Scattering of co-current surface waves on an analogue black hole

Based on: arXiv:1806.05539 (2018/19)

Simulating gravitation and cosmology in condensed matter and optical systems ECT*, Trento 23 July 2019

Analogue black holes

Unruh (1981): on large scales, waves in moving media propagate as if in curved spacetime

fixed background

 $\phi = \phi_0 + \delta \phi$

 $\phi_0 \qquad g_{\mu\nu}(\phi_0) dx^{\mu} dx^{\nu} = c^2 dt^2 - (d\bar{x} - \bar{v} dt)^2$ • linear perturbations $\delta \phi$ $g^{\mu\nu}(\phi_0) \nabla_{\mu} \nabla_{\nu}(\delta \phi) = 0$

Picture courtesy of Piotr Pieranski

The surface wave analogy

(Unruh and Schützhold, 2002)

Total wave speed = $v \pm c$

 $\delta h \leftrightarrow$ canonical momentum in the (2+1)-d spacetime metric $g_{\mu\nu}dx^{\mu}dx^{\nu} = c^{2}\left[c^{2}dt^{2} - (dx - \nu dt)^{2} - dy^{2}\right]$ *"conformal factor"*, multiplies simpler metric generates effective potential *Veff* **allows mixing between co- and counter-propagating waves**

Wave scattering (subcritical flows)

Wave scattering (transcritical flows)

Wave scattering (transcritical flows)

Wave scattering (transcritical flows)

dispersive wave x

Key surface wave experiments in AG

All previous experiments (in 1 dimension) have been in purely subcritical flows

Rousseaux et al., *New J. Phys.* **10**, 053015 (2008) Weinfurtner et al., *Phys. Rev. Lett.* **106**, 021302 (2011) Euvé et al., *Phys. Rev. Lett.* **117**, 121301 (2016)

→ No horizon in the effective metric

➤ No thermality in the sense of Hawking/Unruh

(Nontrivial scattering allowed thanks to **dispersion**)

(Michel and Parentani, *Phys. Rev. D* **90**, 044033 (2014)) (Robertson, Michel and Parentani, *Phys. Rev. D* **93** 124060 (2016))

The current Poitiers setup

Scattering of incident probe

Example data

 $A_{\rm wm} = 0.25 \,\rm mm$ $\omega = 3.46 \,\rm Hz$

Dispersion relation

Dispersion relation

Full theoretical dispersion relation:

$$\omega - vk = \pm \sqrt{gk \tanh(hk)}$$

- Observations lie close to theoretical dispersion relations
- Close to the linear (non-dispersive) regime, so metric description valid
- Counter-propagating branch has flipped sign, indicating transcriticality and (indirectly) the existence of negative-energy waves

Fitting the waveforms

FT in time at wave maker frequency, yielding real and imaginary parts of $\delta h_{\omega}(x)$

Fit to sum of two plane waves, separately in sub- and supercritical regions

Dispersion relation

Latest results

Found by FT'ing in time then fitting to sum of two plane waves

Different colours represent different wave maker amplitudes: 0.25 mm, 0.5 mm, 1 mm

Allows fitting of *v* and *c*

- very close to values inferred from depth in subcritical region
- small difference in supercritical region (likely due to presence of vorticity)

Scattering coefficients

(i.e., ratios of wave amplitudes to amplitude of incident wave)

Latest results

Found by FT'ing in time then fitting to sum of two plane waves

Different colours represent different wave maker amplitudes: 0.25 mm, 0.5 mm, 1 mm

- Reasonable agreement with theory, especially at high frequencies
- Considerable scatter and errors at low freq., especially in supercritical region

Scattering coefficients

(normalized)

Latest results

Found by FT'ing in time then fitting to sum of two plane waves

Different colours represent different wave maker amplitudes: 0.25 mm, 0.5 mm, 1 mm

- Reasonable agreement with theory, especially at high frequencies
- Considerable scatter and errors at low freq., especially in supercritical region
- Unable to verify unitarity:

$$\left|\mathscr{R}\right|^{2} - \left|\mathscr{N}\right|^{2} + \left|\mathscr{T}\right|^{2} = 1$$

Summary

Transcritical black-hole flow realized (a first in water wave Analogue Gravity), probed by scattering of incident co-current waves off effective potential

Have access to dispersion relation and scattering coefficients

Results reasonably close to predictions of **effective metric** description

But what next...?

Future prospects

- Stimulation of Hawking radiation
 - exciting **incident dispersive modes** is technologically challenging
- "Unstimulated" scenario (i.e. without wave maker)
 - incident modes provided by **noise** already present
- Stimulated Hawking radiation in a time-dependent black hole formation (à la Hawking '74-75)

Future prospects

- Stimulation of Hawking radiation
 - exciting **incident dispersive modes** is technologically challenging
- "Unstimulated" scenario (i.e. without wave maker)
 - incident modes provided by **noise** already present
- Stimulated Hawking radiation in a time-dependent black hole formation (à la Hawking '74-75)

Thank you for your attention!