

Simulating gravitation and cosmology in condensed matter and optical systems – ECT 23/07/2019

Black-hole superradiance:

probing the dark universe with compact objects and GWs

https://web.uniroma1.it/gmunu

http://www.DarkGRA.org

								Manager Th
	PART	ENZE	DEPARTIE					State State
	TREND		DESTIMAZIONE	ORARIO RITARDO	INFORMAZIONI	PAGINA 1 D	15	1
	.italo	AV 9970	MILAND CLE	06:15 180'	MRIENTE CN	ODT IN TECT	ORH	Caller Mar
	Italo.	AV 8902	VENEZIA S.L.	06:15 180'	10 (9 32) -	IENETIO MEC	2	23542
	FRECCIARDSSA	AU 9504	TORINO P N.	06:20 180'	SANTA MARI	NOUELLOC		
	RECCIAROSSA	S AV 9602	MILAND C LE	06:30 180'	ROSSA 100		7	State .
	ltalo	AV 9906	MILANO C LE	06:45 180'	IA AU MEDI	IPADANA (9	11	Care Care
	FRECOMICENTO	NAV 8504	BOLZANO	06:45 180'	GATE B-P	IMA CLASSE	8	The second second
	FRECCIARGENTO	AV 8408	VENEZIA S.L.	06:50 180'	JA (10.07)	- UENEZIA ME		
	HECCIARDSSA	S AV 9606	MILANO C	07:00 180'	JRTINA (7.)5) - Milano	4	
	FRECCIAROSSA	NAV 9306	TORINO F.N.	07:05 180'	IN TESTA-	ERMA A: ROM		
	litalo	AV 9972	MILANO C LE	07:10 180'	ESTA-GATI	R-FERMA A: I	1	
-	.italo	AV 8932	BOLZANO	07:15 180	ORTA NUO	JA (10.24) - F	12	
\mathbf{H}	FRECCIARIOSSA	AV 9508	MILANO C	07:20 80'	1A A: ROM	I TIBURTINA (5	11/1
	FRECCIAROSSA	AV 9668	MILANO C	07:30 60'	CIAROSSA	1000 - Execu	90	122
	B TRENITALIA	IC 534	ANCONA	07:40 60'	ABRIANO	(10.28) - JES		HH
	.italo	AV 9901	NAPOLI C	07:40 60'	ITE A-AME	IENTE SMART		Station (Station
	litalo	AU 9910	TORINO F.N.	07:45 140	' 'A MARIA	IOVELLA (9.17)		
	RECOMPOSE	AU 9406	VENEZIA S.L.	07:50 60'	17) - UEN	ZIA MESTRE (
	RECCIAROSSA	ALI 9685		07:55 100	r 48)			
		10 5000						
							13 an	TRACTOR
							and in the local division of	-
-	1.1981							
								100
			And the second second			0		
			C. Contraction of the					N.
4						1100		N
		1000			ost-it			1
						-	X	A
							1 and	
				2	C			
		1		5		•	K	
		TOKIO	DRE IN LIEVE CA	10 -0.30%	MORTE	BORREL S		
		, TOKIO P	IT NE IN LIEVE C					Serve 1
								- 11

Average train delay yesterday in Italy: **3-4** hr

Outline

- ▶ Black-hole (BH) superradiance: a primer
- ▶ BH superradiant instability triggered by ultralight bosons & GW signatures
- Superradiance in stars and pulsar-timing constraints on dark photons
- Superradiance triggered by plasma: constraints on spinning primordial BHs

What's superradiance?

In physics, *superradiance* is a **radiation enhancement effect** in several contexts including quantum mechanics, astrophysics and relativity. [cit. Wikipedia]

BH superradiance

Zeldovich, Press, Teukolsky (1970s)

The foregoing pertains to a body made of a material that absorbs waves when at rest; the conditions for amplification and generation are obtained after transforming the equations to the moving system. A similar situation can apparently arise also when considering a rotating body in the state of gravitational relativistic collapse.

