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I) Possible horizon topologies
- Hawking 1972: Event horizon cross sections of four-
dimensional asymptotically flat stationary black holes obeying 
the dominant energy condition are topologically two-spheres 

This result extends to outer apparent horizons in black hole 
spacetimes that are not necessarily stationary (Hawking 1972)

Such restrictive uniqueness theorems do not hold in 
higher dimensions, the most famous counterexample 
being the black ring of Emparan and Reall, with horizon 
topology             (Emparan/Reall 2001)S2 ⇥ S1

But: In arbitrary dimensions, horizon cross sections are 
of positive Yamabe type, i.e., admit metrics of positive 
scalar curvature (Galloway/Schoen 2005)



In 4 dimensions, one can have black holes with 
nonspherical horizons by relaxing some of the 
assumptions that go into Hawking’s theorem.
For instance, in asymptotically AdS space, the 
horizon of a black hole can be a compact Riemann 
surface of any genus (Lemos 1994, Mann 1996,
Cai/Zhang 1996, Vanzo 1997)
In this case, both the asymptotically flat and dominant 
energy conditions are violated.
Note: Unless genus = 0, these spacetimes are asymptotically 
only locally AdS; their global structure is different. This is in 
contrast to the black rings in 5d, which are asymptotically 
Minkowski, in spite of their nontrivial horizon topology.



These possibilities do not exhaust the spectrum of 
potential horizon geometries of asymptotically         
black holes.

AdS4

In particular, we will see that there exist black holes 
whose event horizons are noncompact manifolds with 
yet finite area (and thus finite entropy), which are 
topologically spheres with two punctures.

 (Gnecchi/Hristov/SK/Toldo/Vaughan, 1311.1795; SK, 1401.3107)



II) Noncompact horizons with finite volume

  -consider D=4 Einstein-Maxwell-Lambda system: 

ds2 = � Q(q)

p2 + q2
(d⌧ � p2d�)2 +

P (p)

p2 + q2
(d⌧ + q2d�)2 + (p2 + q2)

✓
dq2

Q(q)
+

dp2

P (p)

◆
,

Carter-Plebanski solution:

F =
Q(p2 � q2) + 2Ppq

(p2 + q2)2
dq ^ (d⌧ � p2d�) +

P(p2 � q2)� 2Qpq

(p2 + q2)2
dp ^ (d⌧ + q2d�) ,

P (p) = ↵� P2 + 2np� "p2 + (�⇤/3)p4 ,

Q(q) = ↵+ Q2 � 2mq + "q2 + (�⇤/3)q4 .

w/ the quartic structure functions

P,Q : electric and magnetic charges. In what follows: P = 0

m,n : mass and NUT charge. Take n = 0
↵ and ": additional non-dynamical parameters

⇤ = �3/l2: Cosmological constant



Physical discussion:

q radial coordinate, horizon at q = qh, where Q(qh) = 0

-Induced metric on horizon has correct signature i↵ P (p) � 0

-Then P (p) � 0 for |p|  pa or |p| � pb. Consider range |p|  pa
(Range |p| � pb leads to di↵erent horizon topology)

-Since n = 0, P (p) has roots ±pa, ±pb, where 0 < pa < pb

-Set p = pa cos ✓, 0  ✓  ⇡

-Use scaling symmetry

to set pb = l without loss of generality

-Define rotation parameter j by p2a = j2

p ! �p , q ! �q , ⌧ ! ⌧/� , � ! �/�3 ,

↵ ! �4↵ , Q ! �2Q , m ! �3m, " ! �2" ,



Def. also ⌧ =: t+ j�
⌅ , � =:

�
j⌅ , ⌅ := 1� j2

l2 , �✓ := 1� j2

l2 cos

2✓

Then:

ds2 = � Q(q)

(q2 + j2 cos2✓)2
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j sin2✓

⌅

d�

�2
+ (q2 + j2 cos2✓)

✓
dq2

Q(q)
+

d✓2
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◆

+

�✓ sin
2✓
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jdt+
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⌅

d�

�2
,

+ some expression for the gauge pot. A

) gives Kerr-Newman-AdS



Note: Since above we had pa = j, pb = l, this can be considered the

ultraspinning limit j = l of the solution that we had before!

