

Neutron Stars & Gravitational Waves

Kostas Kokkotas¹ & Christian Krüger^{1,2}

1-Theoretical Astrophysics, University of Tübingen 2-Department of Physics, University of New Hampshire

The Many Faces of Neutron Stars

Typical masses ~1.2-2 M_☉ Typical Radius ~9-14 km

Neutron Stars: Mass vs Radius

Static Models

Constraints on Neutron Star Radius GW observations

Main methods in EM spectrum

- Thermonuclear X-ray bursts (photospheric radius expansion)
- Burst oscillations (rotationally modulated waveform)
- > Fits of thermal spectra to cooling neutron stars
- khZ QPOs in accretion disks around neutron stars
- Pericenter precession in relativistic binaries (double pulsar J0737)

Main methods in GW spectrum

- Tidal effects on waveform during inspiral phase of NS-NS mergers
- Tidal disruption in BH-NS mergers
- Oscillations in (early & late) post-merger phase
- Oscillation in the post-collapse phase

Neutron Stars & "universal relations"

Need for relations between the " <mark>observables</mark> " and the " <mark>fundamentals</mark> " of NS physics		
Average Density	$\overline{ ho} \sim M / R^3$	
Compactness	$z \sim M/R$	$\eta = \sqrt{M^3 / I}$
Moment of Inertia	$I \sim MR^2$	$I \sim J / \Omega$
Quadrupole Moment	$Q \sim R^5 \Omega^2$	
Tidal Love Numbers	$\lambda \sim I^2 Q$	

I-Love-Q relations

EOS independent relations were derived by **Yagi & Yunes(2013)** for non-magnetized stars in the slow-rotation and small tidal deformation approximations.

... the relations proved to be valid (*with appropriate normalizations*) even for *fast rotating* and *magnetized* stars

Latest developments: Yagi-Yunes arXiv:1601.02171 & arXiv:1608.06187

Oscillations & Instabilities

The most promising strategy for constraining the physics of neutron stars involves observing their "ringing" (oscillation modes)

- f-mode : scales with average density
- p-modes: probes the sound speed through out the star
- g-modes : sensitive to thermal/composition gradients
- w-modes: oscillations of spacetime itself.
- s-modes: Shear waves in the crust
- Alfvèn modes: due to magnetic field
- i-modes: inertial modes associated with rotation (r-mode)

Typically SMALL AMPLITUDE oscillations -> weak emission of GWs UNLESS they become unstable due to rotation (r-mode & f-mode)

l = 3, m = 3

$$l = 2, m = 2$$

Oscillations & Instabilities

p-modes: main restoring force is the pressure (f-mode) (>1.5 kHz)

Inertial modes: (r-modes) main restoring force is the Coriolis force

w-modes: pure space-time modes (only in GR) (>5kHz)

Torsional modes (t-modes) *(>20 Hz)* shear deformations. Restoring force, the weak Coulomb force of the crystal ions.

 $\sigma \approx \frac{1}{R} \left(\frac{GM}{Rc^2} \right)$

 $\sigma \approx \Omega$

 $\sigma \approx \frac{v_s}{R} \sim 16 \ \ell \ \text{Hz}$

... and many more

shear, g-, Alfven, interface, ... modes

Gravitational Wave Asteroseismology

Gravitational Wave Asteroseismology : Andersson-Kokkotas 96+

Binary Neutron Star Mergers the standard scenario

The GW signal can be divided into three distinct phases

Binary Neutron Star Mergers the post-Merger scenario

- I. Direct collapse to BH if $M_{TOT} > M_{max}(\Omega)$
- II. Formation of an "unstable" NS if $M_{max}(\Omega) > M_{TOT} > M_{max}$
- III. Formation of a "stable" NS if $M_{TOT} < M_{max}(\Omega)$
- NS-NS mergers will produce:
 - ~40% prompt BHS
 - ~30% supramassive NS -> BH
 - ~30% Stable NS
- Initial spin near breakup limit ~1ms

Differential rotation/turbulence -->

strongly twisted internal field $E_B \ge 10^{50} erg$

Kiuchi, Sekiguchi, Kyutoku, Shibata 2012

Gao, Zhang, Lü 2016

Binary Neutron Star Mergers Tidal Interaction

Tidal interactions affect the last part of the inspiral, modifying the orbital motion and the GW emission.

