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Key Theme for This Talk 

•  Fundamental questions motivate the search for 
physics beyond the Standard Model 

•  Tests of fundamental symmetries at low-energy are 
poised to 

•  discover the BSM physics that answers 
several of these questions 

•  determine its character 

•  Robust hadronic & nuclear computations plus 
high sensitivity experiments are essential 
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Goals For This Talk 

•  Put nuclear tests of fundamental symmetries & 
neutrino property studies in broader BSM context  

•  Highlight a few areas of inter-frontier implications 

•  Emphasize new directions for theoretical work 
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Outline 

I.  The BSM Context 

II.  Lepton Number 

III.  CP (Flavor Conserving) 

IV.  Precision Tests: β-Decay Highlight  

V.  Outlook 

Origin of Matter 

BSM Mass Scale 
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I. The BSM Context 



Fundamental Questions 

MUST answer SHOULD answer 
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ϕNEW

Δ m2 ~ λ Λ2

ΛCosmological

Origin of mν 
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Fermion Masses & Baryon Asymmetry 

Partners 

Partners 

Higgs Mechanism 

Electroweak baryogenesis: 
Baryon asymmetry & mf from 
EW symmetry breaking 

Something else ? 

Leptogenesis: Baryon 
asymmetry & mν  from 
lepton number violation 
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BSM Physics: Where Does it Live ? 
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BSM Physics: Where Does it Live ? 
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 MW 

BSM ?  SUSY, see-saw, BSM 
Higgs sector… 

BSM ? 
Sterile ν’s, axions, 
dark U(1)…  



10 

Low-Energy / High-Energy Interplay 

Discovery “Diagnostic” 

Low energy High energy 

? 
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II. Lepton Number 

Collaborators: T. Peng, P. Winslow; J. Harz, S. 
Quirroga, S. Shen 
 
PRD 93 (2016) 093002 

Highlight: TeV LNV 
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Fermion Masses & Baryon Asymmetry 

Partners 

Partners 

Higgs Mechanism 

Electroweak baryogenesis: 
Baryon asymmetry & mf from 
EW symmetry breaking 

Something else ? 

Leptogenesis: Baryon 
asymmetry & mν  from 
lepton number violation 

LNV & ν studies  
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0νββ-Decay: LNV? Mass Term?  
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Impact of  observation 

•  Total lepton number not 
conserved at classical level 

•  New mass scale in nature, Λ

•  Key ingredient for standard 
baryogenesis via leptogenesis 

€ 

e−

€ 

e−

LNV Physics 

A(Z+2, N-2)A(Z, N)
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•  Total lepton number not 
conserved at classical level 

•  New mass scale in nature, Λ

•  Key ingredient for standard 
baryogenesis via leptogenesis 

LNV Physics 

What’s 
inside ? 

A(Z+2, N-2)A(Z, N)
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BSM Physics: Where Does it Live ? 

 M
as

s 
S
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 Coupling 

 MW 

BSM ?  SUSY, LNV, extended 
Higgs sector… 

BSM ? 
Sterile ν’s, axions, 
dark U(1)…  

Is the mass scale associated with mν  far 
above MW ?  Near MW ? Well below MW ? 
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LNV Mass Scale & 0νββ-Decay 

 A(Z,N) !           ! A(Z+2, N-2) +  e- e-  Underlying 
Physics 

•  3 light neutrinos only: source of neutrino 
mass at the very high see-saw scale 

•  3 light neutrinos with TeV scale source of 
neutrino mass 

•  > 3 light neutrinos  
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LNV Mass Scale & 0νββ-Decay 

 A(Z,N) !           ! A(Z+2, N-2) +  e- e-  Underlying 
Physics 

•  3 light neutrinos only: source of neutrino 
mass at the very high see-saw scale 

•  3 light neutrinos with TeV scale source of 
neutrino mass 

•  > 3 light neutrinos  
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0νββ-Decay: LNV? Mass Term?  
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•  Light Majorana mass generated 
at the conventional see-saw 
scale: Λ ~ 1012 – 1015 GeV 

 
•  3 light Majorana neutrinos 

mediate decay process 
A(Z+2, N-2)A(Z, N)
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LNV Mass Scale & 0νββ-Decay 

 A(Z,N) !           ! A(Z+2, N-2) +  e- e-  Underlying 
Physics 

•  3 light neutrinos only: source of neutrino 
mass at the very high see-saw scale 

•  3 light neutrinos with TeV scale source of 
neutrino mass 

•  > 3 light neutrinos  

Two parameters: Effective coupling & effective heavy particle mass 
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0νββ-Decay: LNV? Mass Term?  
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F

B B

•  Majorana mass generated at 
the TeV scale 

•  Low-scale see-saw 
•  Radiative mν 

•  mMIN << 0.01 eV but 0νββ-signal 
accessible with tonne-scale 
exp’ts due to heavy Majorana 
particle exchange 

A(Z+2, N-2)A(Z, N)
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•  Majorana mass generated at 
the TeV scale 

•  Low-scale see-saw 
•  Radiative mν 

•  mMIN << 0.01 eV but 0νββ-signal 
accessible with tonne-scale 
exp’ts due to heavy Majorana 
particle exchange 

W

e e~ ~

~

A(Z+2, N-2)A(Z, N)
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0νββ-Decay: LNV? Mass Term?  
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 O(1) for Λ ~ 1 TeV 

 Implications 



TeV LNV & Leptogenesis 
E

ne
rg

y 
S

ca
le

 (G
eV

) 

1012 

10 3 

10 2 
10-1 

Standard thermal lepto 

23 

Fast ΔL = 2 int: erase L Deppisch et 
al ‘14, ‘15 



TeV LNV & Leptogenesis 
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Electroweak, resonant lepto, 
WIMPY baryo, ARS lepto… 

Post-sphaleron, cold… 

Baryogenesis alternatives 
24 

Fast ΔL = 2 int: erase L Deppisch et 
al ‘14, ‘15 



0νββ-Decay: TeV Scale LNV  
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0νββ-Decay
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LHC: SS Dilepton + Dijet 
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0νββ-Decay: TeV Scale LNV  
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A(Z+2, N-2)A(Z, N)
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0νββ-Decay: TeV Scale LNV  
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Tonne scale 

Nuc & had matrix elements 

A(Z+2, N-2)A(Z, N)
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0νββ-Decay: TeV Scale LNV  
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0νββ-Decay: TeV Scale LNV & mν  

Dirac Majorana 

O5 =
��H

⇤
�̄� H

†
H (25)

M⌃± �M⌃0 ⇠
↵

4⇡
MW (26)

L =
g

2
hij

⇥
L̄

Ci"�LL
j
⇤
+ (L$ R) + h.c. (27)

����
�Q

e

W

Q
e

W

���� = 0.14
|hee|

2

(M�/1 TeV)2 (28)

|Vud|
2 + |Vus|

2 = |Vud|
2


1 +

|Vus|
2

|Vud|
2

�
(29)

Lmass = yL̄H̃⌫R + h.c. (30)

Lmass =
y

⇤
L̄

c
H̃H̃

T
L + h.c. (31)

3

O5 =
��H

⇤
�̄� H

†
H (25)

M⌃± �M⌃0 ⇠
↵

4⇡
MW (26)

L =
g

2
hij

⇥
L̄

Ci"�LL
j
⇤
+ (L$ R) + h.c. (27)

����
�Q

e

W

Q
e

W

���� = 0.14
|hee|

2

(M�/1 TeV)2 (28)

|Vud|
2 + |Vus|

2 = |Vud|
2


1 +

|Vus|
2

|Vud|
2

�
(29)

Lmass = yL̄H̃⌫R + h.c. (30)

Lmass =
y

⇤
L̄

c
HH

T
L + h.c. (31)

�(⌫R ! `H) 6= �(⌫R !
¯̀H⇤) (32)

m⌫ =
m

2
D

MR

(33)

3

Implications for mν : 

Controls 
mν 

Schecter-Valle: non-vanishing 
Majorana mass at (multi) loop level 

Simplified model: possible 
(larger) one loop Majorana mass 

29 



0νββ-Decay: TeV Scale LNV & mν   

Dirac Majorana 

O5 =
��H

⇤
�̄� H

†
H (25)

M⌃± �M⌃0 ⇠
↵

4⇡
MW (26)

L =
g

2
hij

⇥
L̄

Ci"�LL
j
⇤
+ (L$ R) + h.c. (27)

����
�Q

e

W

Q
e

W

���� = 0.14
|hee|

2

(M�/1 TeV)2 (28)

|Vud|
2 + |Vus|

2 = |Vud|
2


1 +

|Vus|
2

|Vud|
2

�
(29)

Lmass = yL̄H̃⌫R + h.c. (30)

Lmass =
y

⇤
L̄

c
H̃H̃

T
L + h.c. (31)

3

O5 =
��H

⇤
�̄� H

†
H (25)

M⌃± �M⌃0 ⇠
↵

4⇡
MW (26)

L =
g

2
hij

⇥
L̄

Ci"�LL
j
⇤
+ (L$ R) + h.c. (27)

����
�Q

e

W

Q
e

W

���� = 0.14
|hee|

2

(M�/1 TeV)2 (28)

|Vud|
2 + |Vus|

2 = |Vud|
2


1 +

|Vus|
2

|Vud|
2

�
(29)

Lmass = yL̄H̃⌫R + h.c. (30)

Lmass =
y

⇤
L̄

c
HH

T
L + h.c. (31)

�(⌫R ! `H) 6= �(⌫R !
¯̀H⇤) (32)

m⌫ =
m

2
D

MR

(33)

3

Implications for mν : 

30 

Signal  

 mν  (loop) 

Ton Scale 

A hypothetical scenario 



31 

0νββ / LHC Interplay: Matrix Elements 
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III. CP (Flavor Conserving) 

Collaborators: T. Chupp, K. Fuyuto, X.-G. He, S. 
Inoue, G. Li, Y. Li, G. Ovanesyan, S. Profumo, S. 
Shen 

Highlight: EW Baryogenesis, Dark Z 
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Fermion Masses & Baryon Asymmetry 
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Electroweak Baryogenesis 

•  Was YB generated in conjunction with 
electroweak symmetry-breaking? 

•  To what extent can EDM searches test 
this scenario? 
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EDMs &  EWBG: MSSM & Beyond 
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EDMs: What We May Learn 
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“Two-Step EW Baryogenesis” 
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BSM Physics: Where Does it Live ? 
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Dark Photon Portal 

Standard Model Hidden Sector 

New CPV ? 
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CPV Dark Photon 
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Paramagnetic Systems: Two Sources 
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2. Improvement of up to two orders of magnitude for the the neutron-EDM [21–26]

3. 2-3 orders of magnitude improvement for 129Xe[27, 28, 42]

4. New diamagnetic atom EDM measurements from the octupole enhanced systems 225Ra [29] and 221Rn/223Rn[30]

5. Possible new paramagnetic atom EDM measurement from Fr [14] and Cs [43]

6. Plans to develop storage-ring experiments to measure the EDMs of the proton and light nuclei 2H and 3He [44]

Some scenarios for improved experimental sensitivity and their impact are presented in Table VIII. In the first line
we summarize the current upper limits on the parameters at the 95% CL. The remainder of the table lists the impact
of one or more experiments with the improved sensitivity noted in the third column, assuming a central value of zero.
Note that we do not consider a possible future proton EDM search. While every experiment has the potential for
discovery in the sense that improving any current limit takes one into new territory, it is clear from Table VIII that
inclusions of new systems in a global analysis may have a much greater impact on constraining the parameters than
would improvement of experimental bounds in systems with current results.

For example, ThO provides such a tight correlation of de and CS , as shown in Fig. 1, that narrowing the experimental
upper and lower limits without improvements to the other experiments does not significantly improve the bounds on
de and CS . Adding a degree of freedom, such as a result in Fr, with ↵CS/↵de ⇡ 1.2 ⇥ 10�20 [12], could significantly
tighten the bounds. Similarly, a result in an octupole-deformed system, e.g. 225Ra or 221Rn/223Rn would add a

degree of freedom and over-constrain the the set of parameters CT , ḡ
(0)
⇡ , ḡ(1)⇡ and d̄n. Due to the nuclear structure

enhancement of the Schi↵ moments of such systems, their inclusion in a global analysis could have a substantial impact

on the ḡ(i)⇡ as well as on CT . In contrast , the projected 100-fold improvement in 129Xe (not octupole-deformed) would
have an impact primarily on CT . In the last line of Table VIII, we optimistically consider the long term prospects
with the neutron and 129Xe improvements and the octupole-deformed systems. The possibility of improvements to
TlF, for example with a cooled molecular beam [45] or another molecule will, of course, enhance the prospects.