- Can show: Conformal boundary (which is rotating Einstein universe)

rotates

at the speed of light in this limit
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- Now consider case of coinciding roots of P (p), pa = pb:

) Consider region |p|  pa and use scaling symmetry to set pa = l

Of course the solution above is singular in this limit
) Have to study this case separately

) P (p) = 1
l2 (p

2 � l2)2

- Shift ⌧ ! ⌧ + l2� to avoid CTCs (we want � to be compact coordinate)



This is a surprise, since one might have expected the limit of coincident

roots pa = pb to be smooth, and for pa 6= pb horizon was topologically S

2

) Induced metric on horizon q = qh (where Q(q) vanishes):

! Singular for p = ±l (where P (p) = 0)

What happens at these singularities?

ds2h =
P (p)

q2h + p2
(q2h + l2)2d�2 +

q2h + p2

P (p)
dp2

Take limit p ! l and define ⇢ ⌘ l � p. Then:

) Hyperbolic space H2 !

) For p ! ±l, horizon approaches a space of constant negative curvature

) No true singularity there!

) Noncompact horizon!

ds2h ! (q2h + l2)


d⇢2

4⇢2
+ 4⇢2d�2

�

- Horizon area:

Ah =

Z
(q2h + l2)d�dp = 2Ll(q2h + l2) (� ⇠ � + L)



) Though being noncompact, the event horizon has finite area!

- Embed horizon in R3
as a surface of revolution:
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- Metric on conformal boundary:

- Is conformally flat (Cotton tensor vanishes)

ds2bdry = �d⌧2 + 2d⌧d�(p2 � l2) + l2
dp2

P (p)

(⇢ ⌘ l � p)- Near p = l:

) AdS3, written as a Hopf-like fibration over H2

ds2bdry ! �(d⌧ + 2l⇢d�)2 + l2

d⇢2

4⇢2
+ 4⇢2d�2

�

- Thermodynamics:

Compute M and J as Komar integrals associated to Killing

) Chirality-type condition M = �J/l2vectors @⌧ and @�



) These exotic solutions may provide interesting new testgrounds to

address questions related to black hole physics or holography

) Suggests that these exotic black holes are described by chiral

excitations of a CFT

- In this case more convenient to use L0 = (M +J/l2)/2, ˜L0 = (M �J/l2)/2

instead of M , J

) First law should be

- One finds that 1st law is indeed satisfied with L0 = 0

TdS = (1� ⌦l2)dL0 + (1 + ⌦l2)dL̃0 � �eldQ

(⌦: Ang. velocity of horizon, �el: electric potential)



These solutions can be generalized to matter-coupled 
gauged sugra (Gnecchi et al. 1311.1795) and to higher 
dimensions (Hennigar et al. 1411.4309, 1504.07529)

Comments:

The ‘punctures’ cannot be reached by null geodesics 
emanating from the bulk in a finite affine parameter 
(Hennigar et al. 1504.07529)

Solution can also be obtained from KNAdS by
i) transforming to coordinate system rotating at infinity
ii) boosting this rotation to the speed of light
iii) compactifying the corresponding azimuthal direction

These black holes violate reverse isoperimetric inequality
) Superentropic black holes (1411.4309)



Parenthesis: ⇤ as a thermodynamic variable and the reverse

isoperimetric inequality

Kastor/Ray/Traschen 0904.2765:

Proposed Smarr formula for AdS black holes and associated extended 
version of first law that accounts for variations in the black hole mass 
w.r.t. variations in the cosmological constant
(Note: Variable     goes back to Brown/Teitelboim 1987/1988     4d cosm. 
const. represents energy density of a 4-form gauge field strength.
This idea was first applied to the thermodynamics of AdS black holes 
(KNAdS) in Caldarelli/Cognola/DK 9908022.)