Kokkotas-Schaefer MNRAS 1995

Ho-Lai 1999

...

Binary Neutron Star Mergers Tidal Interaction

Tidal interactions affect the last part of the inspiral, modifying the orbital motion and the GW emission.

Binary Neutron Star Mergers Tidal Love numbers

The last part of the inspiral signal carries the imprint of the quadrupole tidal deformability

$$\lambda = -\frac{Q_{ij}}{E_{ij}} = \frac{2}{3}k_2R^5$$

Read et al. (2013), Hotozaka et al (2013)...

$$\Lambda \equiv \frac{2}{3}k_2 \left(\frac{R}{M}\right)^5$$

The leading tidal contribution to the phase evolution is a combination of the two tidal parameters. It is of 5PN order

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$$

Measurements of M_{NS} and Λ would be helpful to constrain the NS EOS

With aLIGO $\frac{\Delta R}{R} \sim 10\%$ at 100Mpc

Binary Neutron Star Mergers Tidal Interaction

Probability density for the tidal deformability parameters of the *high spin* and *low spin* components inferred from the detected signals using the post-Newtonian model.

Equation of State: Constraints from GW170817 (Bauswein etal)

Figure 2. Mass-radius relations of different EoSs with very conservative (red area) and "realistic" (cyan area) constraints of this work for $R_{1.6}$ and R_{max} . Horizontal lines display the limit by Antoniadis & et al. (2013). The dashed line shows the causality limit.

Equation of State: Constraints from X-ray binaries / bursts

Figure 10

The astrophysically inferred (left) EoS and (right) mass-radius relation corresponding to the most likely triplets of pressures that agree with all of the neutron star radius and low energy nucleon-nucleon scattering data and allow for a $M > 1.97 M_{\odot}$ neutron star mass. The light blue bands show the range of pressures and the mass-radius relations that correspond to the region of the (P_1, P_2, P_3) parameter space in which the likelihood is within e^{-1} of its highest value. Around 1.5 M_{\odot} , this inferred EoS predicts radii between 9.9 - 11.2 km. Özel & Freire (2016)

Chandra & Kip in the 60-70s

Together with

- Campollataro, A.
- Ipser, Jim
- Price, Richard
- Hartle, James B.
- Schutz, Bernard F.
- Detweiler S.
- Lindblom L.

Together with:

- Lebovitz Norman R.
- Tooper, Robert F.
- Nutku, Yavuz
- Esposito, Paul F.
- Friedman, J. L.

Study of nearly everything:

- Radial pulsations
- Non-radial Pulsations
- Emission of Gravitational Waves
- Slow-Rotation Approximation

Studies of Stability of Relativistic Stars/ellipsoids

- Post-Newtonian equilibria and Dynamics (up to 2.5 PN order)
- The first hints of the CFS secular instability

The work till now -I

The "CFS" Instability : Chandrasekhar – Friedman – Schutz 70+
Ergoregion Instability: Friedman, Schutz, Comins 70+
Systematic studies of stability properties of rotating stars and of CFS instability Friedman – Ipser – Parker
– Lindblom 80+

Spacetime (w-) modes: Kokkotas-Schutz 1986-90+ Gravitational Wave Asteroseismology : Andersson-KK 90+ R-mode instability : Andersson; Friedman – Morsink 90+

ALL THESE STUDIES WERE DONE FOR:

- Non-Rotating
- Slowly Rotating Stars

Equilibrium configurations of fast rotating GR stars Hachisu-Komatsu-Eriguchi (1988) more advanced codes later (Cook, Shapiro, Stergioulas, Friedman) 90+

The work till now -II

Gravitational Wave Asteroseismology : Andersson-KK 96+

Andersson-KK 1996,-98, -01

Finding order in chaos

Reliable codes for the background

Perturbation equations not manageable

Asteroseismology: f-modes Cowling Approximation

Empirical relation connecting the parameters of the *rotating neutron stars* to the observed frequencies.