From a theoretical perspective, it is interesting to consider the theoretical implications of the present and prospective
global analysis results. Perhaps, not surprisingly, the resulting constraints on various underlying CPV sources are

weaker than under the “single-source” assumption. For example, from the limit on ḡ
(0)
⇡ in Table I and the “reasonable

range” for the hadronic matrix element computations given in Ref. [1], we obtain |✓̄|  ✓̄max, with

2⇥ 10�7 <⇠ ✓̄max
<⇠ 1.6⇥ 10�6 (global) (IV.39)

a constraint considerably weaker than the order 10�10 upper bound obtained from the neutron or 199Hg EDM under

the “single-source” assumption. Similarly, for the dimensionless, isoscalar quark chromo-EDM, the ḡ(0)⇡ bounds imply

�̃
(+)
q

⇣
v

⇤

⌘2
<⇠ 0.01 . (IV.40)

where we have used the upper end of the hadronic matrix element range given in Ref. [1]. Since the quark chromo-
EDMs generally arise at one-loop order and may entail strongly interacting virtual particles, we may translate the

range in Eq. (IV.40) into a range on the BSM mass scale ⇤ by taking �̃
(+)
q ⇠ sin�CPV ⇥ (↵s/4⇡) where �CPV is a

CPV phase to obtain

⇤ >⇠ (2 TeV)⇥
p
sin�CPV Isoscalar quark chromo� EDM (global) . (IV.41)

We note, however that given the considerable uncertainty in the hadronic matrix element computation these bounds
may be considerably weaker7.

For the paramagnetic systems, the present mass reach may be substantially greater. For the electron EDM, we
again make the one-loop assumption for illustrative purposes, taking �e ⇠ sin�CPV ⇥ (↵/4⇡) so that

⇤ >⇠ (1.5 TeV)⇥
p
sin�CPV Electron EDM (global) (IV.42)

7 The uncertainty for the quark CEDM is substantially larger than for those pertaining to ✓̄ owing, in the latter case, to the constraints
from chiral symmetry as discussed in Ref. [1].
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de (e-cm) CS CT ḡ(0)⇡ ḡ(1)⇡ d̄n (e-cm)
Current Limits (95%) 5.4⇥ 10�27 4.5⇥ 10�7 2⇥ 10�6 8⇥ 10�9 1.2⇥ 10�9 12⇥ 10�23

System Current (e-cm) Projected Projected sensitivity
ThO 5⇥ 10�29 5⇥ 10�30 4.0⇥ 10�27 3.2⇥ 10�7

Fr de < 10�28 2.4⇥ 10�27 1.8⇥ 10�7

129Xe 3⇥ 10�27 3⇥ 10�29 3⇥ 10�7 3⇥ 10�9 1⇥ 10�9 5⇥ 10�23

Neutron/Xe 2⇥ 10�26 10�28/3⇥ 10�29 1⇥ 10�7 1⇥ 10�9 4⇥ 10�10 2⇥ 10�23

Ra 10�25 5⇥ 10�8 4⇥ 10�9 1⇥ 10�9 6⇥ 10�23

” 10�26 1⇥ 10�8 1⇥ 10�9 3⇥ 10�10 2⇥ 10�24

Neutron/Xe/Ra 10�28/3⇥ 10�29/10�27 6⇥ 10�9 9⇥ 10�10 3⇥ 10�10 1⇥ 10�24

TABLE VIII: Anticipated limits (95%) on P-odd/T-odd physics contributions for scenarios for improved experimental precision
compared to the current limits listed in the first line using best values for coe�cients in Table IV and V. We assume ↵g1⇡

for
199Hg is 1.6⇥ 10�17. For the octupole deformed systems (225Ra and 221Rn/223Rn) we specify the contribution of 225Ra. The
Schi↵ moment for Rn isotopes may be an order of magnitude smaller than for Ra, so for Rn one would require 10�26 and 10�27

for the fifth and sixth lines to achieve comparable sensitivity to that listed for Ra.

The scalar (quark) ⇥ pseudscalar (electron) interaction leading to a non-vanishing CS may arise at tree-level, pos-
sibly generated by exchange of a scalar particle that does not contribute to the elementary fermion mass through

spontaneous symmetry-breaking. In this case, taking ImC
(�)
eq ⇠ 1 and using the bound in Table I gives

⇤ >⇠ (1300 TeV)⇥
p

sin�CPV CS (global) (IV.43)

Under the “single-source” assumption, these lower bounds become even more stringent.
Due to the quadratic dependence of the CPV sources on (v/⇤), an order of magnitude increase in sensitivity to

any of the hadronic parameters will extend the mass reach by roughly a factor of three. In this respect, achieving
the prospective sensitivities for new systems such as Fr and combinations of diamagnetic systems such including the
neutron, 129Xe and octupole-deformed systems as indicated in Table VIII would lead to significantly greater mass
reach. Achieving these gains, together with the refinements in nuclear and hadronic physics computations needed to
translate them into robust probes of underlying CPV sources, lays out the future of EDM research in probing BSM
Physics.
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Paramagnetic Systems: Two Sources 
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Illustrative Example: Leptoquark Model 
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Illustrative Example: Leptoquark Model 
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IV. Precision Tests 

Collaborators: M. Gorchtein, H. Patel, C. Seng 
 
PRL 121 (2018) 241804 [1807.10197], 1812.03352  

Highlight: β-decay 
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Precision ~ BSM Mass Scale 

Precision Goal: 

 δ ΔSM ~ O(10-4) 

ΔSM ~ C  ( v/Λ )2  

Heavy BSM Physics: 
Λ ∼ 10 TeV (tree) 

Λ < 1 TeV (loop) 

  ΔSM = (OEXP – OSM ) / OSM 

* Can be ~ 10-3 or larger if OSM suppressed  

* 
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Weak Decays: CKM Unitarity   
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Charged current universality and the MSSM
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We analyze the prospective impact of supersymmetric radiative corrections on tests of charged current

universality involving light quarks and leptons. Working within the R-parity conserving minimal super-

symmetric Standard Model, we compute the corresponding one-loop corrections that enter the extraction

of the Cabibbo-Kobayashi-Maskawa matrix element Vud from a comparison of the muon-decay Fermi

constant with the vector coupling constant determined from nuclear and neutron ! decay. We also revisit

earlier studies of the corrections to the ratio Re=" of pion leptonic decay rates !½#þ ! eþ $ð%Þ% and
!½#þ ! "þ $ð%Þ%. In both cases, we observe that the magnitude of the corrections can be on the order of

10& 3. We show that a comparison of the first row Cabibbo-Kobayashi-Maskawa unitarity tests with

measurements of Re=" can provide unique probes of the spectrum of first generation squarks and first and

second generation sleptons.

DOI: 10.1103/PhysRevD.87.035012 PACS numbers: 14.80.Ly

I. INTRODUCTION

New physics beyond the Standard Model (BSM) is
widely expected to be discovered at the Large Hadron
Collider (LHC). If so, a key challenge will be to identify
the scenario that best accounts for the collider signatures
and to determine the parameters of the corresponding
Lagrangian. In this respect, high precision measurements
of electroweak precision observables (EWPOs), such as the
muon anomalous magnetic moment, may provide crucial
input. During the first decade of LHC operations, much
of the effort at the intensity frontier or precision frontier
will involve low-energy studies involving hadronic, nu-
clear, and atomic systems (for recent reviews, see, e.g.,
Refs. [1,2]). In this paper, we consider one such class of
observables that involves the weak decays of light quarks
and leptons.

Historically, such studies played a crucial role in testing
and confirming the universality of the Standard Model
(SM) charged current (CC) interaction. The comparison
of Fermi constants extracted from the muon lifetime and
neutron/nuclear ! decays, respectively, indicated that the
underlying universality of CC interactions of leptons and
quarks is obscured by the mismatch between quark flavor
and mass eigenstates—leading ultimately to the Cabibbo-
Kobayashi-Maskawa (CKM) matrix—but is otherwise
intact. Today, the most stringent tests of lepton-quark
universality involve the first row CKM unitarity relation,

jVudj2 þ jVusj2 þ jVubj2 ¼ 1: (1.1)

The largest and most precisely known entry in this
relation, Vud is obtained from a comparison of the muon
decay Fermi constant, G" with the corresponding ! decay

Fermi (or vector coupling) constant G!
V extracted from

superallowed 0þ ! 0þ nuclear ! decays [3]. The value
of Vus is obtained from Ke3 decay branching ratios [4].
For both the nuclear and kaon decays, extraction of the
corresponding CKM matrix element requires theoretical
input (see, e.g., Refs. [3– 6]). Given the overall resulting
uncertainty and the much smaller magnitude of Vub, the
latter can be ignored in testing Eq. (1.1). A measure of this
test is given by the quantity

"CKM ¼ ðjVudj2 þ jVusj2 þ jVubj2Þexp& 1; (1.2)

where the exp subscript indicates the value extracted
from experiment with the corresponding theoretical input.
Currently,

"CKM ¼ & 0:0001 ( 0:0006; (1.3)

with comparable uncertainties coming from Vud and Vus

[5]. This agreement with the SM places stringent con-
straints on a variety of BSM scenarios.
A similarly powerful test of CC universality involves the

ratio of pion decay branching ratios

Re=" ¼ !½#þ ! eþ $ð%Þ%
!½#þ ! "þ $ð%Þ% : (1.4)

The theoretical interpretation of this ratio in terms of BSM
physics is remarkably clean, as many hadronic theory
uncertainties that affect the individual branching ratios
cancel from the ratio. Recent work using chiral perturba-
tion theory puts the overall relative error bar at the 10& 4

level [7], leading to a present error bar dominated by the
experimental uncertainty:
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Precision ~ BSM Mass Scale 

Precision Goal: 

 δ ΔCKM ~ O(10-4) 

Ultralight BSM Physics: 

ΔCKM ~ ε2  ( α /4π )   ε < 1 (loop) 

ΔCKM ~ C  ( v/Λ )2  

Heavy BSM Physics: 
Λ ∼ 10 TeV (tree) 

Λ < 1 TeV (loop) 
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We analyze the prospective impact of supersymmetric radiative corrections on tests of charged current

universality involving light quarks and leptons. Working within the R-parity conserving minimal super-

symmetric Standard Model, we compute the corresponding one-loop corrections that enter the extraction

of the Cabibbo-Kobayashi-Maskawa matrix element Vud from a comparison of the muon-decay Fermi

constant with the vector coupling constant determined from nuclear and neutron ! decay. We also revisit

earlier studies of the corrections to the ratio Re=" of pion leptonic decay rates !½#þ ! eþ $ð%Þ% and
!½#þ ! "þ $ð%Þ%. In both cases, we observe that the magnitude of the corrections can be on the order of

10& 3. We show that a comparison of the first row Cabibbo-Kobayashi-Maskawa unitarity tests with

measurements of Re=" can provide unique probes of the spectrum of first generation squarks and first and

second generation sleptons.
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I. INTRODUCTION

New physics beyond the Standard Model (BSM) is
widely expected to be discovered at the Large Hadron
Collider (LHC). If so, a key challenge will be to identify
the scenario that best accounts for the collider signatures
and to determine the parameters of the corresponding
Lagrangian. In this respect, high precision measurements
of electroweak precision observables (EWPOs), such as the
muon anomalous magnetic moment, may provide crucial
input. During the first decade of LHC operations, much
of the effort at the intensity frontier or precision frontier
will involve low-energy studies involving hadronic, nu-
clear, and atomic systems (for recent reviews, see, e.g.,
Refs. [1,2]). In this paper, we consider one such class of
observables that involves the weak decays of light quarks
and leptons.

