# Dissipative phase transition and thermal radiation in a BEC

Dries Sels & Eugene Demler Harvard University June 23, ECT\* Trento



arXiv:1809.10516

### The setup



- Effective 1D system of (weakly) interacting bosons  $H = \int dx \left[ \frac{\hbar^2}{2m} \partial_x \psi^{\dagger}(x) \partial_x \psi(x) + \frac{g}{2} \psi^{\dagger}(x) \psi^{\dagger}(x) \psi(x) \psi(x) \right]$ 

- Loss of atoms in one point along the tube

 $\dot{\rho} = -\frac{i}{\hbar} \left[ H, \rho \right] + \mathcal{D}(\rho) \quad \text{with} \quad \mathcal{D}(\rho) = \int \mathrm{d}x \gamma(x) \left( 2\psi(x)\rho\psi^{\dagger}(x) - \left\{ \psi^{\dagger}(x)\psi(x), \rho \right\} \right)$ 

- Use Wigner-Weyl representation + truncate

$$i\hbar\partial_t\psi = \left(-\frac{\hbar^2}{2m}\partial_x^2\psi + g|\psi|^2 - i\hbar\gamma\delta(x)\right)\psi + \eta(t)\delta(x)$$
  
loss quantum noise

### Condensate dynamics



Homogeneous NESS is formed

 $\psi = \sqrt{n}e^{-i(v|x|-\mu t)}$ 

## Horizon formation



## Critical state

### Rescaled density

#### **Rescaled** phase



System remains in transient state forever

$$n = \frac{4}{9} \left(\frac{x}{2t} + 1\right)^2$$

$$\gamma_c = \frac{2}{3}$$

$$\phi = \frac{t}{3} \left(\frac{x}{t} - 1\right)^2 - t$$

### Fluctuations





Set up scattering problem:

$$i\partial_t \begin{pmatrix} \chi\\ \chi^* \end{pmatrix} = \begin{pmatrix} H_0 & (\psi_0)^2\\ -(\psi_0^*)^2 & -H_0^{\dagger} \end{pmatrix} \begin{pmatrix} \chi\\ \chi^* \end{pmatrix} + \delta(x) \begin{pmatrix} \eta(t)\\ \eta^*(t) \end{pmatrix}$$
  
with  $H_0 = -\frac{1}{2}\partial_x^2 + 2|\psi_0|^2 - \mu - i\gamma\delta(x)$ 

Evanescent negative norm modesInjection of quantum noise

# Weak loss fluctuations

### Single particle

### Two particle





Spontaneous phonon emission

$$k_b T = \frac{v}{v+c}\mu$$

#### Coherent scattering of drain

$$r = -\frac{v}{\sqrt{c^2 - v^2}} \qquad t = \frac{c}{\sqrt{c^2 - v^2}}$$

# Black hole fluctuations

Single particle

### Two particle





Spontaneous emission + scattering in localized mode

Hawking process with negative norm localized mode

# Take home

- Dissipative phase transition into Planck size acoustic black hole state
- Vacuum noise from dissipation yields thermal radiation of phonons in both phases
- UV violation of Lorentz invariance is manifested in localized modes
- g<sup>(2)</sup> reveals correlations between emitted and localized Hawking partners

# Black hole laser

