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The Complete Picture

Each has its own challenges.

The overlap (“crossroads”) may be a nightmare!

My focus will largely be here, although | will touch on other parts of the pipeline.



Brier History of Supernova Models

Progress has been accelerating.
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Progenitor Mass
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Shock Radius (km)
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Lentz et al. (2019),
in preparation

9.6

10

10.6

15

25

N/N

N/N

N/N

N/N

N/N

Woosley and Heger (2015)/Zero
Metallicity/LS220

SEWBJ16/Solar Metallicity/LS220

Heger and Woosley (2010)/Zero
Metallicity/LS220

Woosley and Heger (2007)/Solar
Metallicity/LS220

Heger and Woosley (2010)/Zero
Metallicity/LS220

Y/9467

?/300

?/200

Y/
1600

Y/
2200

467/0.167

265

115

685

405



Mean Shock Radius; Min/Max band [km]
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Luminosity [B/s]
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Significant progress has
been made, but are we
fast approaching the
base of El Capitan?

Convergence of efforts to
include Full Physics in 3D Meeting the Demands
General Relativistic Codes | illuminated by 2D Models
and efforts to include in the Context of 3D
General Relativity in Full Models
Physics Codes

Desired
Simulation

Keeping Pace with the
Weak Interaction Physics
and Managing the
Uncertainty in the Cross
Sections

Bracing for the Clash
between Classical
Kinetics and Quantum
Kinetics of Neutrinos

Each of these things becomes very difficult in 3D,
let alone the confluence of them.
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3D Multi-Frequency
Moments Models

Newtonian Effective Potential General Relativistic

Ray-by-Ray Transport Ray-by-Ray Transport 3D Transport 3D Transport

Three Flavor (Leakage
Scheme for Heavy Three Flavor Three Flavor Three Flavor
Flavors)

Partial Weak Physics

e = (FMT for All Flavors)

Full Weak Physics Full Weak Physics Partial Weak Physics Full Weak Physics

Kuroda et al. (2016),
**Roberts et al. (2016),
**Ott et al. (2018),
Kuroda et al. (2018)

*Vartanyan et al.

| - *
2016) Chan et al. (2018) One-Moment Transport Two-Moment Transport (2019), (nggciws etal.

Takiwaki et al. (2014, Mueller et al. (2017),

Hanke et al. (2013),
* Lentz et al. (2015) Melson et al. (2015),
Summa et al. (2018)




The Neutrino
Angular Moments
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Multifrequency
(solve for
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Closure must be “realizable”

Requires a closure prescription:

* 1-Moment (MGFLD)
« 2-Moment (MGVET)

- i.e., it must obey Fermi—Dirac statistics.



An “Effective” Potential

Comparison of Newtonian and TOV
equations for hydrostatic equilibrium
suggests a GR correction to the
monopole term of the Newtonian
potential’s multipole expansion.
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Comparisons of this and a CFA approach demonstrate that an effective potential approach is not sufficient.
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Ray-by-Ray Approximation

Solve a number of spherically
symmetric problems.

In spherical symmetry, RbR
IS exact.

see Skinner, Burrows, and Dolence 2016, Ap.J. 831, 81 for a comparison with 2D transport
see Glas, Just, Janka, and Obergaulinger 2019 Ap.J. 873, 45 for a comparison with 3D transport
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Pushing to Late Times in the Context ot
Multi-Physics Simulations

What can we learn from 2D (self-consistent) explosion models about the late-time neutrino signature
evolution?
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Pushing to Late Times in the Context ot
Multi-Physics Simulations

What can we learn from 2D (self-consistent) explosion models about the late-time neutrino signature
evolution?
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40 ————— ——— ——— 40 [
sk — DI12-WHO07 B
= — D15-WHO07 1 .
% D20-WHO07 ] % 3 -
= or — D25-WH07 E =
W ] i72]
.= 9
2 25 E e
S T S ]
m 5[ 7 m RMS energies
wn L 2] il measured at 1000 km, energy density weighted
515: B E 3 — DI2-WH07 1 R e B I B B Y AL S
o [ o0 — DI15-WHO07 ] B0 cisame
> f ] > r D20-WH07 ] F oo nuebar
of b [ 4 — D25-WH07 1 b mulm
r 1 i L —csw
. obl v o e e FE
5 0 1 2 3 4 i
204
t- bounce [S] g F
&
40 — 40 — 15
% 30; — % 30; v ! ]
= = N. g ol T b L L b e L
= ¢ = \ i d 0 50 100 150 200 250 300 350 400 450
8 L 8 L Time [ms]
50 20] ED 20[- |
o 20— - o 20— —
27 27 ] Lentz et al. (2015)
2) 7 ]
E r — DI12-WHO07 1 E r — DI12-WH07 1
L 10 — DI15-WHO07 7 L0 — DI15-WHO07 7
>0 D20-WH07 1 > T D20-WH07 1
[ 4 — D25-WH07 ] [ 4 — D25-WHO07
T N B R B T N E N N B
= 1 2 3 4 5 "= 1 2 3 4 5
t- tbounce [S] t- tbounce [S]