The metric near such a body is described by the well-known Kerr solution. The gravitational capture of the particles and the waves by the so-called trapping surface replaces absorption; the trapping surface ("the horizon of events") is located inside the surface $g_{00} = 0$. Finally, in a quantum analysis of the wave field one should expect spontaneous radiation of energy and momentum by the rotating body. The effect, however, is negligibly small, less than $\hbar\omega^4/c^3$ for power and $\hbar\omega^3/c^3$ for the decelerating moment of the force (for a rest mass m = 0, in addition, we have omitted the dimensionless function β).

ZhETF Pis. Red. 14, No. 4, 270 - 272 (20 August 1971)

- Superradiant scattering off a Kerr BH when $\omega/m < \Omega_H$
- Requires **dissipation** \rightarrow event horizon

Thorne, Price, Macdonald's "Membrane Paradigm" (1986)

Richartz+, Phys.Rev. D80 (2009) 124016

Brito, Cardoso, PP, "Superradiance" Springer (2015)

Amplification depends on the nature of the bosonic field

Superradiant scattering off a BH

 \blacktriangleright Larger amplification for GWs (S=2) and at high spin

- Nonlinear effects (slightly) decrease efficiency [East, Ramazanoğlu, Pretorius PRD 89 061503 (2014)]
- Small effect, e.g. luminosity modulation in binary pulsars [Rosa, PLB 2015 & PRD (2017)]

Superradiance in the lab

Torres+, Nature Physics 13, 833-836 (2017), see Silke Weinfurtner's talk

www.gravitylaboratory.com

P. Pani - Black-hole superradiance @ ECT Trento 2019

BH superradiant instability

Damour, Deruelle & Ruffini; Press-Teukolsky, Detweiler; Zouros & Eardley 1980s;..., Shlapentokh-Rothman, 2015

- Superradiant scattering + Yukawa effective potential
- Spinning BHs are unstable against massive bosons

$$\Box \phi - \frac{\mu^2 c^2}{\hbar^2} \phi = 0 \quad \Rightarrow \quad \phi \sim e^{t/\tau}$$

▶ BH energy/spin extraction \rightarrow condensate

$$\frac{G}{\hbar c}M\mu \sim \left(\frac{M}{10M_{\odot}}\right) \left(\frac{\mu c^2}{10^{-11}\,\mathrm{eV}}\right) \sim \mathcal{O}(1)$$

Coupling parameter

Ultralight fields in the dark universe?

- Compelling dark-matter candidates alternative to WIMPs
 - ▶ Fuzzy DM: mass ~ 10^{-22} eV → no problems at sub-kpc scale

Hui, Ostriker, Tremaine, Witten, PRD95 043541 (2017)

- Plethora of sub-eV DM particles:
 - ▶ QCD axion, stringy axion-like particles (ALPs), axiverse

Arvanitaki+, PRD81 123530 (2010)

- ▶ Dark photons & hidden sectors, massive gravitons ...
- Common properties:
 - ► Bosonic fields
 - Small mass (from sub-eV down to 10^{-33} eV)
 - ► Weakly coupled to SM (or <u>not coupled at all</u>!)

Dark sectors and ultralight particles

Essig+, 1311.0029, Hui+, PRD 2017, Irastorza & Redondo+ 2018

10/26

$$\mathcal{L} = \frac{R}{16\pi G} - \frac{1}{2} (\nabla_{\mu} \phi^{*}) (\nabla^{\mu} \phi) - \frac{\mu_{S}^{2}}{2} |\phi|^{2} - V(|\phi|) - \kappa_{\mathrm{axion}} \phi F_{\mu\nu}^{(a)*} F_{(a)}^{\mu\nu} - \frac{1}{4g_{a}^{2}} F_{\mu\nu}^{(a)} F_{(a)}^{\mu\nu} - \frac{1}{4g_{b}^{2}} F_{\mu\nu}^{(b)} F_{(b)}^{\mu\nu} + \frac{\chi_{ab}}{2g_{a}g_{b}} F_{\mu\nu}^{(a)} F^{(b)\mu\nu} + \frac{m_{ab}^{2}}{g_{a}g_{b}} A_{\mu}^{(a)} A^{(b)\mu}$$