GW Asteroseismology: f-modes

$$M\sigma_i^{unst} = \left[(0.56 - 0.94\ell) + (0.08 - 0.19\ell)M\Omega + 1.2(\ell + 1)\eta \right]$$

Fast Rotating Neutron Star PerturbationsBasic EquationsKrüger-KK 2019

Equilibrium Configuration

$$ds^{2} = -e^{2\nu}dt^{2} + e^{2\psi}r^{2}\sin^{2}\theta(d\phi - \omega dt)^{2} + e^{2\mu}(dr^{2} + r^{2}d\theta^{2}).$$
$$(u^{t}, u^{r}, u^{\theta}, u^{\phi}) = (u^{t}, 0, 0, \Omega u^{t}).$$
$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} + pg^{\mu\nu},$$

Perturbed Einstein Equations & Conservation of Energy-Momentum

Fast Rotating Neutron Star PerturbationsBasic EquationsKrüger-KK 2019

Due to axi-symmetry we can separate the azimuthal part of the perturbation

25.07.2019

Fast Rotating Neutron Star PerturbationsNumerical ResultsKrüger-KK 2019

A characteristic example SPACETIME PERTURBATIONS **W-MODES** 0.02 (-)_{p1} (+)_{p1} **FLUID PERTURBATIONS** 0.00 (+)_f ⁽⁺⁾w₁ (-)_{W1} (-)_{W2} hөө PSD EOS SLy $=1.4e15 \text{ gr/cm}^{3}$ $ho_{ m cent}$ M $= 2.175 M_{\odot}$ -0.02 R_e = 14.7 km $^{(-)}f = -674 \text{ Hz}$ i-modes R_e/R_p = 0.6⁽⁺⁾f= 3534 Hz = 1.4 kHz Ω -0.04∟ 0 2 4 6 8 10 0 10 15 5 20 time [msec] Frequency [kHz] Unstable f-mode $\Omega/\Omega_{Kepler} \sim 0.92$

Neutron Star Models Fixed baryon mass & central density sequences

Fitting Formulae ω/ω₀ vs T/W Krüger-KK 2019

25.07.2019

25.07.2019

Fitting Formulae Μω vs η

Non-rotating case: Tsui-Leung 2005 Lattimer-Schutz 2005 : I vs M/R

For the Cowling case: Doneva+Kokkotas 2015

Binary Neutron Star Mergers <u>Early: Post-merger Oscillations & GWs</u>

Oscillations & Instabilities In the GW Era

• Collapse

- Torres-Forné, A. et. al (2018, 19) exitation of f, g-modes.
- Westernacher-Schneider J. R, et.al (2019)

Pre-Merger Phase (Love number)

- Wen, De-Hua et.al (2019)
- Rosofsky, Shawn G. etal (2019)
- Andersson, Pnigouras (2019)
- Chakravarti, Andersson (2019)
- Schmidt, Hinderer (2019)

• Early post-Merger phase

- Bauswein, Stergioulas, Janka 2015-2019
- Late post-Merger phase
 - Doneva, KK, Pnigouras (2015)

Binary Neutron Star Mergers LATE post-merger phase

Formation of a "stable" NS

Slowdown due to three competing mechanisms:

I. Typical dipole B-field spindown

$$t_{sd} \approx 7 \left(\frac{B_d}{10^{15}G}\right)^{-2} \left(\frac{P}{1ms}\right)^2 hr$$