Significant progress has
been made, but are we
fast approaching the
base of El Capitan?

Convergence of efforts to
include Full Physics in 3D Meeting the Demands
General Relativistic Codes | illuminated by 2D Models
and efforts to include in the Context of 3D
General Relativity in Full Models
Physics Codes

Desired
Simulation

Keeping Pace with the
Weak Interaction Physics
and Managing the
Uncertainty in the Cross
Sections

Bracing for the Clash
between Classical
Kinetics and Quantum
Kinetics of Neutrinos

Each of these things becomes very difficult in 3D,
let alone the confluence of them.



Keeping Pace with
the Weak Interactions

Uncertainty: Uncertainty in things included in the models.

A 10% correction in the neutrino—nucleon scattering cross
section consistent with the uncertainty in the strangeness
content of the nucleon led to explosion in a model that _
otherwise failed to explode. I -

EE, , [10% erg]

. . A . o. . . . . .
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o [s] tpb [8]

Melson, Janka, Bollig, et al. 2015 Ap.J. Lett. 808, L42
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difficult to conduct. Bollig, Janka, et al. 2017 PRL 119, 242702
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Neutrino Quantum Kinetics

Neutrino flavor evolution is complicated by neutrino—neutrino interactions, which affect all
neutrinos at all energies —i.e., the entire ensemble of neutrinos — collectively.

* Duan, H., Fuller, G. M., & Qian, Y.-Z. 2010, ARNPS 60, 569
* Chakraborty, S., Hansen, R., Izaguirre, |., & Raffelt, G. G. 2016a, NuPhB 908, 366
* Mirizzi, A., Tamborra, |, Janka, H.-T., et al. 2016, NCimR 39, 1

X Q _ . . .
) R 4 If v, and v, angular distributions
: s are sufficiently different, “fast flavor

instabilities” in the vicinity — i.e., within
O(m) — of the neutrinospheres may be
z triggered.

* Sawyer, R. F. 2005, PRD 72, 045003

Impact on the explosion mechanism?

R~ O(10km)

Dasgupta, Mirizzi, and Sen, JCAP 1702, 019 (2017)

Tamborra et al., Ap.J. 839, 132 (2017)
Dasgupta, Mirizzi, and Sen, JCAP 1702, 019 (2017)
Abbar, Duan, Sumiyoshi, Takiwaki, and Volpe, arXiv:1812.06883v1

flavor conversion near the neutrinospheres

} Have demonstrated that conditions for fast
may in fact exist.

For recent steps in the direction of developing a QKE capability for CCSN simulation and a glimpse at the
computational requirements see Richers, McLaughlin, Kneller, and Vlasenko: arXiv:1903.00022v1.




Outlook

* There has been significant progress
to date and progress is accelerating.
Numerous 3D multi-physics simulations
are now being performed.

* The results obtained by the leading
groups thus far indicate that neutrino
driven explosions are possible. This
was an open question for some time.
In this sense, there is more agreement
than disagreement among the groups.

* Some of the predicted outcomes have
been shown to be consistent with
observations.

Full consistency across groups for the same
“problem set” is still “under development.”

It will take the next decade or more for 3D
modeling to mature.

It will be difficult to carry out a sufficient number
of 3D models spanning progenitor mass, metallicity,
rotation, and other characteristics, for sufficiently
long periods of time to determine all explosion
outcomes quantitatively.

It will be impossible for some time to perform
sensitivity studies in 3D that take into account

the nonlinear interplay of neutrino opacities.

If neutrino quantum kinetics plays a role in the
explosion mechanism, it will be some time before
we have 3D full-physics models to assess precisely
the role it plays.
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