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I. Theoretical framework
This work stems from the idea that a graphene monolayer 
arranged in a Beltrami pseudosphere shape can be used to 
realize a realistic analogue of a quantum field in a curved 

spacetime [1,2,3].

[1] A. Iorio, G. Lambiase, The Hawking-Unruh phenomenon on graphene, Phys. Let. B  716  (2), September 2012 

This property derives from the unique electronic 
properties of graphene at the BZ Dirac points.

[3] S. Taioli et al., Lobachevsky crystallography made real through carbon pseudospheres, J. Phys.: Condens. Matter 28, 2016 

In particular it is shown [1,2] that curved graphene can be 
used to test the physics of the Hawking-Unruh effect. 

Analytical results [1,2] predict a thermal spectrum revealed 
through a characteristic 

electronic local density of states (LDOS)

[2] A. Iorio, G. Lambiase, Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking 
effect, and all that, Phys. Rev. D 90, 025006, July 2014 

[2]
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I. Aim of the work
The goal of this study is to perform a computational “experiment” to reproduce in a 

discretized space the analytical results obtained in a continuum manifold [1,2].
 This is achieved in two steps:

i) By building a geometrical model of sp 2 carbon atoms arranged as 
in graphene placed on a Beltrami pseudosphere of radius R≥102 nm - 
accomplished (within the approximations done in [1,2], we need to reach a 

ratio R/l >> 1 where l=0.142 nm)

 ii) By computing the LDOS of this structure to study how the 
intrinsic curvature modifies the electronic behaviour of graphene – 
accomplished (but still difficulties in the interpretation of results)

[1] A. Iorio, G. Lambiase, The Hawking-Unruh phenomenon on graphene, Phys. Let. B  716  (2), September 2012 

[2] A. Iorio, G. Lambiase, Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking 
effect, and all that, Phys. Rev. D 90, 025006, July 2014 
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II. Building carbon pseudospheres

Gauss-Bonnet theorem: 

K = 1/R2 K = -1/R2

u є [-π/2,π/2]; 
v є [0,2π]

u є [-∞,0]; 
v є [0,2π]

x(u,v)=R*sin(u)*cos(v) x(u,v)=c*eu/R *cos(v)

x(u,v)=R*sin(u)*sin(v) y(u,v)=c*eu/R *sin(v)

z(u)=R*cos(u) z(u)=R*(1-c*e2u/R/R2)1/2 

-atanh(1-c*e2u/R/R2)1/2

2π χ=K tot+∫
∂ Σ

K gdl
 : Euler characteristicΧ

Ktot: total Gaussian curvature of the   surfaceΣ

 Carbon atoms
on a sphere:

fullerene

Carbon atoms 
on a pseudosphere:

???

To model the structure we build a 3-
connected graphgraph (N,L,F) of N vertices, 

L edges and F faces. 
We store all the information on 
bonds and faces of the graph. 

Best energy configuration of vertices, 
interacting through a Keating potential: 

Wooten, Winer, Weaire (WWW) method [4]. 

[4] F. Wooten, K. Winer, and D. Weaire, Computer Generation of Structural Models of Amorphous Si and Ge, Phys. Rev. Lett. 
 54  (1392),  April 1985 
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The minimum is found by switching bonds 
between atoms with a Monte Carlo 

algorithm, accepting the trial switches with a 
Metropolis probability, and iterating until 

the total energy does not decrease any more.

[5]

[6] E. Bitzek et al., Structural relaxation made simple, Phys. Rev. Lett. 97 (170201), October 2006

[5] S. V. Alfthan, Computational studies of silicon interfaces and amorphous silica, PhD Thesis, Helsinki University of Technology

At every step, minimizations - and structural relaxations - were carried out using FIRE (Fast Inertial 
Relaxation Engine for optimization on all scales) [6] algorithm.

An example of how our method works
i) ii) iii) iv) v)

Snapshots taken during the optimization procedure (every ~ 2000 trial switches)

Atoms not belonging to hexagonal faces only are highlighted in red

II. Building carbon pseudospheres
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We perform several simulations starting from different initial number of atoms (vertices).

Problem: the method works well (reasonable time) for systems with number of atoms 
≤ 3000 (R of the order of 3 nm). How to increase dimensions?

Idea: minimize a ‘small’ structure and increase dimensions with a dualization 
algorithm, exploiting the 3-coordination of the planar graph.

LocalLocal
dualizationdualization

GlobalGlobal
dualizationdualization

building an hexagon 
around every vertex

After stretching: 
- Pseudosphere radius

Rnew=√3 Rold

- Number of atoms

Nnew≃3N old

II. Building carbon pseudospheres

Theoretical reasons to increase the size: the model works for |E|<ћv
F
/R 

Numerical reasons to increase the size: high resolution of DOS around Fermi level 
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Radial distribution 
function

R
p
~1.58 nm

N=1,202
R

p
~2.74 nm

N=3,600

R
p
~4.75 nm

N=10,782
R

p
~73.96 nm

N=2,615,976

...

II. Building carbon pseudospheres



25/07/2019 ECT*, Trento   -   T. Morresi 9

III. Electronic structure simulations  

[1] A. Iorio, G. Lambiase, The Hawking-Unruh phenomenon on graphene, Phys. Let. B  716  (2), September 2012 

This is the behavior for the Local Density of States (LDOS) 
predicted in [1,2] (without boundary conditions [2]). How 

to compute it numerically in such big systems?