Historically, such studies played a crucial role in testing
and confirming the universality of the Standard Model
(SM) charged current (CC) interaction. The comparison
of Fermi constants extracted from the muon lifetime and
neutron/nuclear ! decays, respectively, indicated that the
underlying universality of CC interactions of leptons and
quarks is obscured by the mismatch between quark flavor
and mass eigenstates—leading ultimately to the Cabibbo-
Kobayashi-Maskawa (CKM) matrix—but is otherwise
intact. Today, the most stringent tests of lepton-quark
universality involve the first row CKM unitarity relation,

jVudj2 þ jVusj2 þ jVubj2 ¼ 1: (1.1)

The largest and most precisely known entry in this
relation, Vud is obtained from a comparison of the muon
decay Fermi constant, G" with the corresponding ! decay

Fermi (or vector coupling) constant G!
V extracted from

superallowed 0þ ! 0þ nuclear ! decays [3]. The value
of Vus is obtained from Ke3 decay branching ratios [4].
For both the nuclear and kaon decays, extraction of the
corresponding CKM matrix element requires theoretical
input (see, e.g., Refs. [3– 6]). Given the overall resulting
uncertainty and the much smaller magnitude of Vub, the
latter can be ignored in testing Eq. (1.1). A measure of this
test is given by the quantity

"CKM ¼ ðjVudj2 þ jVusj2 þ jVubj2Þexp& 1; (1.2)

where the exp subscript indicates the value extracted
from experiment with the corresponding theoretical input.
Currently,

"CKM ¼ & 0:0001 ( 0:0006; (1.3)

with comparable uncertainties coming from Vud and Vus

[5]. This agreement with the SM places stringent con-
straints on a variety of BSM scenarios.
A similarly powerful test of CC universality involves the

ratio of pion decay branching ratios

Re=" ¼ !½#þ ! eþ $ð%Þ%
!½#þ ! "þ $ð%Þ% : (1.4)

The theoretical interpretation of this ratio in terms of BSM
physics is remarkably clean, as many hadronic theory
uncertainties that affect the individual branching ratios
cancel from the ratio. Recent work using chiral perturba-
tion theory puts the overall relative error bar at the 10& 4

level [7], leading to a present error bar dominated by the
experimental uncertainty:
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2Departamento de Fı́sica Teórica, Instituto de Fı́sica, Universidad Nacional Autónoma de México, 04510 México D.F., México
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New physics beyond the Standard Model (BSM) is
widely expected to be discovered at the Large Hadron
Collider (LHC). If so, a key challenge will be to identify
the scenario that best accounts for the collider signatures
and to determine the parameters of the corresponding
Lagrangian. In this respect, high precision measurements
of electroweak precision observables (EWPOs), such as the
muon anomalous magnetic moment, may provide crucial
input. During the first decade of LHC operations, much
of the effort at the intensity frontier or precision frontier
will involve low-energy studies involving hadronic, nu-
clear, and atomic systems (for recent reviews, see, e.g.,
Refs. [1,2]). In this paper, we consider one such class of
observables that involves the weak decays of light quarks
and leptons.

Historically, such studies played a crucial role in testing
and confirming the universality of the Standard Model
(SM) charged current (CC) interaction. The comparison
of Fermi constants extracted from the muon lifetime and
neutron/nuclear ! decays, respectively, indicated that the
underlying universality of CC interactions of leptons and
quarks is obscured by the mismatch between quark flavor
and mass eigenstates—leading ultimately to the Cabibbo-
Kobayashi-Maskawa (CKM) matrix—but is otherwise
intact. Today, the most stringent tests of lepton-quark
universality involve the first row CKM unitarity relation,

jVudj2 þ jVusj2 þ jVubj2 ¼ 1: (1.1)

The largest and most precisely known entry in this
relation, Vud is obtained from a comparison of the muon
decay Fermi constant, G" with the corresponding ! decay

Fermi (or vector coupling) constant G!
V extracted from

superallowed 0þ ! 0þ nuclear ! decays [3]. The value
of Vus is obtained from Ke3 decay branching ratios [4].
For both the nuclear and kaon decays, extraction of the
corresponding CKM matrix element requires theoretical
input (see, e.g., Refs. [3– 6]). Given the overall resulting
uncertainty and the much smaller magnitude of Vub, the
latter can be ignored in testing Eq. (1.1). A measure of this
test is given by the quantity

"CKM ¼ ðjVudj2 þ jVusj2 þ jVubj2Þexp& 1; (1.2)

where the exp subscript indicates the value extracted
from experiment with the corresponding theoretical input.
Currently,

"CKM ¼ & 0:0001 ( 0:0006; (1.3)

with comparable uncertainties coming from Vud and Vus

[5]. This agreement with the SM places stringent con-
straints on a variety of BSM scenarios.
A similarly powerful test of CC universality involves the

ratio of pion decay branching ratios

Re=" ¼ !½#þ ! eþ $ð%Þ%
!½#þ ! "þ $ð%Þ% : (1.4)

The theoretical interpretation of this ratio in terms of BSM
physics is remarkably clean, as many hadronic theory
uncertainties that affect the individual branching ratios
cancel from the ratio. Recent work using chiral perturba-
tion theory puts the overall relative error bar at the 10& 4

level [7], leading to a present error bar dominated by the
experimental uncertainty:
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Sky Bauman,1,* Jens Erler,2,† and Michael J. Ramsey-Musolf1,3,‡

1Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
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We analyze the prospective impact of supersymmetric radiative corrections on tests of charged current

universality involving light quarks and leptons. Working within the R-parity conserving minimal super-

symmetric Standard Model, we compute the corresponding one-loop corrections that enter the extraction

of the Cabibbo-Kobayashi-Maskawa matrix element Vud from a comparison of the muon-decay Fermi

constant with the vector coupling constant determined from nuclear and neutron ! decay. We also revisit

earlier studies of the corrections to the ratio Re=" of pion leptonic decay rates !½#þ ! eþ $ð%Þ% and
!½#þ ! "þ $ð%Þ%. In both cases, we observe that the magnitude of the corrections can be on the order of

10& 3. We show that a comparison of the first row Cabibbo-Kobayashi-Maskawa unitarity tests with

measurements of Re=" can provide unique probes of the spectrum of first generation squarks and first and

second generation sleptons.

DOI: 10.1103/PhysRevD.87.035012 PACS numbers: 14.80.Ly

I. INTRODUCTION

New physics beyond the Standard Model (BSM) is
widely expected to be discovered at the Large Hadron
Collider (LHC). If so, a key challenge will be to identify
the scenario that best accounts for the collider signatures
and to determine the parameters of the corresponding
Lagrangian. In this respect, high precision measurements
of electroweak precision observables (EWPOs), such as the
muon anomalous magnetic moment, may provide crucial
input. During the first decade of LHC operations, much
of the effort at the intensity frontier or precision frontier
will involve low-energy studies involving hadronic, nu-
clear, and atomic systems (for recent reviews, see, e.g.,
Refs. [1,2]). In this paper, we consider one such class of
observables that involves the weak decays of light quarks
and leptons.

Historically, such studies played a crucial role in testing
and confirming the universality of the Standard Model
(SM) charged current (CC) interaction. The comparison
of Fermi constants extracted from the muon lifetime and
neutron/nuclear ! decays, respectively, indicated that the
underlying universality of CC interactions of leptons and
quarks is obscured by the mismatch between quark flavor
and mass eigenstates—leading ultimately to the Cabibbo-
Kobayashi-Maskawa (CKM) matrix—but is otherwise
intact. Today, the most stringent tests of lepton-quark
universality involve the first row CKM unitarity relation,

jVudj2 þ jVusj2 þ jVubj2 ¼ 1: (1.1)

The largest and most precisely known entry in this
relation, Vud is obtained from a comparison of the muon
decay Fermi constant, G" with the corresponding ! decay

Fermi (or vector coupling) constant G!
V extracted from

superallowed 0þ ! 0þ nuclear ! decays [3]. The value
of Vus is obtained from Ke3 decay branching ratios [4].
For both the nuclear and kaon decays, extraction of the
corresponding CKM matrix element requires theoretical
input (see, e.g., Refs. [3– 6]). Given the overall resulting
uncertainty and the much smaller magnitude of Vub, the
latter can be ignored in testing Eq. (1.1). A measure of this
test is given by the quantity

"CKM ¼ ðjVudj2 þ jVusj2 þ jVubj2Þexp& 1; (1.2)

where the exp subscript indicates the value extracted
from experiment with the corresponding theoretical input.
Currently,

"CKM ¼ & 0:0001 ( 0:0006; (1.3)

with comparable uncertainties coming from Vud and Vus

[5]. This agreement with the SM places stringent con-
straints on a variety of BSM scenarios.
A similarly powerful test of CC universality involves the

ratio of pion decay branching ratios

Re=" ¼ !½#þ ! eþ $ð%Þ%
!½#þ ! "þ $ð%Þ% : (1.4)

The theoretical interpretation of this ratio in terms of BSM
physics is remarkably clean, as many hadronic theory
uncertainties that affect the individual branching ratios
cancel from the ratio. Recent work using chiral perturba-
tion theory puts the overall relative error bar at the 10& 4

level [7], leading to a present error bar dominated by the
experimental uncertainty:

*sbauman@physics.wisc.edu
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Radiative Corrections 

γ

W
ν e

  e− 0+(i) 

0+(f) 

Dominant source of uncertainty: 

Long distance 

Sensitive to hadronic & nuclear dynamics 

�CKM = �0.0006± 0.0005 (1)
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Dispersion Relations 

γ

W

0+(i) 

0+(f) Dispersion relation:  

5

W (I)µ⌫
�W =

1

8⇡

X

X

(2⇡)4�4(p+ q � pX) hp| J (I)µ
em |Xi hX| J⌫

W |ni =


�gµ⌫ +

qµq⌫

q2

�
F (I)
1 +

p̂µp̂⌫

(p · q)
F (I)
2 +

i✏µ⌫↵�p↵q�
2(p · q)

F (I)
3 ,

(21)

(we define Wµ⌫
�W with a coe�cient of (8⇡)�1 instead of

the more common (4⇡)�1 to keep in sync with our def-
inition of Tµ⌫

�W that contains a factor 1/2) and for the

sake of a unified description, within F (I)
i we keep both

the �-functions at the nucleon poles, and the disconti-
nuities along the multi-particle cuts. The full function

T (I)
3 (⌫, Q2) is reconstructed from a fixed-Q2 dispersion

relation

T (I)
3 (⌫, Q2) =

2

i

1Z

0

d⌫0


1

⌫0 � ⌫
+

⇠I

⌫0 + ⌫

�
F (I)
3 (⌫0, Q2),

(22)

modulo possible subtractions which are needed to make
the dispersion integral convergent. The form of the dis-
persion relation depends on the crossing behavior, the
relative sign ⇠I between the contributions along the pos-
itive and negative real ⌫ axis. It can be shown that
the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
tracted one time.

Putting together Eqs. (17,22) and performing the loop
integral via Wick rotation we arrive at

⇤V A (0)
�W =

↵

⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2
F (0)
3 (⌫, Q2),

⇤V A (3)
�W = 0, (23)

where we introduced the virtual photon three-momentum
q =

p
⌫2 +Q2. The vanishing of the isovector con-

tribution is the consequence of the crossing symmetry,
as has already been noticed by Sirlin [13]. Thus from

now onward we shall represent ⇤V A,(0)
�W simply by ⇤V A

�W
without causing any confusion. Changing the variables
⌫ ! Q2/(2Mx) we notice that the x integral is, up to
a factor, precisely the first Nachtmann moment of the

structure function F (0)
3 ,

1Z

0

d⌫
(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2) =

3

2Q2
M (0)

3 (1, Q2). (24)

The definition of the Nachtmann moments of F3 reads

[15, 16]

M (0)
3 (N,Q2) =

N + 1

N + 2

1Z

0

dx⇠N

x2


2x�

N⇠

N + 1

�
F (0)
3 ,

(25)

where we introduced the Nachtmann variable ⇠ = 2x/(1+p
1 + 4M2x2/Q2). This gives our master formula

⇤V A
�W =

3↵

2⇡

Z 1

0

dQ2M2
W

Q2[M2
W +Q2]

M (0)
3 (1, Q2). (26)

In the old result by MS this connection was not written
explicitly,

⇤V A
�W =

↵

8⇡

Z 1

0

dQ2M2
W

M2
W +Q2

F (Q2), (27)

and we simply note the correspondence,

F (Q2) =
12

Q2
M (0)

3 (1, Q2). (28)

This is the first essentially new result of our work.
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FIG. 3: The W 2�Q
2 diagram showing approximate kinemat-

ical regions which are dominated by various physical mecha-
nisms, as indicated on the plot.

We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these

4

1 is given by

Tµ⌫
�W =

1

2

Z
dxeiq·xhp|T [Jµ

em(x)J⌫
W (0)]|ni (13)

with the following definitions of the electromagnetic and
charged weak current:

Jµ
em =

2

3
ū�µu�

1

3
d̄�µd

Jµ
W = ū�µ(1� �5)d. (14)

Notice that the definition of Tµ⌫
�W above follows that in

the seminal paper by Sirlin [3]. The apparent extra
factor of 1/2 is due to the di↵erence in the normalization
of the charged weak current: Sirlin defined Jµ

w = ūL�µdL
(in the Vud = 1 limit) whereas our definition is two times
larger, as the later is a more common definition in modern
theory and experimental papers.

