
- Explicit formulation of eigenfunctions for non-collective modes leads to simple identification of critical points → Tobias Stirner's talk
- Stable collective modes "peel off" from the light cone and exist only outside
- Unstable collective modes begin/end under the light cone from coalescence of non-collective modes

Capozzi, Raffelt & Stirner, work in progress (2019)

Many Open Questions

Flavor evolution in dense neutrino flows still on the level of simplified toy models and parametric studies

- Realistic normal-mode analysis without symmetry assumptions?
- Realistic triggering of stable or unstable flavor waves?
- Do tachyonic modes really lead to flavor equilibration? (Going beyond linearised stability analysis)
- Realistic impact on SN explosion and nucleosynthesis?

It is only the beginning. A lot more work ahead of us ...