⇤ )

Note also: In string compactifications the cosm. const. typically is 
related to the ‘radius’ of the compactifying manifold. If we allow the size 
of the extra dimensions to change w/ time, then     should also be 
allowed to vary.

⇤

KRT: Obtained a general expression for the quantity ⇥ ⌘ 8⇡G@M
@⇤ , that

appears in both the first law and the Smarr formula, in terms of

surface integrals of the Killing potential ! (⇠⌫ = rµ!µ⌫
)



(This is comparable to knowing that

@M
@A =


8⇡G )

) new term in first law of the form

⇥
8⇡G�⇤

Note: The cosmological constant can be thought of as a perfect fluid

stress-energy w/ pressure P = � ⇤
8⇡G

) suggests to interpret ⇥ as minus a volume ) have ⇥
8⇡G�⇤ = V �P

Notice: The interpretation ⇥ = �V has an independent motivation:

Express the surface integral for ⇥ as a volume integral using Gauss

) One finds that �⇥ gives a measure for the volume excluded from

the spacetime by the black hole horizon

For static black holes, the first law becomes �M = T �S + V �P ,

which is precisely the variation of the enthalpy H = E + PV

) The mass of an AdS black hole should be thought of as the

enthalpy of spacetime



Cvetič/Gibbons/Kubizňak/Pope 1012.2888: Showed that

holds for a large class of black holes

Here: D = dimension of spacetime
A = horizon area

AD�2 = volume of unit S

D�2

✓
(D � 1)V

AD�2

◆ 1
D�1

�
✓

A

AD�2

◆ 1
D�2

(1)

in AdS

(1): ‘Reverse isoperimetric inequality’

(If there was a ‘’, it would be the usual isoperimetric inequality

for Euclidean bounded volumes)

Cvetič et al. conjectured that all black holes satisfy (1).

Equality is attained for Schwarzschild-AdS

(Schwarzschild-AdS black holes are ‘maximally entropic’)

But...



The black holes that have noncompact horizon with finite area always

violate the reverse isoperimetric inequality!

) ‘Superentropic black holes’

(Hennigar/Mann/Kubizňak 1411.4309)

) Suggests that reverse isoperimetric inequality conjecture might

apply only to black holes w/ compact horizon

The proof of this restricted conjecture remains an interesting open

problem



III) Black holes with Bianchi horizons in five 
     dimensions

where m = mass parameter, ⇤ = � 6
`2 , k = 0,±1, and d⌃2

k is
the standard metric on S3 (k = 1), H3 (k = �1) or E3 (k = 0),
i.e., on a

manifold of constant curvature (homogeneous and

isotropic)

• Can we relax this?
(Homogeneous, but not isotropic horizons)

The eom admit the well-known black hole solutions

ds2 = �
✓
k � m

r
+

r2

`2

◆
dt2 +

dr2

k � m
r + r2

`2

+ r2d⌃2
k ,

(Birmingham, hep-th/9808032)

• Start from action

I =
1

16⇡G

Z
d

5
x

p
�g [R� 2⇤]



Three-dimensional homogeneous manifolds were classified 
(9 Bianchi cosmologies)

The Bianchi types are in correspondence (not one to one) with
the eight Thurston model geometries S3, H3, E3, S2 ⇥ R, H2 ⇥ R,
Nil, Sol, fSL(2,R).

Among these, we are particularly interested in Nil and Sol
Lie group Sol: Semidirect product R

2
o R with the

multiplication given by

((x, y), z) · ((x0
, y

0), z0) = ((x+ e

�z
x

0
, y + e

z
y

0), z + z

0)

Sol-invariant 1-forms: !

1
= e

z
dx, !

2
= e

�z
dy, !