Searches for ultralight DM with strong gravity

P. Pani - Black-hole superradiance @ ECT Trento 2019

BH superradiant instability spectrum

▶ Instability depends on spin of the BH & particle spin (S):

 $\omega_R \sim \mu - \frac{\mu(M\mu)^2}{2(1+\ell+n+S)^2} \qquad \omega_I \sim -\left(\omega_R - m\Omega_H\right)(M\mu)^{4\ell+4+2S}$

▶ Incomplete timeline of (relatively) recent developments on the spectrum:

- Scalar, numerical spectrum [Dolan PRD 2007]
- ► Vector, nonspinning case [Rosa & Dolan PRD 2012]
- ▶ Vector, quadratic in spin [Pani+ PRL 2012]
- Scalar/vector, time-domain, any spin [Witek+ PRD 2013]
- Tensor, linear in spin [Brito, Cardoso, Pani PRD 2013]
- ► EFT approach [Endlich & Penco, JHEP 2017]
- ► Vector, Newtonian approximation [Baryakhtar+ PRD 2017]
- ▶ Vector, frequency domain, PDEs, any spin [Cardoso+ JCAP 2018]
- ► Vector, separability, any spin [Frolov+ PRL 2018]
- ▶ Vector, numerical spectrum [Dolan PRD 2018]

Evolution of the instability

- \blacktriangleright Separation of scales \rightarrow adiabatic approx, linearized analysis
- GW emission \rightarrow quadrupole fails

- ▶ Can be also studied in terms of transition probabilities & occupation numbers
- ► Two generic predictions:
 - BHs should NOT spin fast in the presence of ultralight bosons
 - Periodic GW signal \rightarrow continuous sources for LIGO/Virgo/LISA

Arvanitaki+ 2014-2016

Evolution of the instability

Brito, Cardoso, PP, 2015 Class. Quantum Grav. 32 134001

13/26

P. Pani - Black-hole superradiance @ ECT Trento 2019

Bounds on light bosons

P. Pani - Black-hole superradiance @ ECT Trento 2019

Impact of multiple modes

Quasi-adiabatic evolution agrees well with numerical simulations [Okawa+ 2018]

GW signatures

Continuous GW source at a frequency given by the axion mass

Towards multiband GW constraints on ultralight fields

GW direct detection

Arvanitaki+ 2014-2016 Baryakhtar+ 2017 Brito+ 2017

Pipeline in LIGO/Virgo [D'Antonio 2018, Isi+ 2018]

BH mass-spin distribution

Arvanitaki+ 2014-2016, Baryakhtar+ 2017, Brito+ 2017, Cardoso+ 2018

Stronger constraints for dark photons and massive spin-2 fields

Follow-up searches

Arvanitaki+ 2014-2016, Baryakhtar+ 2017, Ghosh+ 2018

"Axion" counterpart for LIGO/Virgo

Stochastic background from axions

Brito+ PRL, PRD 2017

$$\Omega_{\rm GW}(f) = \frac{f}{\rho_{\rm crit}} \int_{\rho < 8} dz \frac{dt}{dz} \frac{\dot{n}(M, \chi, z)}{per convolution rate density} \frac{dE_s}{df_s}$$

$$\stackrel{\rm Tormation rate density}{per convolution} \stackrel{\rm Tormation}{per convolution} \stackrel{\rm Tormation}{$$