As the box diagram contains only one heavy bo-
son propagator, it receives contribution from the loop
momentum q at all scales, ranging from infrared (i.e.
q ⇠ me) to ultraviolet. The infrared-singular piece
in T�W , together with the electron and proton wave-
function renormalization, as well as the real-photon
bremsstrahlung diagrams, give rise to the Fermi function
F (�) and the outer-correction ḡ(Em) which are known
analytically. In the meantime, most parts of the inner
corrections from T�W to gV are either exactly known
due to current algebra, or depend only on physics at high
scale and are calculable perturbatively. The only piece
that depends on the physics at the hadron scale involves
the vector-axial vector correlator in Tµ⌫

�W . Following a no-
tation similar to that in Ref. [4], we define its correction
to the tree-level W exchange Fermi amplitude as

TW + TV A
�W = �

p
2GFVud

�
1 +⇤V A

�W

�
ūep/(1� �5)v⌫ ,

(15)

so that it is straightforwardly connected to the universal
radiative correction �V

R via

⇤V A
�W =

1

2

�
�V

R

�V A

�W
. (16)

The explicit expression of ⇤V A
�W is given by:

⇤V A
�W = 4⇡↵Re

Z
d4q

(2⇡)4
M2

W

M2
W +Q2

Q2 + ⌫2

Q4

T3(⌫, Q2)

M⌫
(17)

where Q2 = �q2, ⌫ = p·q/M withM the average nucleon
mass, and T3(⌫, Q2) the parity-odd spin-independent in-
variant amplitude of the forward Compton tensor Tµ⌫

�W

defined through:

Tµ⌫
�W =


�gµ⌫ +

qµq⌫

q2

�
T1 +

p̂µp̂⌫

(p · q)
T2 +

i✏µ⌫↵�p↵q�
2(p · q)

T3,

(18)
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FIG. 2: The contour in the complex ⌫ plane.

with p̂µ = pµ � qµ(p · q)/q2. Notice that since ⇤V A
�W is

insensitive to physics at the scale q ⇠ me, we have set
me, k ! 0 as well as mn = mp = M to arrive Eq. (17).
Furthermore, the fact that the electromagnetic current
comes as a mixture of an isoscalar and isovector permits
a decomposition of the forward amplitude in two isospin
channels,

T3 = T (0)
3 + T (3)

3 . (19)

We apply Cauchy’s theorem to the definite isospin am-

plitudes T (I)
3 (⌫, Q2) (I = 0, 3) accounting for their singu-

larities in the complex ⌫ plane. These lie on the real
axis: poles due to a single nucleon intermediate state

in the s� and u-channels at ⌫ = ±⌫B = ±
Q2

2M , respec-
tively, and unitarity cuts at ⌫ � ⌫⇡ and ⌫  �⌫⇡ where
⌫⇡ = (2Mm⇡+m2

⇡+Q2)/(2M), m⇡ being the pion mass.
The contour is constructed such as to go around all these
singularities, and is closed at infinity, see Fig. 2. The
discontinuity of the forward amplitude in the physical
region (i.e. ⌫ > 0) is given by the generalization of the
DIS structure functions to the �W -interference in the
standard normalization,

DisT (I)
3 (⌫, Q2) = T (I)

3 (⌫ + i✏, Q2)� T (I)
3 (⌫ � i✏, Q2)

= 4⇡F (I)
3 (⌫, Q2) (20)

where

Write T3 as integral 
over discontinuity 
along cut 

Electroproduction structure functions: 
5

W (I)µ⌫
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F (I)
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p̂µp̂⌫

(p · q)
F (I)
2 +

i✏µ⌫↵�p↵q�
2(p · q)

F (I)
3 ,

(21)

(we define Wµ⌫
�W with a coe�cient of (8⇡)�1 instead of

the more common (4⇡)�1 to keep in sync with our def-
inition of Tµ⌫

�W that contains a factor 1/2) and for the

sake of a unified description, within F (I)
i we keep both

the �-functions at the nucleon poles, and the disconti-
nuities along the multi-particle cuts. The full function

T (I)
3 (⌫, Q2) is reconstructed from a fixed-Q2 dispersion

relation
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3 (⌫, Q2) =
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i
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F (I)
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(22)

modulo possible subtractions which are needed to make
the dispersion integral convergent. The form of the dis-
persion relation depends on the crossing behavior, the
relative sign ⇠I between the contributions along the pos-
itive and negative real ⌫ axis. It can be shown that
the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
tracted one time.

Putting together Eqs. (17,22) and performing the loop
integral via Wick rotation we arrive at
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where we introduced the virtual photon three-momentum
q =

p
⌫2 +Q2. The vanishing of the isovector con-

tribution is the consequence of the crossing symmetry,
as has already been noticed by Sirlin [13]. Thus from

now onward we shall represent ⇤V A,(0)
�W simply by ⇤V A

�W
without causing any confusion. Changing the variables
⌫ ! Q2/(2Mx) we notice that the x integral is, up to
a factor, precisely the first Nachtmann moment of the

structure function F (0)
3 ,
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0

d⌫
(⌫ + 2q)

M⌫(⌫ + q)2
F (0)
3 (⌫, Q2) =

3

2Q2
M (0)

3 (1, Q2). (24)

The definition of the Nachtmann moments of F3 reads

[15, 16]
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�
F (0)
3 ,
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where we introduced the Nachtmann variable ⇠ = 2x/(1+p
1 + 4M2x2/Q2). This gives our master formula
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0
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Q2[M2
W +Q2]

M (0)
3 (1, Q2). (26)

In the old result by MS this connection was not written
explicitly,
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We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
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part (elastic peak and resonances). As Q2 grows, these
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modulo possible subtractions which are needed to make
the dispersion integral convergent. The form of the dis-
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relative sign ⇠I between the contributions along the pos-
itive and negative real ⌫ axis. It can be shown that
the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
tracted one time.
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We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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modulo possible subtractions which are needed to make
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relative sign ⇠I between the contributions along the pos-
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the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
tracted one time.
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We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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�W with a coe�cient of (8⇡)�1 instead of

the more common (4⇡)�1 to keep in sync with our def-
inition of Tµ⌫

�W that contains a factor 1/2) and for the

sake of a unified description, within F (I)
i we keep both

the �-functions at the nucleon poles, and the disconti-
nuities along the multi-particle cuts. The full function

T (I)
3 (⌫, Q2) is reconstructed from a fixed-Q2 dispersion
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modulo possible subtractions which are needed to make
the dispersion integral convergent. The form of the dis-
persion relation depends on the crossing behavior, the
relative sign ⇠I between the contributions along the pos-
itive and negative real ⌫ axis. It can be shown that
the isoscalar amplitude is an odd function of ⌫, hence
⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
subtractions, while the isovector one may have to be sub-
tracted one time.

Putting together Eqs. (17,22) and performing the loop
integral via Wick rotation we arrive at

⇤V A (0)
�W =

↵

⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2
F (0)
3 (⌫, Q2),

⇤V A (3)
�W = 0, (23)

where we introduced the virtual photon three-momentum
q =

p
⌫2 +Q2. The vanishing of the isovector con-

tribution is the consequence of the crossing symmetry,
as has already been noticed by Sirlin [13]. Thus from

now onward we shall represent ⇤V A,(0)
�W simply by ⇤V A

�W
without causing any confusion. Changing the variables
⌫ ! Q2/(2Mx) we notice that the x integral is, up to
a factor, precisely the first Nachtmann moment of the

structure function F (0)
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The definition of the Nachtmann moments of F3 reads

[15, 16]

M (0)
3 (N,Q2) =

N + 1

N + 2

1Z

0

dx⇠N

x2


2x�

N⇠

N + 1

�
F (0)
3 ,

(25)

where we introduced the Nachtmann variable ⇠ = 2x/(1+p
1 + 4M2x2/Q2). This gives our master formula
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In the old result by MS this connection was not written
explicitly,
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and we simply note the correspondence,

F (Q2) =
12

Q2
M (0)

3 (1, Q2). (28)

This is the first essentially new result of our work.
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FIG. 3: The W 2�Q
2 diagram showing approximate kinemat-

ical regions which are dominated by various physical mecha-
nisms, as indicated on the plot.

We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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⇠0 = �1, while the isovector amplitude is even (see
Appendix A). Correspondingly, the isoscalar requires no
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We let the data guide us to evaluate the integral in Eq.
(23): for a fixed value of Q2 one has to integrate over the
full spectrum in energy, and then sample all values of
Q2 from 0 to 1. The strength is distributed di↵erently
among di↵erent energy regimes depending on Q2. For
low Q2 the spectrum is heavily weighted towards lower
part (elastic peak and resonances). As Q2 grows, these
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tions, one must consider modifications of the free nucleon
matrix elements due the presence of the nuclear environ-
ment. The standard approach to organizing the radiative
corrections to nuclear � decay followed in Refs. [4, 5, 40]
is summarized in Eq. (1). The quantity appearing in
the denominator is universal, nucleus-independent, and
related to the measured ft values as

Ft(1+�V
R) = ft(1+�0R)(1��C +�NS)(1+�V

R) . (53)

Here, �0R is the nuclear charge-dependent outer correc-
tion; �C corrects the matrix element of the Fermi oper-
ator for the nucleus-dependent isospin symmetry break-
ing e↵ects; �V

R stands for the universal part that stems
from the �W -box on a free nucleon; and �NS accounts
for nuclear structure corrections within the �W -box. The
latter two corrections combined together should be un-
derstood as the �W -box evaluated on a nucleus, with the
inclusive nuclear and hadronic intermediate states taken
into account.
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FIG. 8: Idealized structure of virtual photoabsorption on a
nucleus.

In the context of dispersion relations, it is useful to
visualize these contributions in terms of the nuclear re-
sponse to an external lepton in a manner analogous to
what is shown in Fig. 4. To that end, we show in Fig.
8 an idealized structure of the nuclear electroabsorption
spectrum. While the shape in the hadronic regime is
similar to that for a free nucleon in Fig. 4, the lower
part of the nuclear spectrum contains nuclear resonances
and the quasielastic (QE) peak. The latter includes the
one-nucleon knock-out as well as the knock-out of two or
more nucleons in a single scattering process. The nuclear
structure correction �NS thus accounts for the additional
features of the electroabsportion spectrum on nuclei as
compared to that on a free nucleon.

The �W -box on a nucleus should in principle be cal-
culated in using the full nuclear Greens function. Do-
ing so is challenging, however, since the latter should be
known in the full kinematical range to describe all the ef-
fects from lowest-lying nuclear excitations to shadowing

at high energies. In practice, the nuclear modifications
of the �W -box have been calculated using the nuclear
shell model with a semi-empirical Woods-Saxon poten-
tial (WSSH) [5] and nuclear density functional theory[41].
Attempts to address the calculation of �C in nuclear ap-
proaches other than WSSH suggest that the understand-
ing of the nuclear structure corrections may not be at the
level needed to warrant the current ⇠ 2 ⇥ 10�4 relative
precision of the Ft values [42, 43]. We refer the reader to
a detailed discussion in Ref. [5] which contains the list of
relevant calculations, and the critique to those from the
standpoint of semiempirical Woods-Saxon potential shell
model advocated by the authors of that reference.
In what follows, we focus on the modification of the free

nucleon Born correction (↵/2⇡)CB due to the presence
of the QE response. We defer a treatment of the other
features of the low-lying nuclear spectrum to future work.
To proceed, we recall that the procedure for dividing the
full �W -box on a nucleus into a universal and nucleus-
dependent corresponds to rewriting identically,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
.(54)

The first term is then absorbed in �V
R , while the second

term makes part of �NS :

↵

2⇡
Cfree n

B ⇢ ⇤VA, free n
�W ⇢ �V

R ,

2
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
⌘ �NS . (55)

Note that no approximation has been made at this step.
As a matter of self-consistency, one should compute

the two terms entering �NS in a common framework. In
practice, di↵erent approaches have been utilized to date.
The free nucleon term has been evaluated using phe-
nomenological input from intermediate and high-energy
data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.
Working with the nucleons as the relevant degrees of

freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now
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FIG. 4: Idealized structure of virtual photoabsorption on the
nucleon.

x = Q2/(2M⌫) and y = ⌫/E, with E the initial neu-
trino energy and ⌫ the virtual W laboratory frame en-
ergy, reads [17]
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dxdy
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The P-odd structure functions F ⌫p(⌫̄p)
3 of our interest fol-

low standard definitions:

1
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3 + ... (35)

and their average, F ⌫p+⌫̄p
3 = 1

2 [F
⌫p
3 + F ⌫̄p

3 ] can be ob-
tained from the di↵erence of the neutrino and antineu-
trino cross sections.

