Neutrino Gyroscopes! Neutrinos as probes of rotation in core-collapse supernovae

Laurie Walk NBIA and DARK Niels Bohr Institute, University of Copenhagen

Workshop: SN Neutrinos at a Crossroads Trento, Italy, 2019 May 13, 2019

Outline

- Neutrinos from supernovae
- Rotating 3D supernovae models
- Iffects of rotation on:
 - SASI
 - LESA
- Conclusions

Based on:

L. Walk, I. Tamborra, H.-T. Janka, and A. Summa. Phys. Rev. D98, 123001 (2018)

L. Walk, I. Tamborra, H.-T. Janka, and A. Summa. arXiv:1901.0623

Neutrinos from Supernovae

- \longrightarrow abundantly produced inside the core
- \longrightarrow essential role in explosion mechanism
- \longrightarrow affect nucleosynthesis
- \longrightarrow probe progenitor rotation

Aim of this work:

- Explore effects of rotation on the development of hydrodynamical instabilities
- Oetermine detectable imprints of rotation in the neutrino signal

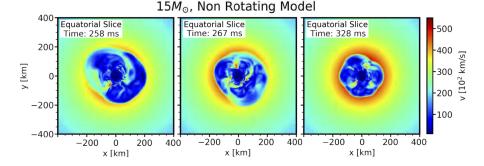
3D Simulations

 \longrightarrow 3D hydrodynamical simulations (Garching group)

 \longrightarrow Three self-consistent 15 M_{\odot} models :

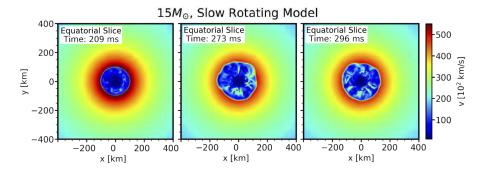
Non rotating

Slow rotating (spin period of 6000 s)

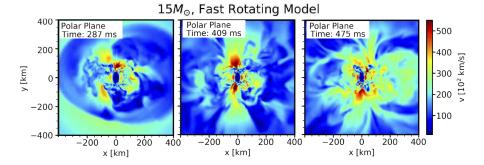

Fast rotating (spin period of 20 s)

 \longrightarrow Fast rotating model successfully explodes

Summa, Janka, Melson, Marek, Astrophys. J. 852, 28 (2018)

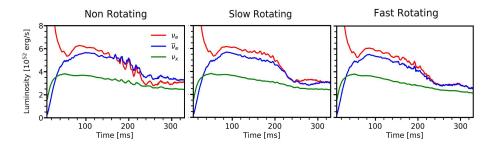

(Standing Accretion-Shock Instability)

Blondin, Mezzacappa, DeMarino, Astrophys. J. 584, 971 (2003) Blondin, Mezzacappa, Nature (London) 445, 58 (2007) Foglizzo, Masset, Guilet, Durand, Phys. Rev. Lett. 108, 051103 (2012) Fernandez, Astrophys. J. 725, 1563 (2010).



 \rightarrow Large-scale deformation of the shockwave indicate SASI sloshing motions

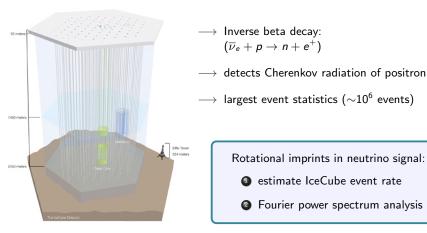
Laurie Walk (NBIA and DARK)



- \longrightarrow Rotation weakens effect of SASI
- \longrightarrow Smaller deformations of the shockwave
- \longrightarrow More prominent convective flow

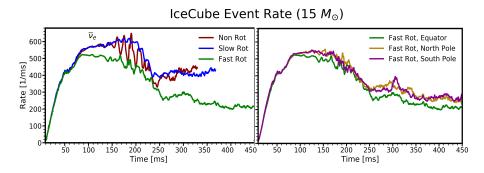
 \longrightarrow Model explodes at ${\sim}220$ ms

- \longrightarrow Massive polar downflows of matter due to rapid rotation
- \longrightarrow Oblate deformation along the equator

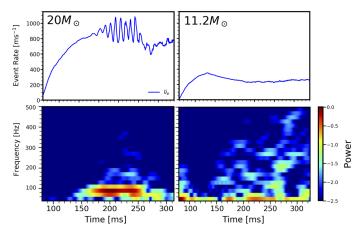


- \longrightarrow Sinusoidal modulation characteristic of SASI in non rotating model
- \longrightarrow Amplitude decreased in slow rotating model
- \longrightarrow Small-scale fluctuations present in neutrino emission of fast rotating model

