Hawking radiation

Università di Milano-Bicocca

Università dell'Insubria Como-Italy

Manuele Tettamanti

Sergio Cacciatori Alberto Parola

A. Parola *et al.*, Europhys. Lett. **119** 50002 (2017) - M.Tettamanti *et al.*, Phys. Rev. D **99** 045014 (2019)

Exactly solvable models

Exactly solvable models plays an important role in physics eg. Ising 2D, Heisenberg 1D, Hubbard 1D

Exactly solvable models

Exactly solvable models plays an important role in physics eg. Ising 2D, Heisenberg 1D, Hubbard 1D

One dimensional model of Hard Core Bosons (Tonks-Girardeau gas) flowing against an obstacle

Exactly solvable models

Exactly solvable models plays an important role in physics eg. Ising 2D, Heisenberg 1D, Hubbard 1D

One dimensional model of Hard Core Bosons (Tonks-Girardeau gas) flowing against an obstacle

- 1. Follow the formation dynamics of the sonic horizon
- 2. Determine the asymptotic stationary quantum state
- 3. Verify the presence of thermal phonons at the Hawking-Unruh temperature
- 4. Study correlations between phonons in the upstream/downstream region

Generic behavior of 1D interacting Bose gases

Take away message

The solution is obtained by use of many body methods only

No reference to analogue gravity/effective theory arguments
The result is then an confirmation of the analogue Hawking mechanism

Take away message

The solution is obtained by use of many body methods only

No reference to analogue gravity/effective theory arguments
The result is then an confirmation of the analogue Hawking mechanism

The thermal nature of the phonon emission is not always achieved

A strict requirement is the decoupling between phonon dynamics (the quantum field) and the matter flow (the analogue metric)

The model

A one dimensional gas of hard core bosons has the same energy spectrum and density correlations of a one dimensional Fermi gas (Girardeau 1960)

1. The ground state of a free Fermi gas is obtained filling the energy levels with

 $|k| < k_F$

The model

A one dimensional gas of hard core bosons has the same energy spectrum and density correlations of a one dimensional Fermi gas (Girardeau 1960)

1. The ground state of a free Fermi gas is obtained filling the energy levels with

 $|k| < k_F$

The model

A one dimensional gas of hard core bosons has the same energy spectrum and density correlations of a one dimensional Fermi gas (Girardeau 1960)

1. The ground state of a free Fermi gas is obtained filling the energy levels with $|k| < k_F$ 2. Setting the Fermi gas in motion shifts the Fermi points by $-k_0$ This state is clearly stationary

Quantum Quench: Waterfall potential

Perform a *quantum quench* by switching on an external potential eg. a sharp step (waterfall) potential

$$V(x) = \begin{cases} 0 & \text{for} \quad x < 0\\ \frac{\hbar^2 Q^2}{2m} & \text{for} \quad x > 0 \end{cases}$$

This strong perturbation gives rise to (shock) waves propagating away

Quantum Quench: Waterfall potential

Perform a *quantum quench* by switching on an external potential eg. a sharp step (waterfall) potential

Stationary state

After a transient, a stationary state is reached (starting from the region near the step). The stationary (pure) state is built out of the scattering states of the step potential in the interval $-k_F - k_0 < k < k_F - k_0$

Stationary state

After a transient, a stationary state is reached (starting from the region near the step). The stationary (pure) state is built out of the scattering states of the step potential in the interval $-k_F - k_0 < k < k_F - k_0$

Absence of Thermalization

Let's take for simplicity $k_0 = k_F$ (only left moving fermions) Far from the waterfall in the upstream region $x \to \infty$ each single particle wave-function has the form

$$\psi_k(x) = \frac{1}{\sqrt{2\pi}} \left[e^{ikx} + R_k e^{-ikx} \right] \quad \text{for} \quad k < 0$$

The local density is then given by

$$\rho(x) = \int_{-k_F - k_0}^0 dk \ |\psi_k(x)|^2 = \int_{-k_F - k_0}^0 \frac{dk}{2\pi} + \int_0^{k_F + k_0} \frac{dk}{2\pi} \ |R_k|^2$$

which corresponds to a *fictitious* momentum distribution

$$f(k) = \begin{cases} 1 & \text{for } -k_F - k_0 < k < 0\\ \left[\sqrt{\frac{k^2}{Q^2} + 1} - \frac{k}{Q}\right]^4 & \text{for } 0 < k < k_F + k_0 \end{cases}$$

Quasi-particles are excited but the tail is not thermal

Density correlations

$$h(x, x') = \frac{\langle n(x)n(x') \rangle}{\langle n(x) \rangle \langle n(x') \rangle} - 1$$

Correlations between the subsonic and supersonic regions are present but they appear as a *band* rather than a sharp line as expected

What is going wrong?

What is going wrong?

The number of elementary excitations in a Bose liquid tends to zero as $T \rightarrow 0$, and at low temperatures, when their density is sufficiently small, the quasi-particles may be regarded as not interacting with one another, i.e. as forming an ideal Bose gas.

What is going wrong?