We follow the general structure of the parametriza-

tion of F (0)
3 specified in Eq. (29), and describe F ⌫p+⌫̄p

3
at Q2

 2 GeV2 as a sum of elastic (Born) contribu-
tion, non-resonant ⇡N continuum, several low-lying �
and N⇤-resonances, and the high-energy Regge contribu-
tion,

F ⌫p+⌫̄p
3, low�Q2 = F ⌫p+⌫̄p

3,Born + F ⌫p+⌫̄p
3,⇡N + F ⌫p+⌫̄p

3, res + F ⌫p+⌫̄p
3,R .

(36)

Details to the elastic, ⇡N and resonance contributions
are given in the Appendix. Since the Regge contribu-
tion plays a central role in our model, we give its ex-
plicit form here. We assume that it completely dom-
inates at high energies, for W � 2.5 GeV. At lower
energies, we assume that above the two-pion produc-
tion threshold W 2

th = (M + 2m⇡)2 the Regge amplitude
with an appropriate smooth threshold factor fth(W ) =

⇥(W 2
� W 2

th)
⇣
1� exp

n
W 2

th�W 2

⇤2
th

o⌘
represents on aver-

age the contribution of multi-pion and higher energy
channels,
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The Reggeized !-exchange is well described by the Regge
intercept ↵0 ⇡ 0.477 [18], and we choose the parame-
ters ⌫0 = ⇤th = 1 GeV. To continue the Regge ampli-
tude to finite Q2 we assume vector (axial) meson domi-
nance which is reflected in the usual VDM form factors
above. We found however, that the pure VDM does not
describe the data, so we added a phenomenological Q2-
dependent function C(Q2) which is obtained from a fit.
That the pure VDM drops short of the virtual photoab-
sorption data is well-known. This fact has motivated
various generalizations of the VDM which also feature
phenomenological ingredients that are needed to account
for this missing strength. Given the quality of the data,
a simple linear form of C(Q2) was enough to describe
the combined BEBC and Gargamelle data n the range
Q2

2 (0.15, 2.0) GeV2 [19],

C(Q2) = A(1 +BQ2), (38)

with A = 5.2± 1.5 and B = 1.08+0.48
�0.28. The two parame-

ters are strongly anti-correlated.
Above Q2 = 2 GeV2 we use the pQCD result for the

Mellin moment with N3LO corrections calculated in Ref.
[20].

M⌫p+⌫̄p
3 (1, Q2) = 3

"
1�

3X

i=1

Ci

⇣ ↵̄s

⇡

⌘i
#
, (39)
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tions, one must consider modifications of the free nucleon
matrix elements due the presence of the nuclear environ-
ment. The standard approach to organizing the radiative
corrections to nuclear � decay followed in Refs. [4, 5, 40]
is summarized in Eq. (1). The quantity appearing in
the denominator is universal, nucleus-independent, and
related to the measured ft values as

Ft(1+�V
R) = ft(1+�0R)(1��C +�NS)(1+�V

R) . (53)

Here, �0R is the nuclear charge-dependent outer correc-
tion; �C corrects the matrix element of the Fermi oper-
ator for the nucleus-dependent isospin symmetry break-
ing e↵ects; �V

R stands for the universal part that stems
from the �W -box on a free nucleon; and �NS accounts
for nuclear structure corrections within the �W -box. The
latter two corrections combined together should be un-
derstood as the �W -box evaluated on a nucleus, with the
inclusive nuclear and hadronic intermediate states taken
into account.
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FIG. 8: Idealized structure of virtual photoabsorption on a
nucleus.

In the context of dispersion relations, it is useful to
visualize these contributions in terms of the nuclear re-
sponse to an external lepton in a manner analogous to
what is shown in Fig. 4. To that end, we show in Fig.
8 an idealized structure of the nuclear electroabsorption
spectrum. While the shape in the hadronic regime is
similar to that for a free nucleon in Fig. 4, the lower
part of the nuclear spectrum contains nuclear resonances
and the quasielastic (QE) peak. The latter includes the
one-nucleon knock-out as well as the knock-out of two or
more nucleons in a single scattering process. The nuclear
structure correction �NS thus accounts for the additional
features of the electroabsportion spectrum on nuclei as
compared to that on a free nucleon.

The �W -box on a nucleus should in principle be cal-
culated in using the full nuclear Greens function. Do-
ing so is challenging, however, since the latter should be
known in the full kinematical range to describe all the ef-
fects from lowest-lying nuclear excitations to shadowing

at high energies. In practice, the nuclear modifications
of the �W -box have been calculated using the nuclear
shell model with a semi-empirical Woods-Saxon poten-
tial (WSSH) [5] and nuclear density functional theory[41].
Attempts to address the calculation of �C in nuclear ap-
proaches other than WSSH suggest that the understand-
ing of the nuclear structure corrections may not be at the
level needed to warrant the current ⇠ 2 ⇥ 10�4 relative
precision of the Ft values [42, 43]. We refer the reader to
a detailed discussion in Ref. [5] which contains the list of
relevant calculations, and the critique to those from the
standpoint of semiempirical Woods-Saxon potential shell
model advocated by the authors of that reference.
In what follows, we focus on the modification of the free

nucleon Born correction (↵/2⇡)CB due to the presence
of the QE response. We defer a treatment of the other
features of the low-lying nuclear spectrum to future work.
To proceed, we recall that the procedure for dividing the
full �W -box on a nucleus into a universal and nucleus-
dependent corresponds to rewriting identically,
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Note that no approximation has been made at this step.
As a matter of self-consistency, one should compute

the two terms entering �NS in a common framework. In
practice, di↵erent approaches have been utilized to date.
The free nucleon term has been evaluated using phe-
nomenological input from intermediate and high-energy
data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.
Working with the nucleons as the relevant degrees of

freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now
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x = Q2/(2M⌫) and y = ⌫/E, with E the initial neu-
trino energy and ⌫ the virtual W laboratory frame en-
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Details to the elastic, ⇡N and resonance contributions
are given in the Appendix. Since the Regge contribu-
tion plays a central role in our model, we give its ex-
plicit form here. We assume that it completely dom-
inates at high energies, for W � 2.5 GeV. At lower
energies, we assume that above the two-pion produc-
tion threshold W 2

th = (M + 2m⇡)2 the Regge amplitude
with an appropriate smooth threshold factor fth(W ) =

⇥(W 2
� W 2

th)
⇣
1� exp

n
W 2

th�W 2

⇤2
th

o⌘
represents on aver-

age the contribution of multi-pion and higher energy
channels,

F ⌫p+⌫̄p
3,R (⌫, Q2) =

C(Q2)fth(W )⇥
1 +Q2/m2

⇢

⇤ ⇥
1 +Q2/m2

a1

⇤
✓

⌫

⌫0

◆↵0

(37)

The Reggeized !-exchange is well described by the Regge
intercept ↵0 ⇡ 0.477 [18], and we choose the parame-
ters ⌫0 = ⇤th = 1 GeV. To continue the Regge ampli-
tude to finite Q2 we assume vector (axial) meson domi-
nance which is reflected in the usual VDM form factors
above. We found however, that the pure VDM does not
describe the data, so we added a phenomenological Q2-
dependent function C(Q2) which is obtained from a fit.
That the pure VDM drops short of the virtual photoab-
sorption data is well-known. This fact has motivated
various generalizations of the VDM which also feature
phenomenological ingredients that are needed to account
for this missing strength. Given the quality of the data,
a simple linear form of C(Q2) was enough to describe
the combined BEBC and Gargamelle data n the range
Q2

2 (0.15, 2.0) GeV2 [19],

C(Q2) = A(1 +BQ2), (38)

with A = 5.2± 1.5 and B = 1.08+0.48
�0.28. The two parame-

ters are strongly anti-correlated.
Above Q2 = 2 GeV2 we use the pQCD result for the

Mellin moment with N3LO corrections calculated in Ref.
[20].

M⌫p+⌫̄p
3 (1, Q2) = 3

"
1�

3X

i=1

Ci

⇣ ↵̄s

⇡

⌘i
#
, (39)

Single nucleon: PRL 121 (2008) 241804 

ΔR
V = 0.02361(38) ! 0.02467 (22) 
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we explicitly indicate that the phenomenological Q2-
dependent functions CWW and C�W do not have to be
the same. Since we introduced C(Q2) to correct for short-
comings (or incompleteness) of the minimal vector dom-
inance model, it is not guaranteed that C and C�W are
related anywhere except for the point Q2 = 0. To ad-
dress the shape of C�W (Q2), we consider the relation
between the Nachtmann moments of the two structure
functions at the upper limit of the applicability of our
Regge parametrization, Q2 = 2 GeV2 where we can use
the information from the DIS regime.

In the parton model the relative normalization of F (0)
3

with respect to F ⌫p+⌫̄p
3 turns out to be 1/36, as well.

However, the running of the respective first moment has
to be taken into account to extend the DIS description to
Q2 = 2 GeV2. One of the central findings of Ref. [4] was
that while the running of the first moment of F ⌫p+⌫̄p

3 is
fixed by the running of the GLS sum rule, that of the first

moment of F (0)
3 is fixed by the running of the Bjorken

sum rule. Both sum rules were studied in Ref. [20] in
perturbative QCD at N3LO, and we use their results,

M⌫p+⌫̄p
3 (1, Q2) = 3

"
1�

3X

i=1

Ci

⇣ ↵̄s

⇡

⌘i
#
,

#

M (0)
3 (1, Q2) =

1

12

"
1�

3X

i=1

C̃i

⇣ ↵̄s

⇡

⌘i
#
. (42)

The first two coe�cients in the GLS and Bjorken sum
rules are the same C̃1,2 = C1,2, and only at N3LO the
di↵erence appears: C̃3 = 41.440� 7.607Nf +0.177N2

F as
compared to C3 = 41.440� 8.020Nf +0.177N2

F . Numer-
ically, the change due to a 6% shift in the value of the

coe�cient at (↵̄s/⇡)3 is very small, and to a very good
approximation the rescaling 1/36 is thus valid for the full
DIS contribution.
Since at Q2 = 2 GeV2 our Regge contribution is

matched onto the DIS one, the observed agreement of
the 1/36 rescaling rule at low and high Q2 implies that
C�W (Q2) = C(Q2) and no additional phenomenologi-
cal ingredients are necessary. We refer the reader to
Appendix E for a more detailed demonstration of this
equality.

We emphasize here that relating F ⌫p+⌫̄p
3 and F (0)

3
by means of isospin symmetry introduces no additional
uncertainty, up to isospin breaking corrections . 2%.
This is so because the axial vector charge current is a
pure isovector, and the electromagnetic current is a pure
isoscalar. This situation is quite di↵erent from the calcu-
lation of the energy-dependent �Z-box correction to PV
electron scattering. There, the isospin rotation was em-
ployed to obtain the NC �Z interference structure func-
tions from purely electromagnetic data [24]: the elec-
tromagnetic probe is the sum of the isoscalar and the
isovector channels, and the weak NC probe additionally
contains the contribution of the strange flavor channel.
As a result, the isospin decomposition of the inclusive
electromagnetic data together with the flavor rotation to
obtain the NC �Z interference structure functions is the
main source of the uncertainty and has been subject to
an active research recently [24–36].

VI. RESULTS FOR ⇤V A
�W , �R AND �V

R

We are now in the position to combine the results for
the �W -box and �R. We follow the definition

⇤V A
�W =

↵

2⇡
[CDIS + CB + CRegge + C⇡N + CRes], (43)

and give the new results for the C’s. The DIS part
changes only slightly due to lowering the low Q2 cut o↵
from (1.5GeV)2 to 2 GeV2,

CMS
DIS = 1.84 ! Cnew

DIS = 1.87 (44)

The Born is increased because it is integrated up
to infinity, rather than to the matching point Q2 =
(0.823GeV)2, but due to accounting for more recent data
(see Appendix B) the uncertainty is reduced,

CMS
B = 0.829(83) ! Cnew

B = 0.91(5). (45)

The biggest change a↵ects the interpolating function
introduced by MS. It is replaced by the sum of ⇡N , res-
onance and Regge contributions. The central value in-
creases considerably, yet the uncertainty is reduced,

CMS
INT = 0.14(14) ! CRegge + C⇡N + CRes = 0.48(7).