3
= dz

Left-invariant metric on Sol: e

2z
dx

2
+ e

�2z
dy

2
+ dz

2



Black hole w/ Sol horizon:

ds

2 = �
✓
�2⇤

9
r

2 � 2M

r

◆
dt

2 +
dr

2

� 2⇤
9 r

2 � 2M
r

+
3

�⇤

⇥
r

2(e2zdx2 + e

�2z
dy

2) + dz

2
⇤

(Cadeau/Woolgar, gr-qc/0011029)

Note: The horizon can be compactified by dividing by some

properly chosen discrete subgroup of Sol, making it a torus

bundle over a circle.

Lie group Nil: Consists of all 3⇥ 3 upper triangular matrices

of the form

0

@
1 x z

0 1 y

0 0 1

1

A
, where x, y, z 2 R.

(Heisenberg group)



Identify (x, y, z) 2 R3
w/ this matrix, giving the multiplication

(x, y, z) · (x0
, y

0
, z

0) = (x+ x

0
, y + y

0
, z + z

0 + xy

0)

Left-inv. metric on Nil: dx

2
+ dy

2
+ (dz � xdy)

2

Black hole w/ Nil horizon:

ds

2 = �
✓
�2⇤

11
r

2 � 2M

r

5/3

◆
dt

2 +
dr

2

� 2⇤
11 r

2 � 2M
r5/3

+ r

4/3(dx2 + dy

2) + r

8/3

 
dz �

r
�4⇤

9
xdy

!2

(Cadeau/Woolgar, gr-qc/0011029)

Also here, the horizon can be compactified by taking the

quotient Nil/�, where � ⇢ Nil consists of matrices with

only integer entries. Nil/� is then a circle bundle over a torus.



Can we add charge to these solutions?

Add Maxwell term

R
d

5
x

p
�g

�
� 1

4Fµ⌫F
µ⌫
�
and Chern-Simons

term ⇠
R
F ^ F ^A to the above action, to get the bosonic

sector of pure N = 2, d = 5 gauged supergravity.

(We might eventually be interested in supersymmetric solutions)

Let us restrict to the case of Sol horizons

Then we find that the eom are satisfied for the configuration

ds

2 = �V (r)dt2 +
dr

2

V (r)
+

r
p

2

�⇤
(e2zdx2 + e

�2z
dy

2) +
r

2

A

dz

2
,

F = pdx ^ dy , V (r) = �⇤

2
r

2 � 2A ln
r

B

A, B: Positive integration constants

p: Magnetic charge

! Magnetically charged black hole w/ Sol horizon

(F. Faedo/D. A. Farotti/SK, ‘Black holes in Sol minore’, to appear)



Note: The solution is singular in the limit p ! 0, and it is thus

disconnected from the Cadeau/Woolgar solution

If the horizon is compactified, the geometry approaches

asymptotically for r ! 1 a torus bundle over AdS3.

! Again unusual asymptotics

• Curvature singularity at r = 0, horizon for V (r) = 0.



Open questions:

• Solution that contains both Cadeau/Woolgar and ours?

• Generalization to N = 2 matter-coupled gauged supergravity?

• Electrically charged case?

• Charged black holes w/ Nil horizons?

• Charged (or uncharged) black holes w/ fSL(2,R) horizons?
Note in this context: A supersymmetric near-horizon
geometry of a rotating dyonic black hole w/ fSL(2,R)
horizon is known (Gutowski/Reall, hep-th/0401042)

...work in progress



• There are no static BPS black holes with Sol horizons

and purely electric or purely magnetic field strengths

in N = 2 gauged sugra coupled to abelian vector multiplets

Faedo/Farotti/SK (to appear):

• There are no static AdS2 ⇥ Sol or AdS2 ⇥Nil attractors

(susy or not) with purely electric field strengths in N = 2

gauged sugra coupled to abelian vector multiplets

• Magnetic (non-BPS) AdS2 ⇥ Sol attractors exist. The
horizon values of the scalar fields follow from extremization
of an e↵ective potential that can be computed explicitely.
The value of this e↵ective potential at the extremum gives
the Bekenstein-Hawking entropy



IV) Multi-centered black holes in AdS
Start from charged generalization of McVittie solution (Reissner-