Quasi-particles behave as a free quantum field only at low density/low energy. For the waterfall potential the density of excited quasi-particles is not small

The $T \rightarrow 0$ quasiformi

The gravitational analogy breaks down

We can fix this problem by taking a sufficiently smooth potential

We can fix this problem by taking a sufficiently smooth potential

 $\alpha \to 0$

1. We recover a *fictitious* momentum distribution but the tail is still not thermal.

- 1. We recover a *fictitious* momentum distribution but the tail is still not thermal.
- 2. Furthermore, under a certain threshold the sonic horizon disappears

Smooth Barrier

We can change the form of the potential and study the smooth limit

0 ax

2

Smooth Barrier

We can change the form of the potential and study the smooth limit

Thermalization !

In the "Minkowski" (subsonic) region at $x \to \infty$ the Fermi gas is described by the effective distribution

$$f(k) = \begin{cases} 1 & \text{for } -k_F - k_0 < k < 0\\ |R_k|^2 & \text{for } 0 < k < k_F + k_0 \end{cases} \quad \text{with} \quad |R_k|^2 = \frac{1}{e^{\frac{\alpha}{2\pi}(k-Q)} + 1}$$

Thermal equilibrium distribution (only if a horizon is present!)

Thermalization !

In the "Minkowski" (subsonic) region at $x \to \infty$ the Fermi gas is described by the effective distribution

$$f(k) = \begin{cases} 1 & \text{for } -k_F - k_0 < k < 0\\ |R_k|^2 & \text{for } 0 < k < k_F + k_0 \end{cases} \quad \text{with} \quad |R_k|^2 = \frac{1}{e^{\frac{\alpha}{2\pi}(k-Q)} + 1}$$

Thermal equilibrium distribution (only if a horizon is present!)

Correlations

$$h(x, x') = \frac{\langle n(x)n(x') \rangle}{\langle n(x) \rangle \langle n(x') \rangle} - 1$$
$$\propto \left[\frac{\alpha}{\cosh \frac{\alpha}{2}(x+x')}\right]^2$$

For $k_0 = k_F$ (only left moving particles)

$$\frac{|x'|}{x} = \frac{c_L + |v_L|}{c_R - |v_R|} = 1$$

Experiments

Experiments

Rubiudium BEC with 1. Cylindrical transverse trap $a_{\perp} = 0.25 \,\mu {\rm m}_{\odot}$ 2. "Flat" longitudinal trap length $L \gtrsim 10 \mu \text{m}$ 3. Initial density $\rho_0 = 3.8 \, 10^3 \, \mu \mathrm{m}^{-1}$ 4. Initial velocity $v_0 \sim 18 \text{ mm/s}$ 5. Barrier-like obstacle $V(x) = V_0 e^{-(\alpha x)^2} V_0 \sim 3.6 \,\mu \text{K}$

Experiments

Rubiudium BEC with 1. Cylindrical transverse trap $a_{\perp} = 0.25 \,\mu {\rm m}_{\odot}$ 2. "Flat" longitudinal trap length $L \gtrsim 10 \mu \text{m}$ 3. Initial density $\rho_0 = 3.8 \, 10^3 \, \mu \mathrm{m}^{-1}$ 4. Initial velocity $v_0 \sim 18 \text{ mm/s}$ 5. Barrier-like obstacle $V(x) = V_0 e^{-(\alpha x)^2} V_0 \sim 3.6 \,\mu \text{K}$ t = 0.2 ms $T_H \sim 100 \text{ nK}.$

- 1. Exactly solvable model
 - Tonks-Girardeau is not a singular point! Reflects generic behaviour of BEC with repulsive interaction
 - We have the N-body wavefunction: quantum fluctuations are already IN!

- 1. Exactly solvable model
 - Tonks-Girardeau is not a singular point! Reflects generic behaviour of BEC with repulsive interaction
 - We have the N-body wavefunction: quantum fluctuations are already IN!
- 2. Gravitational collapse dynamics mimicked
 - Study of stationary states
 - Confirmation of the (analogue) Hawking emission

- 1. Exactly solvable model
 - Tonks-Girardeau is not a singular point! Reflects generic behaviour of BEC with repulsive interaction
 - We have the N-body wavefunction: quantum fluctuations are already IN!
- 2. Gravitational collapse dynamics mimicked
 - Study of stationary states
 - Confirmation of the (analogue) Hawking emission
- 3. Hawking emission with thermal spectrum requires additional conditions
 - Smooth obstacles are needed
 - Thermality (and correlation pattern) recovered for a barrier potential (not a waterfall)

- 1. Exactly solvable model
 - Tonks-Girardeau is not a singular point! Reflects generic behaviour of BEC with repulsive interaction
 - We have the N-body wavefunction: quantum fluctuations are already IN!
- 2. Gravitational collapse dynamics mimicked
 - Study of stationary states
 - Confirmation of the (analogue) Hawking emission
- 3. Hawking emission with thermal spectrum requires additional conditions
 - Smooth obstacles are needed
 - Thermality (and correlation pattern) recovered for a barrier potential (not a waterfall)
- 4. Analysis validated with a semiclassical approach + experimental insight

Outlooks

Apply the same model to other phenomena

WH dynamics, BH laser effect, Dynamical Casimir effect ...

WE'RE OPEN TO SUGGESTIONS!