(46)
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The first two coe�cients in the GLS and Bjorken sum
rules are the same C̃1,2 = C1,2, and only at N3LO the
di↵erence appears: C̃3 = 41.440� 7.607Nf +0.177N2

F as
compared to C3 = 41.440� 8.020Nf +0.177N2

F . Numer-
ically, the change due to a 6% shift in the value of the

coe�cient at (↵̄s/⇡)3 is very small, and to a very good
approximation the rescaling 1/36 is thus valid for the full
DIS contribution.
Since at Q2 = 2 GeV2 our Regge contribution is

matched onto the DIS one, the observed agreement of
the 1/36 rescaling rule at low and high Q2 implies that
C�W (Q2) = C(Q2) and no additional phenomenologi-
cal ingredients are necessary. We refer the reader to
Appendix E for a more detailed demonstration of this
equality.

We emphasize here that relating F ⌫p+⌫̄p
3 and F (0)

3
by means of isospin symmetry introduces no additional
uncertainty, up to isospin breaking corrections . 2%.
This is so because the axial vector charge current is a
pure isovector, and the electromagnetic current is a pure
isoscalar. This situation is quite di↵erent from the calcu-
lation of the energy-dependent �Z-box correction to PV
electron scattering. There, the isospin rotation was em-
ployed to obtain the NC �Z interference structure func-
tions from purely electromagnetic data [24]: the elec-
tromagnetic probe is the sum of the isoscalar and the
isovector channels, and the weak NC probe additionally
contains the contribution of the strange flavor channel.
As a result, the isospin decomposition of the inclusive
electromagnetic data together with the flavor rotation to
obtain the NC �Z interference structure functions is the
main source of the uncertainty and has been subject to
an active research recently [24–36].

VI. RESULTS FOR ⇤V A
�W , �R AND �V

R

We are now in the position to combine the results for
the �W -box and �R. We follow the definition

⇤V A
�W =

↵

2⇡
[CDIS + CB + CRegge + C⇡N + CRes], (43)

and give the new results for the C’s. The DIS part
changes only slightly due to lowering the low Q2 cut o↵
from (1.5GeV)2 to 2 GeV2,

CMS
DIS = 1.84 ! Cnew

DIS = 1.87 (44)

The Born is increased because it is integrated up
to infinity, rather than to the matching point Q2 =
(0.823GeV)2, but due to accounting for more recent data
(see Appendix B) the uncertainty is reduced,

CMS
B = 0.829(83) ! Cnew
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The biggest change a↵ects the interpolating function
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F . Numer-
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DIS contribution.
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inserting Eq. (8) into Eq. (6), performing the ν integration,
and changing the integration variable ν0 → Q2=ð2MxÞ we
obtain

□

VA
γW ¼ 3α

2π

Z
∞

0

dQ2

Q2

M2
W

M2
W þQ2

Mð0Þ
3 ð1; Q2Þ; ð9Þ

where Mð0Þ
3 ð1; Q2Þ is the first Nachtmann moment of the

structure function Fð0Þ
3 [24,25]

Mð0Þ
3 ð1; Q2Þ ¼ 4

3

Z
1

0
dx

1þ 2r
ð1þ rÞ2

Fð0Þ
3 ðx;Q2Þ; ð10Þ

and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2x2=Q2

p
. To estimate □

VA
γW , we require

the functional form of Fð0Þ
3 depending on x and Q2, or

equivalently, W2 ¼ M2 þ ð1−xÞQ2=x and Q2.
We draw attention to the fact that Eq. (9) relates [MS]’s

phenomenological function to the first Nachtmann moment

FMSðQ2Þ ¼ 12

Q2
Mð0Þ

3 ð1; Q2Þ; ð11Þ

which will prove useful when comparing their results with
ours. Furthermore, since Fð0Þ

3 depends directly on on-shell
intermediate hadronic states, it provides a better handle on
the physics that may enter at various scales. Figure 2
depicts the domain in theW2–Q2 plane over which Fð0Þ

3 has
support: the single-nucleon elastic pole is at W2 ¼ M2,
and the inelastic continuum covers the region above
W2 > ðM þmπÞ2.
Our parametrization of Fð0Þ

3 is as follows:

Fð0Þ
3 ¼ FBorn þ

"
FpQCD; Q2 ≳ 2 GeV2

FπN þ Fres þ FR; Q2 ≲ 2 GeV2;

ð12Þ

where each component is given by

FBorn ¼ −
1

4
ðGp

M þGn
MÞGAδð1−xÞ ð13Þ

Z
1

0
dxFpQCD ¼ 1

12
½1þ pQCD& ð14Þ

FπN ¼ FχPT × ðFp
1 þ Fn

1Þ
jGAj
gA

ð15Þ

Fres ¼ negligible ð16Þ

FR ¼ CγWfth
m2

ω

m2
ω þQ2

m2
a1

m2
a1 þQ2

#
ν
ν0

$
αρ0
; ð17Þ

and supplies the dominant contribution to Fð0Þ
3 in various

regions indicated in Fig. 2, which we describe next.
We obtain the elastic Born contribution at W2 ¼ M2 in

Eq. (13) by using the updated values of the magnetic Sachs
form factorGM and the axial form factorGA for the nucleon
[26,27]. Above the threshold, W2 ≥ðM þmπÞ2, we con-
sider the dominant physics operating in various of domains
in the Q2–W2 plane separately. At large Q2 ≳ 2 GeV2, the
Nachtmann moment Mð0Þ

3 reduces to the Mellin moment
and is fixed by the sum rule corrected by pQCD in Eq. (14)
by an analogy with that of the polarized Bjorken sum rule
[MS]. At small Q2 ≲ 2 GeV2, we estimate the contribution
[Eq. (15)] near the inelastic threshold by computing the
single pion production contribution FχPT in chiral pertur-
bation theory (χPT) at a leading order. To improve the
behavior of FχPT at a larger Q2, we replace the pointlike
nucleon vertices with measured Dirac and axial nucleon
form factors, F1 and GA. At higherW2, we investigated the
impact of several low-lying I ¼ 1=2 resonances based on a
few models [28–30], and found their contributions to □

VA
γW

to be negligible. Note that Δ resonances do not contribute
since only isoscalar electromagnetic transitions enter Fð0Þ

3 .
Finally, at a large W2, we use the form in Eq. (17)

inspired by Regge phenomenology together with VMD
[31] as illustrated in Fig. 3(a). In this picture, the Regge
behavior ðν=ν0Þα

ρ
0 arises from the exchange of the ρ

trajectory with an intercept αρ0 ¼ 0.477 [32], and is coupled
to the external currents via a1 and ωmesons encoded by the
VMD factors m2

V=ðm2
V þQ2Þ. We include a threshold

function fth ¼ ΘðW2 −W2
thÞð1−exp½ðW2

th −W2Þ=Λ2
th&Þ,

which smoothly vanishes at the two-pion threshold point
W2

th ¼ ðM þ 2mπÞ2 to model the smooth background in the
resonance region [11]. We choose equal values for
the Regge and threshold scales of ν0 ¼ Λth ¼ 1 GeV to
ensure that Regge behavior sets in around W2 ∼
ð2.5 GeVÞ2. The function CγWðQ2Þ accounts for residual

FIG. 2. Phase space of the structure functions Fð0Þ
3 and Fνpþν̄p

3

in the W2–Q2 plane.
FIG. 3. Regge exchange model (a) for Fð0Þ

3 and (b) for Fνpþν̄p
3

using vector meson dominance.
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tions, one must consider modifications of the free nucleon
matrix elements due the presence of the nuclear environ-
ment. The standard approach to organizing the radiative
corrections to nuclear � decay followed in Refs. [4, 5, 40]
is summarized in Eq. (1). The quantity appearing in
the denominator is universal, nucleus-independent, and
related to the measured ft values as

Ft(1+�V
R) = ft(1+�0R)(1��C +�NS)(1+�V

R) . (53)

Here, �0R is the nuclear charge-dependent outer correc-
tion; �C corrects the matrix element of the Fermi oper-
ator for the nucleus-dependent isospin symmetry break-
ing e↵ects; �V

R stands for the universal part that stems
from the �W -box on a free nucleon; and �NS accounts
for nuclear structure corrections within the �W -box. The
latter two corrections combined together should be un-
derstood as the �W -box evaluated on a nucleus, with the
inclusive nuclear and hadronic intermediate states taken
into account.
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FIG. 8: Idealized structure of virtual photoabsorption on a
nucleus.

In the context of dispersion relations, it is useful to
visualize these contributions in terms of the nuclear re-
sponse to an external lepton in a manner analogous to
what is shown in Fig. 4. To that end, we show in Fig.
8 an idealized structure of the nuclear electroabsorption
spectrum. While the shape in the hadronic regime is
similar to that for a free nucleon in Fig. 4, the lower
part of the nuclear spectrum contains nuclear resonances
and the quasielastic (QE) peak. The latter includes the
one-nucleon knock-out as well as the knock-out of two or
more nucleons in a single scattering process. The nuclear
structure correction �NS thus accounts for the additional
features of the electroabsportion spectrum on nuclei as
compared to that on a free nucleon.

The �W -box on a nucleus should in principle be cal-
culated in using the full nuclear Greens function. Do-
ing so is challenging, however, since the latter should be
known in the full kinematical range to describe all the ef-
fects from lowest-lying nuclear excitations to shadowing

at high energies. In practice, the nuclear modifications
of the �W -box have been calculated using the nuclear
shell model with a semi-empirical Woods-Saxon poten-
tial (WSSH) [5] and nuclear density functional theory[41].
Attempts to address the calculation of �C in nuclear ap-
proaches other than WSSH suggest that the understand-
ing of the nuclear structure corrections may not be at the
level needed to warrant the current ⇠ 2 ⇥ 10�4 relative
precision of the Ft values [42, 43]. We refer the reader to
a detailed discussion in Ref. [5] which contains the list of
relevant calculations, and the critique to those from the
standpoint of semiempirical Woods-Saxon potential shell
model advocated by the authors of that reference.
In what follows, we focus on the modification of the free

nucleon Born correction (↵/2⇡)CB due to the presence
of the QE response. We defer a treatment of the other
features of the low-lying nuclear spectrum to future work.
To proceed, we recall that the procedure for dividing the
full �W -box on a nucleus into a universal and nucleus-
dependent corresponds to rewriting identically,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
.(54)

The first term is then absorbed in �V
R , while the second

term makes part of �NS :

↵

2⇡
Cfree n

B ⇢ ⇤VA, free n
�W ⇢ �V

R ,

2
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
⌘ �NS . (55)

Note that no approximation has been made at this step.
As a matter of self-consistency, one should compute

the two terms entering �NS in a common framework. In
practice, di↵erent approaches have been utilized to date.
The free nucleon term has been evaluated using phe-
nomenological input from intermediate and high-energy
data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.
Working with the nucleons as the relevant degrees of

freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now
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FIG. 4: Idealized structure of virtual photoabsorption on the
nucleon.

x = Q2/(2M⌫) and y = ⌫/E, with E the initial neu-
trino energy and ⌫ the virtual W laboratory frame en-
ergy, reads [17]

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡ (1 +Q2/M2
W )

2 (34)

⇥


xy2F1 +

✓
1� y �

Mxy

2E

◆
F2 ± x

✓
y �

y2

2

◆
F3

�
.

The P-odd structure functions F ⌫p(⌫̄p)
3 of our interest fol-

low standard definitions:

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| (Jµ
W )

†
|Xi hX| J⌫

W |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫p
3 + ...

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| Jµ
W |Xi hX| (J⌫

W )† |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫̄p
3 + ... (35)

and their average, F ⌫p+⌫̄p
3 = 1

2 [F
⌫p
3 + F ⌫̄p

3 ] can be ob-
tained from the di↵erence of the neutrino and antineu-
trino cross sections.

We follow the general structure of the parametriza-

tion of F (0)
3 specified in Eq. (29), and describe F ⌫p+⌫̄p

3
at Q2

 2 GeV2 as a sum of elastic (Born) contribu-
tion, non-resonant ⇡N continuum, several low-lying �
and N⇤-resonances, and the high-energy Regge contribu-
tion,

F ⌫p+⌫̄p
3, low�Q2 = F ⌫p+⌫̄p

3,Born + F ⌫p+⌫̄p
3,⇡N + F ⌫p+⌫̄p

3, res + F ⌫p+⌫̄p
3,R .