See also: Tamborra, Raffelt, Hanke, Janka, Müller, Phys. Rev. Lett. 111, 121104 (2013) Janka, Melson, Summa, Ann. Rev. Nucl. Part. Sci. 66, 341 (2016)

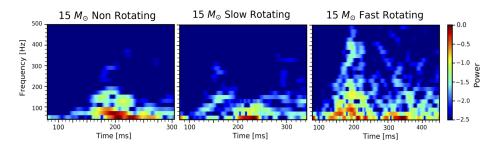

Laurie Walk (NBIA and DARK)

Detectable Features - IceCube


IceCube Neutrino Observatory

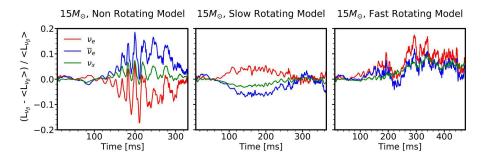
Detectable Features

- \longrightarrow Properties reflected in IceCube event rate
- \longrightarrow Detectability prospects are directionally dependant
- \longrightarrow Fast rotating model has higher neutrino emission at the poles due to downflows


Detectable Features - Non rotating progenitors

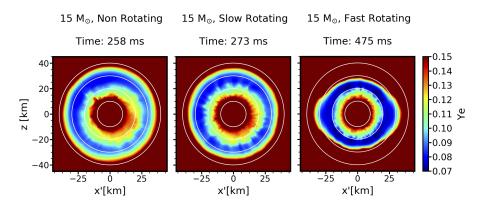
- \longrightarrow Strong SASI characterized by dominant low frequency region
- \longrightarrow Convection characterized by a homogeneous spread in frequencies

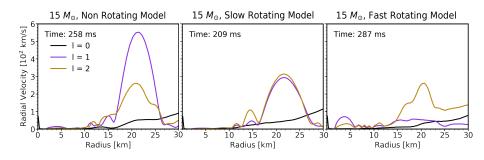
See also: Tamborra, Raffelt, Hanke, Janka, Müller, Phys. Rev. Lett. 111, 121104 (2013)


Detectable Features- Rotating progenitors

- \longrightarrow Rotation weakens the SASI peak
- \longrightarrow Less dominant SASI give wider spread in high frequencies
- \longrightarrow i.e. small scale fluctuations resolved in spectrograms
- \longrightarrow Suggests an interplay between SASI and convection brought on by rotation

(Lepton-Emission Self-sustained Asymmetry)


Tamborra, Hanke, Janka, Müller, Raffelt, Marek, Astrophys. J. 792, 96 (2014) O'Connor, Couch, Astrophys. J. 865, 81 (2018) Glas, Janka, Melson, Stockinger, Just, (2018), arXiv:1809.10150 Vartanyan, Burrows, Radice, Skinner, Dolence, Mon. Not. Roy. Astron. Soc. 482, 351 (2019)


 \longrightarrow Anti-correlation between the u_e and $\overline{\nu}_e$ luminosities dampened by rotation

 \rightarrow Suggests regions of excess $(\nu_e - \overline{\nu}_e)$ flux smeared out by rotating matter

See also: Tamborra, Hanke, Janka, Müller, Raffelt, Marek, Astrophys. J. 792, 96 (2014) Tamborra, Raffelt, Hanke, Janka, Müller, Phys. Rev. D90, 045032 (2014)

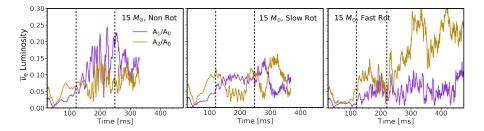
- \longrightarrow Radial Y_e asymmetry in the non rotating model
- ightarrow Becomes increasingly spherically symmetric with rotational velocity

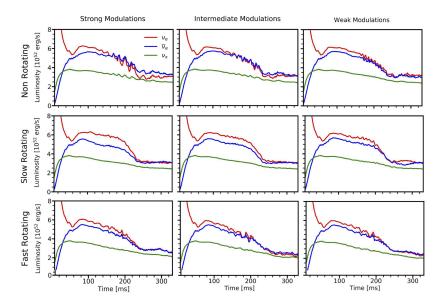
 \longrightarrow Asymmetric radial flow prevented by rotation

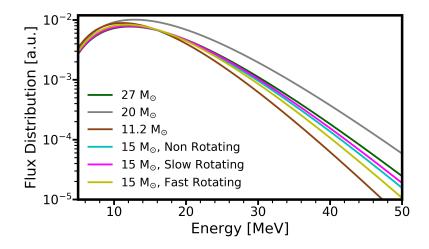

- \longrightarrow Formation of hemispheric asymmetries inside the PNS is disfavored
- \longrightarrow Rotation inhibits the growth of LESA rather than damping it

