Supernovae and Neutrinos: The Crossroads John Beacom, The Ohio State University

The Ohio State University's Center for Cosmology and AstroParticle Physics

Gateway: Astrophysics

Neutron stars Black holes GW sources Cosmic rays Chemical elements Galaxy feedback

Supernovae

Origin of mass Mixing, CP violation Collective effects Dark matter New forces New particles

Gateway: Particle Physics

John Beacom, The Ohio State University

Supernova Neutrinos at the Crossroads, Trento, Italy, May

Neutrinos

Origin of mass Mixing, CP violation Collective effects Dark matter New forces New particles Neutron stars Black holes GW sources Cosmic rays Chemical elements Galaxy feedback

John Beacom, The Ohio State University

Supernovae

Supernova Neutrinos at the Crossroads, Trento, Italy, May

Neutrinos

Crossroads

Х

Why a Crossroads?

To understand supernovae

only neutrinos can reveal these extreme conditions

To understand neutrinos

only these extreme conditions can reveal particle properties

John Beacom, The Ohio State University

Crossroads: Past Versus Future

Are we ready?

For Milky Way burst detection? To precisely detect the DSNB? To detect extragalactic minibursts?

To advance multimessenger astrophysics? To probe physics beyond the standard model? To make neutrino astronomy real?

What should we do differently?

SN 1987A: Our Rosetta Stone

What Does This Leave Unknown?

Total energy emitted in neutrinos? Partition between flavors? Emission in other particles? Spectrum of neutrinos? Neutrino mixing effects?

Supernova explosion mechanism? Nucleosynthesis yields? Neutron star or black hole? Electromagnetic counterpart? Gravitational wave counterpart? .

and much more!

Distance Scales and Detection Strategies

Scientific Opportunities: MW Burst

Question 1: The Source

What are the mechanisms of core collapse?

Idealized; simple

Realistic; complex

Oak Ridge group (2015)

Question 2: The Messengers

How do neutrinos mix in core collapse?

Idealized; simple

Realistic; complex

Dighe and Smirnov (1999); Raffelt slide

Capozzi, Dasgupta, Mirizzi, Sen, Sigl (2019)

The Flavor Problem: Experiment

Need all flavors to measure the total emitted energy Need all flavors to test effects of neutrino mixing

 $u_{\mu},
u_{ au}, ar{
u}_{\mu}, ar{
u}_{ au}$ Inadequate (~ 10² events in KL+)

 ν_e Inadequate (~ 10² events in Super-K)

How will we ensure complete flavor coverage?

Multi-kton-Scale Neutrino DetectorsSuper-KJUNODUNE

32 kton water Japan *running* 20 kton oil China *building*

40 kton liquid argon United States preparing

Together, excellent potential for MeV neutrino astronomy

Focus on Measuring Nue

DUNE uncertain due to cross section, detector response Need better understanding of neutrino+nucleus!

The Timeline Problem

present and near future	beyond that	
large detectors	maybe not	time
used to measure	anymore	
neutrino mixing		

Who will build detectors for supernova neutrinos?

What is Needed?

Interactions: Understand neutrino-nucleus cross sections This should include differential cross sections, particle emission, etc.

Detectors: Understand detection response, especially DUNE

Coordination: Ensure full coverage, especially flavors

Simulations: Robust predictions to at least 10 seconds

Theory: Solution of flavor mixing problem Costs and benefits of "flavor censorship"

Question 3: The Consequences

What are the dynamics of the supernova?

Idealized; simple

Core collapse leads to an outgoing shock of total energy $\sim 10^{51}$ erg

Light signal has total energy $\sim 10^{49}$ erg

Realistic; complex

Question 4: The Multimessengers

How do these signals reveal the dynamics?

Idealized; simple

Astronomers detect the optical light

Physicists detect the neutrinos

Nobody detects anything else

Realistic; complex

Nakamura et al. (2016)

The Waiting Problem

Will we be ready to detect a supernova neutrino burst?

John Beacom, The Ohio State University

Supernova Neutrinos at the Crossroads, Trento, Italy, May 2019 20

How Will We See the Supernova?

Connection to astronomy crucial, but optical data are lacking Enter OSU's "ASAS-SN" (All-Sky Automated Survey for SN)

Discovering and monitoring optical transients to 18th mag.

What is Needed?

Detectors: Ensure readiness with practiced alarms

Coordination: Test procedure with practiced alarms, alerts

Pointing: Decide if triangulation works or not This needs a new paper to check Beacom and Vogel (1999) versus Brdar, Lindner, Xu (2018)

Theory: Clear predictions for possible signals

Observers: New facilities for full Milky Way coverage Build on Adams, Kochanek, Beacom, Vagins, Stanek (2013), Nakamura et al. (2016)

Scientific Opportunities: DSNB

Question 1: The Template

What are the properties of core collapse on average?

Question 2: The Multitude

What is the cosmic rate of core collapses?

What is Needed?

Full deployment of Gd in Super-K Full plans for Gd in Hyper-K See Vagins talk

New ways to reduce backgrounds further Spallation backgrounds: Li and Beacom, 2014+ Atmospheric Backgrounds: Zhou and Beacom, 2019+

Advance, update astrophysical constraints ASAS-SN nearby supernova rate forthcoming Other new data on SFR, direct BH detection, etc.

John Beacom, The Ohio State University

Scientific Opportunities: Nearby Galaxies

Question 1: The Variations

What are the properties of core collapse in extremes?

Question 2: The Verifications

What are the varieties and rates of transients?

Neutrino bright, optically bright: Core-collapse supernova

Neutrino bright, optically dim: Core-collapse to black hole

Neutrino dim, optically bright: Type la supernova Supernova impostor

Neutrino dim, optically dim: All the time!

What is Needed?

Detector of mass > 5 Megaton

Kistler et al. (2011)

Boser et al. (2014)

vertex

6

×

X

 \bigotimes

time

time

hit kept in

hit kept in phase space cut

= hit removed in

phase space cut

RT cleaning hit removed in RT cleaning

Best hope is a *dedicated* modification of IceCube

Concluding Perspectives

Take-Away Messages

Profound physics questions depend on MeV neutrinos Extreme conditions, neutrino properties, surprises

Need better detectors, signal ID, and backgrounds With theoretical help, can leverage other investments

Next discovery may be the DSNB in Super-K with Gd Construction is already underway

> Rich prospects, rich context Interpretation will be complicated

Origin of mass Mixing, CP violation Collective effects Dark matter New forces New particles Neutron stars Black holes GW sources Cosmic rays Chemical elements Galaxy feedback

Supernu Vey Are we ready?

Х

Crossroads

John Beacom, The Ohio State University

Supernova Neutrinos at the Crossroads, Trento, Italy, May

Neutrinos

How to Advance our Goals?

We're going to need a bigger boat

John Beacom, The Ohio State University

The Time for Neutrino Astronomy is Now

Neutrino Astronomy

MeV—GeV
$$\nu$$

SK, HK and more

Targets: Solar, SN, more Surprises

TeV—PeV
$$\nu$$

EeV—ZeV
$$\nu$$

Efforts: IceCube and more Efforts: ANITA and more

Targets: GRBs, AGN, more Surprises Targets: GZK process Surprises

Neutrino astronomy must be broad

Precision Physics, BSM reach Context: Precision Cosmology, BSM reach Context: Transient Astronomy, Multi-messenger

Neutrinos are multi-frontier science

Summoning the Multi-Messenger

Careful what we wish for!

John Beacom, The Ohio State University