Numerically:  kernel polynomial method  [7], which is based on Chebyshev expansion algorithms 
and it is ideal for a tight binding approximation (easiest approach).

[7] A. Weiße et al., The kernel polynomial method, Rev. Mod. Phys. 78, January 2006 

[2] A. Iorio, G. Lambiase, Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking 
effect, and all that, Phys. Rev. D 90, 025006, July 2014 

Ĥ=∑
ξ ,i

ϵξ
i ai ,ξ
 a i ,ξ+ ∑

ξ , γ ,⟨ij ⟩

t ξ , γ
ij a i ,ξ

 a j , γ

Picture from ref. [1]
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III. Electronic structure simulations  
A sketch of the tight binding Hamiltonian matrix 

within the nearest neighbor approximation

(
IV 1 MV 1 , V 2 MV 1 ,V 3 MV 1 , V 4 0 0 0 0 0 0
MV 2 , V 1 IV 2 0 0 0 0 0 0 MV 2 ,V 9 M V 2 , V 10

MV 3 , V 1 0 IV 3 0 0 0 MV 3 ,V 7 M V 3 ,V 8 0 0

M
V 4 , V 1 0 0 I

V 4 M
V 4 ,V 5 M

V 4 ,V 6 0 0 0 0
0 0 0 MV 5 ,V 4 IV 5 0 0 0 0 0

0 0 0 MV 6 ,V 4 0 IV 6 0 0 0 0
0 0 MV 7 ,V 3 0 0 0 IV 7 0 0 0
0 0 M

V 8 ,V 3 0 0 0 0 I
V 8 0 0

0 MV 9 , V 2 0 0 0 0 0 0 IV 9 0
0 MV 10 ,V 2 0 0 0 0 0 0 0 IV 10

)
V5

V6

V4

V1V10 V7

V2 V3

V9
V8

where M i , j
=(
H s ,s
i , j H s , p1

i , j H s , p2

i , j H s , p 3

i , j

H p1 , s
i , j H p1 , p1

i , j H p1 , p2

i , j H p1 , p3

i , j

H p2 , s
i , j

H p2 , p 1

i , j
H p2 , p2

i , j
H p3 , p2

i , j

H p3 , s
i , j H p3 , p 1

i , j H p3 , p2

i , j H p3 , p3

i , j ) and I i=(
E s
i 0 0 0

0 Ep1

i 0 0

0 0 Ep2

i 0

0 0 0 Ep 3

i )
While on flat graphene only one pz orbital 

per atom is sufficient to investigate low 
energy excitations, here all the 4 valence 
orbitals of carbon atoms are necessary to 

take into account the different overlap 
between atoms sitting on a curved surface.

For the matrix elements 
we fit  DFT calculations, 

obtaining accurate 
values for TB 

parameters
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I Chebyshev polynomial
f KPM (x)=

1

π√1− x2
[ g0μ0+2∑

n=1

∞

gnμnT n(x )]
T n(x)=cos [n⋅acos (x )]

μn=∫
−1

1

f ( x)T n(x)dxwhere

T 0( x)=1;T−1(x )=T 1(x )=x
T m+1(x )=2x T m(x )−T m−1(x )

I Chebyshev polynomial
recurrence relations

ρ(E)=
1
D
∑
k=0

D−1

δ(E−Ek )

In our case, DOS:

In general, a function f(x): [-1,1] → R R 
  can be expanded as

Tests of the electronic 
DOS code:

 two well known 
systems such as 
planar graphene

and 
(n,n) carbon nanotubes

III. Electronic structure simulations  
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R
p
 ~ 73.97 nm

N=2,615,976ii

ii

iiii
iiiiii

iviv

vv

vv

iviv

iiiiiiiiii

(i) (ii)

(iii)
(iv)

(v)

Theoretical predictions (Iorio et al.)

Numerical results (this work)

R
p
 ~ 73.97 nm

N=2,615,976

We perform 
different 

kind
of analysis

of the
 Density
Of States

Projection over 
circles at 
different
heights

Projection over 
 different

atomic sites 

Here we 
take some 

atomic 
sites

and we 
compare 

the results 
with the 

theoretical
predictions 

III. Electronic structure simulations  
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IV. Conclusions  

● Tight binding approach used in conjunction with Kernel Polynomial Method can give 
useful insights at low computational cost for the electronic properties.  

● The methods used can be exploited to model graphene-like structure on different and 
more complex surfaces. The algorithm adopted to scale up with dimensions could be 
useful also for other multi-scale modeling problems in, at least, sp 2 structures; 

Can our model confirm the predictions of [1,2]?

We found an asymmetric behavior of the LDOS. 
This finding comes from the presence of heptagonal and pentagonal defects in the structure 
that must be present due to the negative Gaussian curvature (Gauss-Bonnet theorem).

However it is difficult to compare 
our results with the ones of [1,2].
   
      v measures the asymmetry 
            of the LDOS 

Our model includes elastic effects and the broken translational symmetry of graphene 
lattice (A and B sublattices) plays an important role. 

 theoretical  numerical

T. Morresi et al., arXiv:1907.08960 (available from 24 July 2019)
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Angular dependence LDOS due to a Stone-wales defect



  

Radial dependence LDOS due to a Stone-wales defect
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