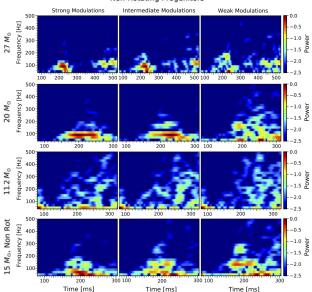
Conclusions

Explored the effects of rotation on hydrodynamical asymmetries using neutrinos as gyroscopes!

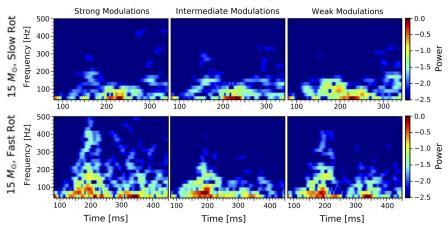

- \rightarrow Rotation destroys signatures of large-scale global deformations
- \longrightarrow Induces small scale fluctuations in the neutrino signal
- \longrightarrow Rotation inhibits the growth of LESA
- \longrightarrow Constrained with relative order of low/high frequencies, given a favorable observer direction

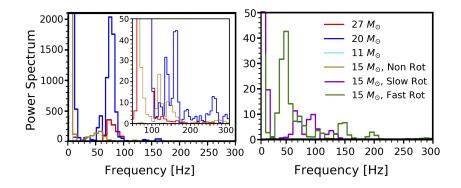

Thank You!




Summa, Janka, Melson, Marek, Astrophys. J. 852, 28 (2018)

Laurie Walk (NBIA and DARK)





Non-Rotating Progenitors

Rotating Progenitors

Detectable Features

- \longrightarrow Spectra show SASI peak and high frequency peak
- \longrightarrow SASI peak broader in rotating models
- \longrightarrow Relative height between SASI and high frequency peak decreases with angular momentum

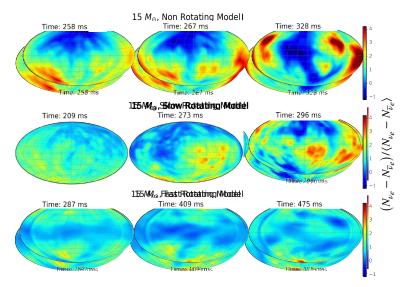
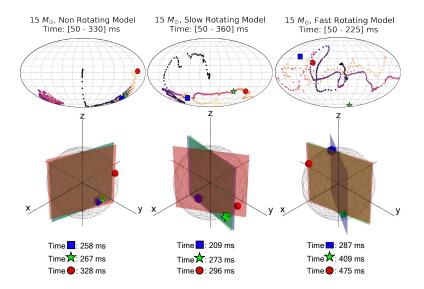
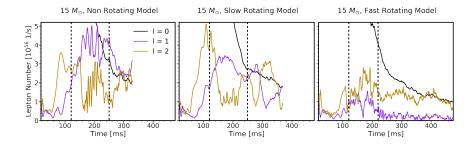




Figure: Snapshots of the ELN flux relative to the 4π -average projected on Mollweide maps.

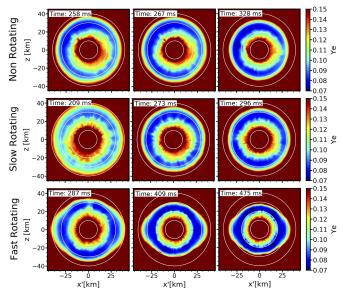


Figure: Cross-sectional slices showing spatial electron fraction distributions for each time.

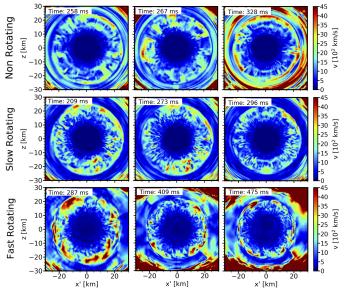
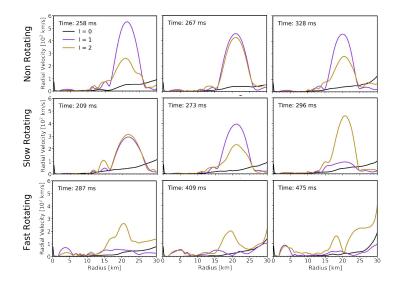



Figure: Cross-sectional slices aboslute fluid velocity distributions for each time.

