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Rotating acoustic BH: the vortex geometry

● Acoustic horizon:

● Ergosurface:

Ref: Visser (1998). Acoustic black holes. Classical and Quantum Gravity, 15(6), 1767



Superradiance

● Amplified reflection by transmission of negative energy

Ref: Brito, Cardoso, Pani (2015). Superradiance. Lect. Notes Phys, 906(1), 1501-06570.
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A toy model to understand superradiance

● Can we really do this?

● We can play with synthetic gauge fields:

For us it is a trick to get rotational flow.
For an introduction Dalibard et al. RMP 2011



A toy model to understand superradiance

● Translational invariance along x:
● Klein-Gordon equation becomes:

Ref: Fulling (1989). Aspects of QFT in curved spacetime, Cambridge University Press



A toy model to understand superradiance

● Translational invariance along x:
● Klein-Gordon equation becomes:

● KG for a charged field in an electrostatic potential:

Ref: Fulling (1989). Aspects of QFT in curved spacetime, Cambridge University Press



Bosonic Klein paradox

● Massless 
case:
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case:

● In our 2D configuration with 



2D GPE simulations
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The Schiff-Snyder-Weinberg effect

● It is the physics of an electrostatic potential box for a scalar field
[Schiff, Snyder, Weinberg (1940). Physical Review, 57(4), 315.]  

● Diagonalizing the Bogoliubov problem (                         )
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Dispersive SSW effect

● Vary     for fixed A

Dispersion bounds the instability range from above!

Ref: Giacomelli, Carusotto. In preparation.



Back to vortices: instabilities



Back to vortices: instabilities

Black hole bomb



Back to vortices: instabilities

In analogues:
Oliveira et al. PRD 2014

Black hole bomb Ergoregion instability



Back to vortices: instabilities

What about quantized vortices?

● In a BEC quantized vortex of charge  ergoregion atℓ

● A trap gives a reflecting boundary condition

● Hydrodynamic approximation does not hold!

In analogues:
Oliveira et al. PRD 2014

Black hole bomb Ergoregion instability



Vortices in trapped condensates

● Multiply charged vortices are energetically unstable
● A trapped singly charged vortex is energetically unstable but 

dynamically stable
● Trapped multiply charged vortices can be dynamically unstable

[Pu et al. (1999) PRA, 59(2), 1533]

Study the spectrum as

[Rokhsar (1997) PRL, 79(12), 2164]
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Vortices in trapped condensates

● Multiply charged vortices are energetically unstable
● A trapped singly charged vortex is energetically unstable but 

dynamically stable
● Trapped multiply charged vortices can be dynamically unstable

[Pu et al. (1999) PRA, 59(2), 1533]

Study the spectrum as

[Rokhsar (1997) PRL, 79(12), 2164]

Is the instability of multiply 
quantized vortices

ergoregion-like
or black-hole-bomb-like?

Are multiply quantized 
vortices unstable in an 
unbound condensate?



System-size perturbation theory
● Ground state of the radial GPE with Neumann BC at some r=R

● Diagonalize the Bogoliubov problem varying R at fixed m

As an emitter
in a cavity



● We always get stationary waves, so also incoming phonons

● Time dependent study of the Bogoliubov problem with absorbing 
boundary conditions:

The charge 2 vortex core is inherently dynamically unstable!

Is the core really inherently stable?

Ref: Giacomelli, Carusotto (2019) arXiv:1905.02447



Example:



● Lower m-s are always the most unstable (as for hydrodynamic)

Instability not directly related to vortex splitting

● In general for a charge  vortex the unstable channels areℓ

● For the hydrodynamic vortex no upper bound on m

Dispersion introduces an upper bound on the angular momentum!

Higher charge vortices

Multiply quantized vortices display 
dispersive ergoregion instability

Ref: Giacomelli, Carusotto (2019) arXiv:1905.02447

[Oliveira et al. PRD 2014]

[Oliveira et al. PRD 2014]



Conclusions

● Superradiance and Klein scattering are essentially the same kind of 
phenomenon

● Introducing reflecting boundary conditions can make an energetic 
instability dynamical

● Multiply quantized vortices are intrinsically dynamically unstable 
via a dispersive ergoregion instability

● The role of dispersion is to suppress the instability at high 
(angular) momenta 



Extra slides
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Analogue Gravity in BECs
● Linearization of the GPE     

(Bogoliubov-de Gennes eq.)
● Klein-Gordon equation in curved 

spacetime (stationary metric)

In the hydrodynamic limit the BdG reduces to a massless KG in curved spacetime!

(Feshbach-Villars repr)



Superradiant scattering in the vortex geometry

● Stationary and axisymmetric solution of the KG equation:

● Change coordinate:
– For

– For

● Matching the two (conservation of the Wronskian):

Ref: Basak, Majumdar (2003). Classical and Quantum Gravity, 20(18), 3907



Instability of the hydrodynamic vortex

● What if there is no drain?

– Spacetimes with an ergoregion but no horizon are unstable
[Friedman (1978). Ergosphere instability. Comm. Math. Phys., 63(3), 243-255]  

– Hydrodynamic vortex with reflecting BC at a radius 
[Oliveira et al. (2014). Ergoregion instability: The hydrodynamic vortex. PRD, 89(12), 124008]



Eigenmodes of the Bogoliubov problem
● A more familiar shape of the problem:

●  If    , conserved (nonpositive) inner product

● The energy of an eigenmode is:

– Negative norm modes with positive frequency have negative energy

– Positive and negative norm modes with the same eigenvalue can be 
created at zero energy cost 



Pseudo-degenerate modes and instability

● The problem is not hermitian complex eigenvalues

● For eigenvectors:
– Complex frequency modes have zero norm

● When two modes of opposite norm have the same frequency they 
become pseudo-degenerate

Re( )ω

Im( )ω λ λ



2D GPE simulations
● The amplification does not depend on the direction in which the 

barrier is crossed

● Trapped negative norm mode causing dynamical instability

● Dynamical instabilities emerge in the spectrum as zero-norm modes

/ξ /ξ /ξ
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Re( )ω
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The 2D Bogoliubov problem

● Particle-antiparticle symmetry:

● The different m-s are decoupled, all the modes at fixed m are 
independent and the the spectrum at -m is just specular
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