Nordström immersed in FLRW, Shah/Vaidya 1968):

ds2 =�

h
1� (M2 �Q2) 1+kr2

4 a2 r2

i2

h
1 +M

p
1+kr2

a r + (M2 �Q2) 1+kr2

4 a2 r2

i2 dt
2

+ 4 a2
"
1 +M

p
1 + kr2

a r
+ (M2 �Q2)

1 + kr2

4 a2 r2

#2
dr2 + r2d✓2 + r2 sin2 ✓d�2

(1 + kr2)2
,

F =
Q

ar2
1p

1 + kr2

h
1� (M2 �Q2) 1+kr2

4 a2 r2

i

h
1 +M

p
1+kr2

a r + (M2 �Q2) 1+kr2

4 a2 r2

i2 dr ^ dt . (a = a(t))

M = Q = 0: FLRW universe

a = const., k = 0: Reissner-Nordström (in isotropic coordinates)

- Solves Einstein-Maxwell equations

Gµ⌫ = 8⇡Tµ⌫ , r⌫F
µ⌫ = 4⇡Jµ



where
Tµ⌫ =

1

4⇡


Fµ⇢F⌫

⇢ � 1

4
gµ⌫F⇢�F

⇢�

�
+ ⇢uµu⌫ + p(uµu⌫ + gµ⌫) , Jµ = �uµ ,

(Maxwell + perfect fluid)

- Pressure, energy density, charge density and 4-velocity of fluid:
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⇤ � 3
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4 a2 r2

�9=

;

�1
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ȧ2
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+
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p
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4 a2 r2

#�3 "
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p
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#
,
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4

kQ
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p
1 + kr2

r

"
1 +M

p
1 + kr2

a r
+ (M2 �Q2)

1 + kr2

4 a2 r2

#�3

,

u =
1� (M2 �Q2) 1+kr2

4 a2 r2

1 +M
p
1+kr2

a r + (M2 �Q2) 1+kr2

4 a2 r2

dt . ) For k 6= 0, the fluid

must be charged!

Jµ = �uµ



- Note also: p, ⇢,� are inhomogeneous (pressure gradient
prevents surrounding matter from accreting into black hole)

- Now consider ‘extremal’ case M = Q:

(and def. r = 1p
k
tan

p
k 
2 )

ds2 =�
"
1 +M

p
k

a sin(
p
k  /2)

#�2

dt2

+ a2
"
1 +M

p
k

a sin(
p
k  /2)

#2 "
d 2 +

sin2(
p
k )

k

�
d✓2 + sin2 ✓d�2

�
#
,

F =d

2

4
 
1 +M

p
k

a sin(
p
k  /2)

!�1

dt

3

5 ,

(plus some expressions for p, ⇢,�)

) Solution completely determined by function H =

M
p
k

sin(
p
k /2)

For k = 0: H / M
 , harmonic function on flat base space d 2

+  2d⌦2

) For a = const., k = 0 usual recipe to construct extremal black

holes in terms of harmonic functions



And for k 6= 0?

H =

M
p
k

sin(
p
k /2)

satisfies conformal Laplace equation on base space

E3, S3 or H3, r2H =
1

8
RH (R = 6k scalar curvature)

One easily checks: For any function H satisfying the conf. Laplace

equ., the resulting fields still solve the Einstein-Maxwell eqns.!

) Use this to construct multi-centered solutions!

Note: For k = 0, a = exp(
p
⇤t/3) (De Sitter), this was used by Kastor and

Traschen in ’92 to construct multi-centered black holes in dS, comoving with
the cosmic expansion. Here we saw that one can generalize this to arbitrary
FLRW and any k.

- A multi-centered solution is

obtained by using conformal invariance,

r̃2H̃ =
1

8
R̃H̃ , g̃ij = ⌦2gij , H̃ = ⌦�1/2H,

g̃ijdx
i
dx

j =
4d~x 2

[1 + k~x

2]2
.