II. Deformed Magnetar Model

Dall'Osso-Giacomazzo-Perna-Stella 2015

III. Rotational Instabilities

Doneva-Kokkotas-Pnigouras 2015

$$l = 2, m = 2$$

Post-Merger NS: F-mode instability vs Magnetic field

Competition between the B-field and the secular instability

GW frequencies: WW2a: 920-1000 Hz APR: 370-810 Hz WFF2b: 600-780 Hz

Doneva-Kokkotas-Pnigouras 2015

Inverse Problem in the Spectra of Compact Object

Kostas Kokkotas & Sebastian Völkel

Theoretical Astrophysics, University of Tübingen

90s: An interesting observation by Chandrasekhar-Ferrari

1991: A reconsideration of the axial modes

An interesting observation by Chandrasekhar-Ferrari

1991: A reconsideration of the axial modes

$$\frac{d^{2}}{dr^{*2}}\Psi(r) + \left(\omega_{n}^{2} - V(r)\right)\Psi(r) = 0,$$

$$V(r) = \left(1 - \frac{2M}{r}\right)\left[\frac{l(l+1)}{r^{2}} - \frac{6M}{r^{3}}\right] \text{Black-Holes}$$

$$V(r) = \frac{e^{2\nu}}{r^{3}}\left[l(l+1)r + \frac{r^{3}(\rho - p(r))}{r^{3}} - 6M(r)\right]$$
Axial oscillations of stars
$$V(r) = \frac{e^{2\nu}}{r^{3}}\left[\frac{l(l+1)r}{r} + \frac{r^{3}(\rho - p(r))}{r} - 6M(r)\right]$$
Axial oscillations of stars
$$V(r) = \frac{e^{2\nu}}{r^{3}}\left[\frac{l(l+1)r}{r} + \frac{r^{3}(\rho - p(r))}{r} - 6M(r)\right]$$
Axial oscillations of stars
$$V(r) = \frac{e^{2\nu}}{r^{3}}\left[\frac{l(l+1)r}{r} + \frac{r^{3}(\rho - p(r))}{r} - 6M(r)\right]$$
Axial oscillations of stars
$$V(r) = \frac{e^{2\nu}}{r^{3}}\left[\frac{l(l+1)r}{r} + \frac{r^{3}(\rho - p(r))}{r} - 6M(r)\right]$$
Axial oscillations of stars
$$V(r) = \frac{e^{2\nu}}{r^{3}}\left[\frac{l(l+1)r}{r} + \frac{r^{3}(\rho - p(r))}{r} - 6M(r)\right]$$
Axial oscillations of stars
$$V(r) = \frac{e^{2\nu}}{r^{3}}\left[\frac{l(l+1)r}{r} + \frac{r^{3}(\rho - p(r))}{r} - 6M(r)\right]$$
Axial oscillations of stars
$$V(r) = \frac{e^{2\nu}}{r^{3}}\left[\frac{l(l+1)r}{r} + \frac{r^{3}(\rho - p(r))}{r} - 6M(r)\right]$$
Axial oscillations of stars
$$V(r) = \frac{e^{2\nu}}{r^{3}}\left[\frac{l(l+1)r}{r} + \frac{r^{3}(\rho - p(r))}{r^{3}} - 6M(r)\right]$$
Axial oscillations of stars
$$V(r) = \frac{e^{2\nu}}{r^{3}}\left[\frac{l(l+1)r}{r} + \frac{r^{3}(\rho - p(r))}{r^{3}} - 6M(r)\right]$$
Axial oscillations of stars
$$\frac{v^{2}}{r^{3}} + \frac{v^{2}}{r^{3}} + \frac{v^{2}}{r^{$$