(36)

Details to the elastic, ⇡N and resonance contributions
are given in the Appendix. Since the Regge contribu-
tion plays a central role in our model, we give its ex-
plicit form here. We assume that it completely dom-
inates at high energies, for W � 2.5 GeV. At lower
energies, we assume that above the two-pion produc-
tion threshold W 2

th = (M + 2m⇡)2 the Regge amplitude
with an appropriate smooth threshold factor fth(W ) =

⇥(W 2
� W 2

th)
⇣
1� exp

n
W 2

th�W 2

⇤2
th

o⌘
represents on aver-

age the contribution of multi-pion and higher energy
channels,

F ⌫p+⌫̄p
3,R (⌫, Q2) =

C(Q2)fth(W )⇥
1 +Q2/m2

⇢

⇤ ⇥
1 +Q2/m2

a1

⇤
✓

⌫

⌫0

◆↵0

(37)

The Reggeized !-exchange is well described by the Regge
intercept ↵0 ⇡ 0.477 [18], and we choose the parame-
ters ⌫0 = ⇤th = 1 GeV. To continue the Regge ampli-
tude to finite Q2 we assume vector (axial) meson domi-
nance which is reflected in the usual VDM form factors
above. We found however, that the pure VDM does not
describe the data, so we added a phenomenological Q2-
dependent function C(Q2) which is obtained from a fit.
That the pure VDM drops short of the virtual photoab-
sorption data is well-known. This fact has motivated
various generalizations of the VDM which also feature
phenomenological ingredients that are needed to account
for this missing strength. Given the quality of the data,
a simple linear form of C(Q2) was enough to describe
the combined BEBC and Gargamelle data n the range
Q2

2 (0.15, 2.0) GeV2 [19],

C(Q2) = A(1 +BQ2), (38)

with A = 5.2± 1.5 and B = 1.08+0.48
�0.28. The two parame-

ters are strongly anti-correlated.
Above Q2 = 2 GeV2 we use the pQCD result for the

Mellin moment with N3LO corrections calculated in Ref.
[20].

M⌫p+⌫̄p
3 (1, Q2) = 3

"
1�

3X

i=1

Ci

⇣ ↵̄s

⇡

⌘i
#
, (39)

Quasielastic response Part of δNS : “ CB
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Impact on δNS 
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• The strength of the nuclear response in the QE
regime is significantly larger than that due to low-
lying nuclear excitations, and covers a broader
range of excitation energy than the latter. Thus,
one might expect that the QE region generally has
a more significant impact on the dispersion integral,
as well. To address the nuclear modification of the
free nucleon contribution in a controlled manner,
the QE knock-out contribution has to be explicitly
included.

• The dynamics in which the same nucleon partici-
pates in the transition to a state involving a quasi-
free nucleon and spectator nucleus are those of the
QE response, whose peak at ! ⇠ Q2/2M can lie
significantly above the low-lying nuclear excitation
spectrum. In the �W -box this contribution cor-
responds to (i) the virtual W+ knocking out one
neutron from the initial nucleus, converting it to
a proton and a spectator nucleus, corresponding
to a subset of intermediate states |ni in the nu-
clear Green’s function and (ii) reabsorbtion of the
quasifree proton into the final nucleus by emitting
a virtual photon.

• The significant store of data for QE electron-
nucleus scattering implies that, to a first approxi-
mation, one may obtain an adequate description of
the QE response using the free-nucleon form factors
without any quenching factors applied. Inclusion
of subdominant e↵ects arising from nuclear correla-
tions and two-body currents may yield O(10�30%)
corrections [47].

• Finally, the QE contribution to �W -box requires
a quasi-free active nucleon between the � and W
couplings rather than a bound nucleon inside an
excited nuclear state; compare Fig. 9b) and a), re-
spectively. The Q2-dependence under the integral
in the box with the low-lying excited nuclear state
as in Fig. 9a), on the other hand, depends on nu-
clear form factors which are known to drop much
faster than the free nucleon form factors, so the as-
sumption that the integral over form factors should
simply rescale as the charges is not justified.

With these observations in mind, we propose an alter-
native method of addressing the modification of the free
nucleon Born contribution by explicitly accounting for
the QE contribution shown in Fig. 9b). This approach
entails (1) employing the dispersion relation framework
to evaluate the contribution from the QE component of
TA
µ⌫ to �NS , and (2) replacing the Towner and Hardy

computation of the same-nucleon contribution to �NS by
our computation of the QE contribution. We defer a
treatment of the contributions from low-lying nuclear ex-
citations to a future, state-of-the-art many-body compu-
tation. We expect that such a computation will take into
account the underlying many-body dynamics responsi-

FIG. 9: Diagrammatic representation of the quenching mech-
anism of the Born contribution in the approach of Refs.
[40, 46] , diagram a) with the initial (final) nucleus A (A0),
and an excited nuclear state Ã accessed via a Gamow-Teller
transition from the initial nucleus and via a magnetic transi-
tion from the final nucleus. Panel b) shows the quasielastic
picture with a single-nucleon knockout.

ble for the quenching of spin-flip transition strengths in
low-lying nuclear transitions.
We now turn to the dispersion representation of the

�W -box correction in Eq. (23) with the nuclear structure

function F (0), Nucl.
3, �W , defined per active nucleon,

⇤V A, Nucl.
�W =

↵

N⇡M

1Z

0

dQ2M2
W

M2
W +Q2

1Z

0

d⌫
(⌫ + 2q)

⌫(⌫ + q)2

⇥F (0), Nucl.
3, �W (⌫, Q2), (64)

with N the number of neutrons (protons) in the �� (�+)
decay process, respectively. and concentrate on the
quasielastic part only. Instead of defining the quench-
ing via a simple rescaling of the Born we will directly
calculate CQE from a dispersion representation,

CQE = 2

1Z

0

dQ2

⌫⇡Z

⌫min

d⌫(⌫ + 2q)

M⌫(⌫ + q)2
F (0), QE
3, �W (⌫, Q2), (65)

with the limits of the ⌫-integration being ⌫min, the
threshold for the quasielastic breakup specified in
Eq. (69) below and ⌫⇡ = (Q2 + (M + m⇡)2 � M2)/2M
the threshold for pion production. Then, we estimate the
modification of the Born contribution discussed above, as

C Nucl.
B = C free n

B + [CQE � C free n
B ]. (66)

For purposes of this exploratory calculation, we de-
scribe the quasielastic peak in the �W box contribution
to a superallowed �+ decay process A ! A0e+⌫e in the
plane-wave impulse approximation (PWIA). In this pic-
ture, a nucleus first splits into an on-shell spectator nu-
cleus A00 and an active o↵-shell nucleon, and the latter
interacts with the gauge bosons. The e↵ective scatter-
ing process proceeds as AW�

! nA00
! A0�, see Fig.

9b). The active nucleon carries an o↵-shell momentum
k before interacting with the gauge boson. To describe
its distribution in the nucleus we adopt the Fermi gas
model, which assumes a uniform distribution of nucleon

�CKM = �0.0006± 0.0005 (1)

M�W =
GFVud
p
2

↵

8⇡


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✓
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2
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Other Nuclear Corrections 

Nuclei  Free nucleons  

11

tions, one must consider modifications of the free nucleon
matrix elements due the presence of the nuclear environ-
ment. The standard approach to organizing the radiative
corrections to nuclear � decay followed in Refs. [4, 5, 40]
is summarized in Eq. (1). The quantity appearing in
the denominator is universal, nucleus-independent, and
related to the measured ft values as

Ft(1+�V
R) = ft(1+�0R)(1��C +�NS)(1+�V

R) . (53)

Here, �0R is the nuclear charge-dependent outer correc-
tion; �C corrects the matrix element of the Fermi oper-
ator for the nucleus-dependent isospin symmetry break-
ing e↵ects; �V

R stands for the universal part that stems
from the �W -box on a free nucleon; and �NS accounts
for nuclear structure corrections within the �W -box. The
latter two corrections combined together should be un-
derstood as the �W -box evaluated on a nucleus, with the
inclusive nuclear and hadronic intermediate states taken
into account.
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FIG. 8: Idealized structure of virtual photoabsorption on a
nucleus.

In the context of dispersion relations, it is useful to
visualize these contributions in terms of the nuclear re-
sponse to an external lepton in a manner analogous to
what is shown in Fig. 4. To that end, we show in Fig.
8 an idealized structure of the nuclear electroabsorption
spectrum. While the shape in the hadronic regime is
similar to that for a free nucleon in Fig. 4, the lower
part of the nuclear spectrum contains nuclear resonances
and the quasielastic (QE) peak. The latter includes the
one-nucleon knock-out as well as the knock-out of two or
more nucleons in a single scattering process. The nuclear
structure correction �NS thus accounts for the additional
features of the electroabsportion spectrum on nuclei as
compared to that on a free nucleon.

The �W -box on a nucleus should in principle be cal-
culated in using the full nuclear Greens function. Do-
ing so is challenging, however, since the latter should be
known in the full kinematical range to describe all the ef-
fects from lowest-lying nuclear excitations to shadowing

at high energies. In practice, the nuclear modifications
of the �W -box have been calculated using the nuclear
shell model with a semi-empirical Woods-Saxon poten-
tial (WSSH) [5] and nuclear density functional theory[41].
Attempts to address the calculation of �C in nuclear ap-
proaches other than WSSH suggest that the understand-
ing of the nuclear structure corrections may not be at the
level needed to warrant the current ⇠ 2 ⇥ 10�4 relative
precision of the Ft values [42, 43]. We refer the reader to
a detailed discussion in Ref. [5] which contains the list of
relevant calculations, and the critique to those from the
standpoint of semiempirical Woods-Saxon potential shell
model advocated by the authors of that reference.
In what follows, we focus on the modification of the free

nucleon Born correction (↵/2⇡)CB due to the presence
of the QE response. We defer a treatment of the other
features of the low-lying nuclear spectrum to future work.
To proceed, we recall that the procedure for dividing the
full �W -box on a nucleus into a universal and nucleus-
dependent corresponds to rewriting identically,

⇤VA, Nucl.
�W = ⇤VA, free n

�W +
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
.(54)

The first term is then absorbed in �V
R , while the second

term makes part of �NS :

↵

2⇡
Cfree n

B ⇢ ⇤VA, free n
�W ⇢ �V

R ,

2
h
⇤VA, Nucl.

�W �⇤VA, free n
�W

i
⌘ �NS . (55)

Note that no approximation has been made at this step.
As a matter of self-consistency, one should compute

the two terms entering �NS in a common framework. In
practice, di↵erent approaches have been utilized to date.
The free nucleon term has been evaluated using phe-
nomenological input from intermediate and high-energy
data as described in the previous sections. The second
(nuclear) term is at present calculated in non-relativistic
nuclear models. The procedure of subtracting the former
from the latter may introduce additional model depen-
dence, raising concerns about additional as of yet un-
quantified theoretical uncertainty. We observe that such
uncertainty would have to be primarily of a systematic,
nucleus-independent nature so as not to spoil the present
agreement with the CVC property of the charged current
weak interaction. In this Section we argue that with the
use of dispersion relations one may evaluate both the
free nucleon term and the nuclear �W -box correction on
an equal footing. In doing so, we will show that the
previous treatment of the latter has, indeed, omitted an
important, universal nuclear correction.
Working with the nucleons as the relevant degrees of

freedom for describing the nuclear structure, the �W -
box calculation has two generic contributions: one arising
from the one-body current operator and a second involv-
ing two-body currents. For a given nuclear model, the
latter are required for consistency with the nuclear con-
tinuity equation (current conservation). Considering now
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FIG. 4: Idealized structure of virtual photoabsorption on the
nucleon.

x = Q2/(2M⌫) and y = ⌫/E, with E the initial neu-
trino energy and ⌫ the virtual W laboratory frame en-
ergy, reads [17]

d2�⌫(⌫̄)

dxdy
=

G2
FME

⇡ (1 +Q2/M2
W )

2 (34)
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The P-odd structure functions F ⌫p(⌫̄p)
3 of our interest fol-

low standard definitions:

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| (Jµ
W )

†
|Xi hX| J⌫

W |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫p
3 + ...