Probing superradiance in binaries

Baumann+ PRD 2019, Hannuksela+ Nature Astron. 2019

Resonant excitation of levels, depletion of the cloud

[Macedo+ ApJ 2013, Hannuksela+ Nat. Astron. 2019]

counter-rotating orbits

P. Pani - Black-hole superradiance @ ECT Trento 2019

Coupling to photons

Rosa+ PRL 2018, Ikeda+ PRL 2019, Boskovic+ PRD 2019

$$\mathcal{L} = \frac{R}{k} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \Phi \partial_{\nu} \Phi - \frac{\mu^2}{2} \Phi^2 - \frac{k_{\text{axion}}}{2} \Phi^* F^{\mu\nu} F_{\mu\nu}$$

- ▶ Axion stimulated decay to photon even in flat space
- Blasts of light from Kerr BHs if

$$k_{\rm axion} \gtrsim 2 \left(\frac{M}{M_{\rm S}}\right)^{1/2} \left(\mu M\right)^{-2}$$

 Millisecond radio burst from axions and primordial BHs [Rosa+ PRL 2018]

22/26

Superradiant instabilities in stars

Cardoso, Pani, Yu, PRD 2017

Electrical conductivity replaces the horizon

Superradiant instabilities in stars

Cardoso, Pani, Yu, PRD 2017

 $\tau_{\rm instab}(\sigma, M, R, \Omega, m_V) \sim 10^8 \,{\rm yr}$

 $\tau_{\rm spindown} \sim 10^{10} \, {\rm yr}$

Superradiant-instability time scale

direct constraint on dark-photon models

Primordial BH bombs

PP & Loeb, Phys.Rev. D88 (2013) 041301

► Also investigated in the context of Fast Radio Bursts Conlon & Herdeiro, PLB (2018)

Primordial BH bombs

PP & Loeb, Phys.Rev. D88 (2013) 041301

Bounds depend linearly on the PBH spin (should be small [Harada+ 2017, Mirbabayi+ 2019, De Luca+ 2019])

Conclusion & Open Issues

Smoking guns from BH superradiant instabilities

- \blacktriangleright Gaps in the BH Regge plane \rightarrow highly-spinning BHs disfavored
- ▶ Periodic GW sources \rightarrow detecting ultralight bosonic DM with LIGO/Virgo?
- ▶ Pulsar-timing constraints on superradiant instabilities in neutron stars
- Bounds on spinning PBHs

Cardoso-Pani, CERN Courier 2017

Open problems:

▶ Massive spin-2, plasma, nonlinear coupling, effects in binaries, ...

Backup slides

"Nothing is More Necessary than the Unnecessary" [cit.]

Gaps in the BH "Regge plane"

Generic prediction: "gaps" in the BH "Regge plane"

Arvanitaki+, Phys.Rev. D83 (2011) 044026

Evolution of BH-axion condensates

Brito, Cardoso, PP, 2015 Class. Quantum Grav. 32 134001

$$S = \int d^4x \sqrt{-g} \left(\frac{R}{16\pi} - \frac{1}{2} g^{\mu\nu} \Psi^*_{,\mu} \Psi_{,\nu} - \frac{\mu^2}{2} \Psi^* \Psi \right)$$

$$\dot{E}_{\rm GW} \sim (M\mu)^{14} \left[M_{\rm S}/M \right]^2$$

Yoshino & Kodama, PTEP 2014 (2014) 043E02

$$\dot{M}_{\rm accr} \sim 0.02 f_{\rm Edd} \frac{M}{10^6 M_{\odot}} M_{\odot} {\rm yr}^{-1}$$

Barausse, Cardoso, PP, Phys.Rev. D89 (2014) 104059

Hidden conductivity

$$\mathcal{L}_{eff} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} + \frac{m_X^2}{2} X_\mu X^\mu + j_\mu A^\mu$$

$$j^{\mu} = \sigma F^{\mu\nu} u_{\nu} \to \sigma F^{\mu\nu} u_{\nu} + \epsilon \sigma X^{\mu\nu} u_{\nu} + \mathcal{O}(\epsilon^2)$$

Hidden conductivity

Evolution of the SR instability