Kokkotas 1995

An interesting "toy" problem

KK: Les Houches 1995

W-mode or Ergoregion Instability

- Perturbations of the spacetime, similar to the QNMs of BHs (Kokkotas+Schutz 1986-1992)
- Frequencies (typical) 5-12kHz
- ➤ Damping times (typical) ≥0.1ms
- For very compact stars they become exciting! (Chandrasekhar+Ferrari 1991)
- The creation of an ergosphere signals the onset of an instability (Friedman 1978, Comins+Schutz 1978)
- The dragging is so strong that any timelike backwards moving trajectory gets dragged forward
- Growth time of the order of tenths of secs
- > It sets in quite early for very compact NS $(R/M^2 2.26, \Omega^2 0.19\Omega_{Kepler})$

Kokkotas-Ruoff-Andersson 2004

Different types of <u>axial</u> perturbation potentials

$$\frac{\mathrm{d}^2}{\mathrm{d}r^{*2}}\Psi(r) + \left(\omega_n^2 - V(r)\right)\Psi(r) = 0,$$

$$V(r) = \frac{e^{2\nu}}{r^3} \left[l(l+1)r + r^3(\rho - p(r)) - 6M(r) \right]$$

 \boldsymbol{x}

 \boldsymbol{x}

Different types of <u>axial</u> spectra

$$\frac{\mathrm{d}^2}{\mathrm{d}r^{*2}}\Psi(r) + \left(\omega_n^2 - V(r)\right)\Psi(r) = 0,$$

$$V(r) = \frac{e^{2\nu}}{r^3} \left[l(l+1)r + r^3(\rho - p(r)) - 6M(r) \right]$$

Axial spectra & Echoes

$$\frac{\mathrm{d}^2}{\mathrm{d}r^{*2}}\Psi(r) + \left(\omega_n^2 - V(r)\right)\Psi(r) = 0,$$

$$V(r) = \frac{e^{2\nu}}{r^3} \left[l(l+1)r + r^3(\rho - p(r)) - 6M(r) \right]$$

Figure 2: Left: Axial perturbations ultra compact stars, Ferrari & Kokkotas (2000). Right: Phenomenological template for parameter estimation: Maselli, Völkel & Kokkotas (2018).

Different types of calculation methods

$$\frac{\mathrm{d}^2}{\mathrm{d}r^{*2}}\Psi(r) + \left(\omega_n^2 - V(r)\right)\Psi(r) = 0, \qquad V(r) = \frac{e^{2\nu}}{r^3}\left[l(l+1)r + \frac{r^3(\rho - p(r))}{r^3} - 6M(r)\right]$$

- Methods for **direct** QNM calculations: Continued fraction, Green's functions, Time-evolution,...
- But, **reconstructing** potential/properties of the source from the spectrum is different (uniqueness?)
- WKB method and Bohr-Sommerfeld rules⁴ are powerful here (approximate, but easier to invert)

$$\int_{x_0}^{x_1} \sqrt{E_n - V(x)} dx = \pi \left(n + \frac{1}{2} \right) - \frac{i}{4} \exp \left(2i \int_{x_1}^{x_2} \sqrt{E_n - V(x)} dx \right)$$
(2)

⁴here
$$E_n \equiv \omega_n^2$$

Inversion Method for Different types of potentials

Figure 3: Völkel & Kokkotas (2017)

$$\mathcal{L}_1(E) = x_1 - x_0 = 2\frac{\partial}{\partial E} \int_{E_{\min}}^E \frac{n(E') + 1/2}{\sqrt{E - E'}} dE'$$
$$\mathcal{L}_2(E) = x_2 - x_1 = -\frac{1}{\pi} \int_E^{E_{\max}} \frac{(\mathbf{d}T(E')/\mathbf{d}E')}{T(E')\sqrt{E' - E}} dE'$$

25.07.2019

Inversion Method for stellar potentials

$$\frac{\mathrm{d}^2}{\mathrm{d}r^{*2}}\Psi(r) + \left(\omega_n^2 - V(r)\right)\Psi(r) = 0, \qquad \qquad V(r) = \frac{e^{2\nu}}{r^3}\left[l(l+1)r + r^3(\rho - p(r)) - 6M(r)\right]$$

Example for ultra compact constant density star $C \approx 0.44$

Reconstructed axial perturbation potential, constant density star, l = 3, taken from Völkel and Kokkotas (2017,2).