H =
1p
2

⇥
1 + k~x 2

⇤1/2 NX

I=1

QI

|~x� ~xI |
,



- To construct multi-centered solutions in AdS:

Write AdS in FLRW coordinates,

ds2 = �dt2 + l2 sin2
t

l

�
d 2 + sinh2 d⌦2

�
(0 < t/l < ⇡, ⇤ = �3/l2)

) Big bang in t = 0, big crunch in t = l⇡
big crunch (t = lπ,ψ = ∞)

big bang (t = 0,ψ = ∞)

ψ = 0

Of course coordinate artefacts:

Global coordinates ⌧, r̂

r̂ = l sin
t

l
sinh , cos

t

l
=

✓
1 +

r̂2

l2

◆1/2

cos

⌧

l

) ds2 = �
✓
1 +

r̂2

l2

◆
d⌧2 +

✓
1 +

r̂2

l2

◆�1

dr̂2 + r̂2d⌦2

) Can extend beyond big bang/big crunch singularities

Note: Only one point (⌧/l = ⇡/2) of conformal boundary

r̂ ! 1 visible in FLRW coordinates



- Consider single-centered asymptotically AdS case:

(Is not Reissner-Nordström-AdS, but highly dynamical)

Far away from the black hole, p, ⇢ approach values given by a ⇤ < 0

and charge density � ! 0 ) ‘asymptotically AdS’

Metric:
ds2 = � g2

f2
dt2 + a2f2

 
d 2 +

sin2(
p
k )

k
d⌦2

!
,

f = 1 +

p
kM

a sin(
p
k /2)

+ k
M2 �Q2

4 a2 sin2(
p
k /2)

, g = 1� k
M2 �Q2

4 a2 sin2(
p
k /2)

.

- Curvature singularities: 2a sinh( /2) =
p
M2 �Q2

For M = Q: t = 0, t = l⇡ or  = 0

- Trapping horizons (Hayward ’93):

Compute expansions of outgoing and ingoing radial null geodesics:

✓+ ⌘ �2m(µm̄⌫)rµl⌫ , ✓� ⌘ �2m(µm̄⌫)rµn⌫

(l,m, n: Newman-Penrose null tetrad)



Marginal surfaces: Spacelike 2-surfaces on which ✓+ = 0 (✓� = 0)

Trapping horizons: Defined as closure of 3-surfaces foliated by

marginal surfaces
One finds the following:

0 Æ•
0

p ê 2

p

y

têl

0 Æ•
0

p ê 2

p

y
têl

M > Q: M = Q:

Red: Curvature singularities (coincide w/ axes for M = Q)

Blue: Trapping horizons

(Green: Pair of radial null geodesics intersecting in t = l⇡/2)



In global coordinates ⌧, r̂:

0 Æ•

p ê 2

r̀

têl

0 Æ•
0

p ê 2

p

r̀

têl

M > Q: M = Q:

) Spurious big bang/big crunch singularities that appear when

one writes AdS in FLRW coordinates, become real once such a

dynamical black hole is present.

) Only one point of the conformal boundary of AdS survives.

) 9 AdS/CFT interpretation in the usual sense?



IV) Final Remarks

Stability issues?

Field theory interpretation?

- Black holes with unusual horizons:

Noncompact manifolds w/ finite volume

- Chiral excitations

- violate reverse isoperimetric inequality ! ‘superentropic’

- can be generalized to higher dimensions and to presence

of matter

Open questions:

Is this the end of the story?

Or can we have still more possibilities for the horizon

geometry/topology in presence of a scalar potential?



- Multi-centered solutions in AdS:

Constructed from solutions of conformal Laplace equation

Deeper reason for appearance of conformal symmetry?

Why superposition principle? (Neither true nor fake susy)

Can we mimic the perfect fluid with scalar fields, and embed

solution in some model of matter-coupled N = 2 supergravity?

Note: Since charge density � of cosmic fluid is nonvanishing

for k 6= 0, these scalars have to be charged under a U(1)

gauge field.

driven by the scalars while rolling down their potential.

In such a scenario, the cosmological expansion would be

(Cf. e.g. black holes constructed by Gibbons/Maeda in 0912.2809)