1

4⇡

X

X

(2⇡)4�4(p+ q � pX) hp| Jµ
W |Xi hX| (J⌫

W )† |pi =
i✏µ⌫↵�p↵q�
2(p · q)

F ⌫̄p
3 + ... (35)

and their average, F ⌫p+⌫̄p
3 = 1

2 [F
⌫p
3 + F ⌫̄p

3 ] can be ob-
tained from the di↵erence of the neutrino and antineu-
trino cross sections.

We follow the general structure of the parametriza-

tion of F (0)
3 specified in Eq. (29), and describe F ⌫p+⌫̄p

3
at Q2

 2 GeV2 as a sum of elastic (Born) contribu-
tion, non-resonant ⇡N continuum, several low-lying �
and N⇤-resonances, and the high-energy Regge contribu-
tion,

F ⌫p+⌫̄p
3, low�Q2 = F ⌫p+⌫̄p

3,Born + F ⌫p+⌫̄p
3,⇡N + F ⌫p+⌫̄p

3, res + F ⌫p+⌫̄p
3,R .

(36)

Details to the elastic, ⇡N and resonance contributions
are given in the Appendix. Since the Regge contribu-
tion plays a central role in our model, we give its ex-
plicit form here. We assume that it completely dom-
inates at high energies, for W � 2.5 GeV. At lower
energies, we assume that above the two-pion produc-
tion threshold W 2

th = (M + 2m⇡)2 the Regge amplitude
with an appropriate smooth threshold factor fth(W ) =

⇥(W 2
� W 2

th)
⇣
1� exp

n
W 2

th�W 2

⇤2
th

o⌘
represents on aver-

age the contribution of multi-pion and higher energy
channels,

F ⌫p+⌫̄p
3,R (⌫, Q2) =

C(Q2)fth(W )⇥
1 +Q2/m2

⇢

⇤ ⇥
1 +Q2/m2

a1

⇤
✓

⌫

⌫0

◆↵0

(37)

The Reggeized !-exchange is well described by the Regge
intercept ↵0 ⇡ 0.477 [18], and we choose the parame-
ters ⌫0 = ⇤th = 1 GeV. To continue the Regge ampli-
tude to finite Q2 we assume vector (axial) meson domi-
nance which is reflected in the usual VDM form factors
above. We found however, that the pure VDM does not
describe the data, so we added a phenomenological Q2-
dependent function C(Q2) which is obtained from a fit.
That the pure VDM drops short of the virtual photoab-
sorption data is well-known. This fact has motivated
various generalizations of the VDM which also feature
phenomenological ingredients that are needed to account
for this missing strength. Given the quality of the data,
a simple linear form of C(Q2) was enough to describe
the combined BEBC and Gargamelle data n the range
Q2

2 (0.15, 2.0) GeV2 [19],

C(Q2) = A(1 +BQ2), (38)

with A = 5.2± 1.5 and B = 1.08+0.48
�0.28. The two parame-

ters are strongly anti-correlated.
Above Q2 = 2 GeV2 we use the pQCD result for the

Mellin moment with N3LO corrections calculated in Ref.
[20].

M⌫p+⌫̄p
3 (1, Q2) = 3

"
1�

3X

i=1

Ci

⇣ ↵̄s

⇡

⌘i
#
, (39)

Low-lying transitions Part of δNS  
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Outlook 

•  Fundamental questions motivate the search for 
physics beyond the Standard Model 

•  Tests of fundamental symmetries at low-energy are 
poised to 

•  discover the BSM physics that answers 
several of these questions 

•  determine its character 

•  Robust hadronic & nuclear computations plus 
high sensitivity experiments are essential 
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EDMs: New CPV? 
•  SM 
“background” well 
below new CPV 
expectations 

•  New expts: 102 to 
103 more sensitive 

•  CPV needed for 
BAU?  
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EDMs: New CPV? 
•  SM 
“background” well 
below new CPV 
expectations 

•  New expts: 102 to 
103 more sensitive 

•  CPV needed for 
BAU?  

System Limit (e cm)*   SM CKM CPV BSM CPV 

199 Hg 

ThO 

n 

7.4 x 10-30 

8.7 x 10-29 ** 

3.3 x 10-26 

* 95% CL ** e- equivalent 

10-35 

10-38 

10-31 

10-30 

10-29 

10-26 

neutron 

 proton 
& nuclei 

atoms 

~ 100 x better 
sensitivity Not shown: 

muon 

New ACME: < 1.1 x 10 -29 
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Future Tests 
•  Lattice computation of M3

(0) (Q2) 
 
•  PV electron scattering 

16

Jµ
em � J (3)µ

em at the right hand side of the equation above

and argue that the terms with J (3)µ
em sum up to zero. The

reason is simple: both J (3)µ
em and (J⌫

Z)A are (I = 1, I3 = 0)
objects, so their product can only be (I = 0, I3 = 0) or
(I = 2, I3 = 0). The I = 2 piece obviously vanishes when
taking matrix element with respect to I = 1/2 nucleon
states, while the matrix elements of the I = 0 piece are
the same for the proton and neutron so they cancel each

other. Therefore we can simply replace J (0)µ
em ! Jµ

em at
the right hand side. That leads to the following identity
for the parity-odd structure functions F3:

4F (0)
3 = F p

3,�Z � Fn
3,�Z . (81)

The factor 4 at the left hand side is just due to the

choice of normalization in F (0)
3 . The structure functions

on the RHS are in principle measurable in PV electron
scattering experiments. One should however be aware
of the possible caveats of such correspondence: recall
that the isoscalar component of the electromagnetic cur-
rent is much smaller than its isovector component; so
any attempt based on isospin argument to relate a small
isoscalar EM matrix element to the full EM matrix el-
ement will be more exposed to unknown hadronic com-
plications such as the nucleon anapole moment and the
strange quark e↵ects.

FIG. 10: Regge-model description of FN
3,�Z .

Another significance of PV eN -scattering is its ability

to test our current modeling of F (0)
3 and F ⌫p+⌫̄p

3 simulta-

neously. Recall that F (0)
3 is probing a current product of

the form isoscalar ⇥ isovector while F ⌫p+⌫̄p
3 is of isovec-

tor ⇥ isovector, they can be related to FN
3,�Z of which

the electromagnetic current contains both the isoscalar
isovector components. To illustrate this point let us con-
sider the Regge contribution to FN

3,�Z in total analogy to
those detailed in Appendix E. The exchanged-diagrams
are depicted in Fig. 10, and one observes that the photon
can fluctuate to both ! and ⇢0. The only extra ingredi-
ent needed apart from those in Appendix E is the mixing
Lagrangian between a1 and Z, also given in Ref. [48]:

La1Z = �
gm2

a1

2g⇢ cos ✓W
wa1a

0
1µZ

µ. (82)

With this we can write down the Regge prediction of
FN
3,�Z in complete analogy to Eq. (E4):

F �Z,N
3,R (⌫, Q2) = 2

✓
eg

2 cos ✓W

◆�1✓ e

g!

m2
!

m2
! +Q2

◆✓
�

gwa1

2g⇢ cos ✓W

m2
a1

m2
a1

+Q2

◆⇣g⇢
2
⌧3N

⌘
g1H⇢(⌫, Q

2)

+ 2

✓
eg

2 cos ✓W

◆�1
 

e

g⇢

m2
⇢

m2
⇢ +Q2

!✓
�

gwa1

2g⇢ cos ✓W

m2
a1

m2
a1

+Q2

◆⇣g!
2

⌘
g2H!(⌫, Q

2), (83)

with ⌧3p,n = ±1 the nucleon isospin. From here one im-
mediately observes the relations:

F �Z, p
3,R � F �Z, n

3,R = 4F (0)
3,R

F �Z, p
3,R + F �Z, n

3,R = F ⌫p+⌫̄p
3,R . (84)

which are nothing but direct consequences of isospin sym-
metry; the first line has already been proven above and

the second line works the same way.

There are several benefits of this analysis. Firstly, ac-
cording to the second line in Eq. (84), PV electron scat-
tering (PVES) experiments on deuteron (which is essen-
tially p + n) plays the same role as neutrino scattering
in terms of probing the Regge contribution, thus the two
di↵erent experiments may complement each other in pro-
viding input data to the dispersion relation at wider re-

Isospin relation 

•  SoLID ? 
 
•  EIC ? 

•  More neutrino data for M3
(0) (Q2) 



73 

 0+ ! 0+ Decay: δNS 

One-body Two-body: 
GS ! GS 

Full nuclear Greens fn: 
excited intermediate states  

Towner 1992; T&H compilations  

Needed: state of 
art calc’s & tests 
w/ An  

J. Engel 
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V V V γ γ

V = γ  Beam normal 
asymmetry 

V = Z0, W, γ  
Abrahamyan et al, PRL 
109 (2012) 192501 

•  J Lab Hall A 
•  Future: Mainz, J Lab  

Two-boson exchange in semileptonic processes: important 
for elastic PV eN & eA scattering (12C) & nuclear β-decay; 
beam normal asymmetry, Olympus… provide tests 
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Two-boson exchange in semileptonic processes: important 
for elastic PV eN & eA scattering (12C) & nuclear β-decay; 
beam normal asymmetry provides, Olympus… provide tests 

V V V γ γ

V = Z0, W, γ  

V = γ  Beam normal 
asymmetry 

V = Z0, W Nucleus-dependent QED & 
EW corrections 

Important for O (0.1%) 
probes of PV 12C(e,e’) & 
superallowed β-decay   
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Radiative Corrections & Ft Values 

Corrected ft values: 

Outer 
correction 

Nuclear struct 
part of MγW 

E-independent 

�CKM = �0.0006± 0.0005 (1)

M�W =
GF
p
2

↵

8⇡


ln

✓
M

2

Z

⇤2

◆
+ C�W (⇤)

�
(2)

Ft = ft (1 + �
0
R
) (1 + �NS � �C) (3)

�
Hambye

SI
= f

2

N
(n

2
� 1)

2
⇡↵

4

2
m

4

N

64M
6

W

(4)

�
us

SI
= f

2

p
(n

2
� 1)

2
⇡↵

4

2
m

4

N

64M
4

W
M2

�

✓
9

36⇡2

◆
(5)

1

Q2 +M
2

V

�! r
2

⇡
=

6

M
2

V

(6)

1

Q2 +M
2

A

�! ↵9 + ↵10 ⇠
1

M
2

A

(7)

q
2
! 1 : Tµ⌫(p, q) ⇠

1

q2
(8)

L4 = ⇤
4
+ µ

2
O2 +O4 +

1

⇤BSM

O5 + · · · (9)

O4 = ��H �
†
� H

†
H (10)

O
(8)

fWB
= F̄�

µ⌫
⌧
a

2
HfR

fW a

µ↵
B

↵

⌫
(11)

O
(8)

fW
= F̄�

µ⌫
⌧
a

2
HfR

fW a

µ↵
H

†
H (12)

O
(8)

fB
= F̄�

µ⌫
HfR

eBa

µ↵
H

†
H (13)

1

�CKM = �0.0006± 0.0005 (1)

M�W =
GF
p
2

↵

8⇡


ln

✓
M

2

Z

⇤2

◆
+ C�W (⇤)

�
(2)

Ft = ft (1 + �
0
R
) (1 + �NS � �C) (3)

�
1 +�

NS

E

�
(4)

�
Hambye

SI
= f

2

N
(n

2
� 1)

2
⇡↵

4

2
m

4

N

64M
6

W

(5)

�
us

SI
= f

2

p
(n

2
� 1)

2
⇡↵

4

2
m

4

N

64M
4

W
M2

�

✓
9

36⇡2

◆
(6)

1

Q2 +M
2

V

�! r
2

⇡
=

6

M
2

V

(7)

1

Q2 +M
2

A

�! ↵9 + ↵10 ⇠
1

M
2

A

(8)

q
2
! 1 : Tµ⌫(p, q) ⇠

1

q2
(9)

L4 = ⇤
4
+ µ

2
O2 +O4 +

1

⇤BSM

O5 + · · · (10)

O4 = ��H �
†
� H

†
H (11)

O
(8)

fWB
= F̄�

µ⌫
⌧
a

2
HfR

fW a

µ↵
B

↵

⌫
(12)

O
(8)

fW
= F̄�

µ⌫
⌧
a

2
HfR

fW a

µ↵
H

†
H (13)

1

Nuclear struct 
part of MγW 

E-dependent 

Nucl wavef’n 

Not a RC 



77 

Radiative Corrections & Vud 

Superallowed 

Hadronic & short 
distance part of MγW 
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