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Analogue Gravity

Unruh (1981):
* Analogy between wave propagation in curved spacetime and in inhomogeneous (moving) media
e Can establish analogue horizon (BH or WH) in media, predicted to emit analogue Hawking radiation

e Testable in the lab?

Necessary ingredients: Anomalous scattering
* inhomogeneous background that scatters probe wayes A

* conserved norm, positive or negative (conjugates, ¢ and aT in QM) = Spontaneous emission
e dispersion relation allowing mixing of opposite-norm modes of entangled pairs

(vacuum)




Analogue Gravity

Unruh (1981):
* Analogy between wave propagation in curved spacetime and in inhomogeneous (moving) media
e Can establish analogue horizon (BH or WH) in media, predicted to emit analogue Hawking radiation

e Testable in the lab?

Necessary ingredients: Anomalous scattering
* inhomogeneous background that scatters probe wayes A

* conserved norm, positive or negative (conjugates, ¢ and aT in QM) = Spontaneous emission
e dispersion relation allowing mixing of opposite-norm modes of entangled pairs

(vacuum)

Solitons in waveguides:
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Philbin et al., Science 319, 1367 (2008)



“Hard” v. “Soft” processes

Previous works: “hard” photon production

e sign of norm: conjugation of full field (inc. carrier)
e frequencies well separated

e (anomalous) scattering coefficients suppressed

2 _
|B|” ~ 107" (Robertson, arXiv:1106.1805 (2011))
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sign of norm: conjugation of envelope
frequency difference relatively small
(anomalous) scattering coefficients larger
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“Hard” v. “Soft” processes

Previous works: “hard” photon production Current work: “soft” photon production
e sign of norm: conjugation of full field (inc. carrier) e sign of norm: conjugation of envelope
e frequencies well separated e frequency difference relatively small
e (anomalous) scattering coefficients suppressed e (anomalous) scattering coezfﬁcients larger
2 - —4
|B|” ~ 107" (Robertson, arXiv:1106.1805 (2011)) 18" ~10

e further enhanced by phase matching
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Wave equation

=

Envelope: E(t,2)= A(t,2)exp(iB,z — io,t) Nonlinear wave equation .
Retarded time: T:t—ﬁlz »[—zBZA:B(zBT)A+’y|A| A}
Dispersion: B(A(D) = :B(wo + Aw) — By - ﬁ1AQ (neglecting losses, retardation, etc.)
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Envelope: E(t,2)= A(t,Z)eXp(iﬁOZ _ iwot) Nonlinear wave equation
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Dispersion: B(A(D) = :B(wo + Aw) - :Bo — ﬁ1AQ (neglecting losses, retardation, etc.)
Linearized Strong background (e.g. soliton) + weak probe (or vacuum fluctuations)

wave equation if e'%Pos A, (T) is a solution, write A(z,T)= e %Poz (AO(’L') + 5A(Z,’L'))

— —id (8A)=(B(id,)- 8B, )5A+2y|A| SA+yA; SA

dispersion XPM FWM
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dispersion XPM FWM
“Doublet” * . ] . Doublets as for phonons in BEC:
wave equation (514, 0A ) — W= (W+ , W_) is a solution of: Leonhardt et al., PRA 67, 033602 (2003)
) . 2 2 FWM term couples two
) B(laf)_éﬁo +2y|AO| }/AO components of doublet;
—id,w= S\ 3 s 51 | without it, they remain
_Y(Ao) _B(_l r)"‘ By _27/le| completely uncoupled




Norm and dispersion relation(s)

Neglecting FWM term

2 2
Conserved (in z) norm: J(‘W+ (Z’T)‘ _‘W— (Z’T)‘ ) dz eliminates possibility of

Upper (lower) component of doublet carries positive (negative) norm anomalous scattering

Two components of doublet decouple when A, — 0 DeriAoT D, = B(Aw)- 8B,
—> Obey same dispersion relations as 0A and 0A": W, =¢ D = —B(—Aa))+6[)’0
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Norm and dispersion relation(s)
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§ total transmission = total reflection \
[see, e.g., Philbin et al., Science 319, 1367 (2008);

’

Express 24, 114 (2016)]
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Anomalous scatt

ering coefficients

1. § total transmission => total reflection \
osl recH|2 [see, e.g., Philbin et al., Science 319, 1367 (2008);
' Ciret et al., Opt. Express 24, 114 (2016)]
0.6+ » small anomalous coefficient much larger than in
04l “hard” scattering
' » behaves as in other media, e.g., water in flume
021 K [Robertson et al., PRD 93, 124060 (2016)] /
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Enhanced anomalous scattering coefficients
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Enhanced anomalous scattering coefficients

§ total transmission => total reflection (as before)\
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» strong anomalous mixing in vicinity of PM

= boosted by modulation instability
= extraction of blue/black pairs from soliton
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Enhanced anomalous scattering coefficients

1. § total transmission => total reflection (as before)\
08 ,|Sblack—>|2 » strong anomalous mixing in vicinity of PM
' = boosted by modulation instability
0.6 = extraction of blue/black pairs from soliton
04 = spontaneous emission in vacuum state
ozl Spontaneous emission spectrum
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Spontaneous emission
#N

YR (PHz™' mm™) § total transmission = total reflection (as before)\
» strong anomalous mixing in vicinity of PM
7, =10 fs " boosted by modulation instability
3 blue branch = extraction of blue/black pairs from soliton
7l narrow in freq. = spontaneous emission in vacuum state
» integral over Aw gives total emission rate ~ 1'63
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Conclusions and outlook

ﬁey conclusions: \

* “Soft” pair production also exists as an analogue of Hawking radiation, and is
orders of magnitude more efficient than “hard” pair production

* Phase matching occurs through crossing of positive- and negative-norm
dispersion relations, leading to a greatly enhanced anomalous scattering /

k spontaneous emission /

4 Current/Future work:

* Describe “soft” and “hard” processes with single wave equation

\_ * Measurement Y,