Inversion Method for DS wormhole

Reconstructed scalar perturbation potential, Damour-Solodukhin wormhole, I = 3, taken from Völkel and Kokkotas (2018,2).

Inversion Method for normal NS

Völkel, Konoplya, Kokkotas PRD 2019

Assuming Hawking radiation can be described by

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sum_{I} N_{I} \left| \mathcal{A}_{I} \right|^{2} \frac{\omega}{\exp\left(\omega/T_{\mathrm{H}}\right) - 1} \frac{\mathrm{d}\omega}{2\pi},$$

 T_H Hawking temperature, A_I greybody factors, N_I multiplicities ⁴

$$\begin{array}{rcl} \Psi &=& e^{-i\omega r_*} + R e^{i\omega r_*}, & r_* \to +\infty, \\ \Psi &=& T e^{-i\omega r_*}, & r_* \to -\infty, \end{array}$$

reflection R and transmission T

$$\left| \mathcal{A}_{\ell} \right|^2 = 1 - \left| \mathcal{R}_{\ell} \right|^2 = \left| \mathcal{T}_{\ell} \right|^2.$$

⁴Details in Kanti, Kodama, Konoplya, Pappas, and Zhdenko (2009)

Völkel, Konoplya, Kokkotas PRD 2019

Analytic approximation given by Gamow formula

$$T(E) = \exp\left(2i\int_{x_0}^{x_1}\sqrt{E-V(x)}\mathrm{d}x\right),\tag{5}$$

E energy, V(x) potential barrier, and x_0 and x_1 classical turning points⁵.

Can be inverted to find width of potential barrier⁶

$$\mathcal{L}(E) \equiv x_1 - x_0 = \frac{1}{\pi} \int_{E}^{E_{\text{max}}} \frac{(dT(E')/dE')}{T(E')\sqrt{E'-E}} dE',$$
 (6)

But, how do we get the individual greybody factors?

⁵Defined by E = V(x)⁶Cole & Good PRA (1978)

Völkel, Konoplya, Kokkotas PRD 2019

Reconstruction of the **Schwarzschild transmissions** $T_i(E)$ from Hawking spectrum fitting Reconstruction of the **Schwarzschild potential barrier** widths $L_{I}(E)$ from given transmissions $T_{I}(E)$.

Völkel, Konoplya, Kokkotas PRD 2019

For black hole QNMs, Schutz-Will formula (1985) based on parabolic potential approximation, easily gives fundamental modes, but fails for overtones.

Hawking radiation involves summation over several greybody factors

Parabolic approximation yields

$$T_I(E) = \left(1 + \exp\left(-\frac{\pi \left(E - V_{\max,I}\right)}{\sqrt{a_I}}\right)\right)^{-1},\tag{7}$$

 $T_I(E)$ has non-trivial contribution only around $V_{\max,I}$.

For smaller or larger energies, $T_I(E)$ is either 0 or 1, respectively

$$V_{\max,I} \equiv V_{BH}(r^*_{\max,I}), \qquad a_I \equiv -\frac{V''_{\max,I}}{2}.$$
 (8)

25.07.2019

Völkel, Konoplya, Kokkotas PRD 2019

$$\mathcal{I}(E) \equiv \sum_{l} N_{l} |\mathcal{A}_{l}|^{2} \equiv \sum_{l} I_{l}(E).$$

Comparison of the exact result (black solid) and parabolic approximation (red dashed) for the normalized energy emission spectrum of the Schwarzschild black hole.

THANK YOU

