BSM Physics: Nuclei as Laboratories

M.J. Ramsey-Musolf *U Mass Amherst*

http://www.physics.umass.edu/acfi/

My pronouns: he/him/his

Nuclei as BSM Laboratories ECT* April 2019

Key Theme for This Talk

- Fundamental questions motivate the search for physics beyond the Standard Model
- Tests of fundamental symmetries at low-energy are poised to
 - discover the BSM physics that answers several of these questions
 - determine its character
- Robust hadronic & nuclear computations plus high sensitivity experiments are essential

Goals For This Talk

- Put nuclear tests of fundamental symmetries & neutrino property studies in broader BSM context
- Highlight a few areas of inter-frontier implications
- Emphasize new directions for theoretical work

Outline

I. The BSM Context Origin of Matter
 II. Lepton Number
 III. CP (Flavor Conserving)
 IV. Precision Tests: β-Decay Highlight
 V. Outlook

I. The BSM Context

Fundamental Questions

MUST answer

Origin of m_v

SHOULD answer

$$H^0$$
 $\Delta m^2 \sim \lambda \Lambda^2$

Fermion Masses & Baryon Asymmetry

BSM Physics: Where Does it Live?

BSM Physics: Where Does it Live?

Low-Energy / High-Energy Interplay

II. Lepton Number

Highlight: TeV LNV

Collaborators: T. Peng, P. Winslow; J. Harz, S. Quirroga, S. Shen

PRD 93 (2016) 093002

Fermion Masses & Baryon Asymmetry

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H} \nu_R + \mathrm{h.c.}$$

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H}
u_R + \mathrm{h.c.}$$
 $\mathcal{L}_{\mathrm{mass}} = rac{y}{\Lambda} \bar{L}^c H H^T L + \mathrm{h.c.}$ Dirac Majorana

Impact of observation

- Total lepton number not conserved at classical level
- New mass scale in nature, Λ
- Key ingredient for standard baryogenesis via leptogenesis

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H} \nu_R + \mathrm{h.c.}$$

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H}
u_R + \mathrm{h.c.}$$
 $\mathcal{L}_{\mathrm{mass}} = rac{y}{\Lambda} \bar{L}^c H H^T L + \mathrm{h.c.}$

Dirac Majorana

Impact of observation

- Total lepton number not conserved at classical level
- New mass scale in nature, Λ
- Key ingredient for standard baryogenesis via leptogenesis

BSM Physics: Where Does it Live?

Is the mass scale associated with m_{ν} far above M_W ? Near M_W ? Well below M_{W} ?

LNV Mass Scale & 0νββ-Decay

- 3 light neutrinos only: source of neutrino mass at the very high see-saw scale
- 3 light neutrinos with TeV scale source of neutrino mass
- > 3 light neutrinos

LNV Mass Scale & 0νββ-Decay

- 3 light neutrinos only: source of neutrino mass at the very high see-saw scale
- 3 light neutrinos with TeV scale source of neutrino mass
- > 3 light neutrinos

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H} \nu_R + \mathrm{h.c.}$$

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H} \nu_R + \mathrm{h.c.}$$
 $\mathcal{L}_{\mathrm{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \mathrm{h.c.}$

Dirac Majorana

"Standard" Mechanism

- Light Majorana mass generated at the conventional see-saw scale: $\Lambda \sim 10^{12} - 10^{15} \text{ GeV}$
- 3 light Majorana neutrinos mediate decay process

LNV Mass Scale & 0νββ-Decay

$$A(Z,N)
ightarrow Underlying Physics
ightarrow A(Z+2, N-2) + e^-e^-$$

- 3 light neutrinos only: source of neutrino mass at the very high see-saw scale
- 3 light neutrinos with TeV scale source of neutrino mass
- > 3 light neutrinos

Two parameters: Effective coupling & effective heavy particle mass

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \widetilde{H} \nu_R + \mathrm{h.c.}$$

$$\mathcal{L}_{ ext{mass}} = rac{y}{\Lambda} ar{L}^c H H^T L + ext{h.c.}$$

Majorana

TeV LNV Mechanism

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_v
- m_{MIN} << 0.01 eV but $0v\beta\beta$ -signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H} \nu_R + \mathrm{h.c.}$$
 $\mathcal{L}_{\mathrm{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \mathrm{h.c.}$

Dirac Majorana

TeV LNV Mechanism

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_v
- m_{MIN} << 0.01 eV but $0v\beta\beta$ -signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

$$\mathcal{L}_{ ext{mass}} = y ar{L} ilde{H}
u_R + ext{h.c.}$$

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H}
u_R + \mathrm{h.c.}$$
 $\mathcal{L}_{\mathrm{mass}} = rac{y}{\Lambda} \bar{L}^c H H^T L + \mathrm{h.c.}$ Dirac Majorana

TeV LNV Mechanism

$$\frac{A_H}{A_L} \sim \frac{M_W^4 \bar{k}^2}{\Lambda^5 m_{\beta\beta}}$$

O(1) for $\Lambda \sim 1$ TeV

Implications

TeV LNV & Leptogenesis

TeV LNV & Leptogenesis

Baryogenesis alternatives

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H}
u_R + \mathrm{h.c.}$$

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H} \nu_R + \mathrm{h.c.}$$
 $\mathcal{L}_{\mathrm{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \mathrm{h.c.}$ Dirac Majorana

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H} \nu_R + \mathrm{h.c.}$$

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H} \nu_R + \mathrm{h.c.}$$
 $\mathcal{L}_{\mathrm{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \mathrm{h.c.}$ Dirac Majorana

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H} \nu_R + \mathrm{h.c.}$$

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H}
u_R + \mathrm{h.c.}$$
 $\mathcal{L}_{\mathrm{mass}} = rac{y}{\Lambda} \bar{L}^c H H^T L + \mathrm{h.c.}$ Dirac Majorana

0νββ-Decay: TeV Scale LNV & m_ν

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H}
u_R + \mathrm{h.c.}$$
 $\mathcal{L}_{\mathrm{mass}} = rac{y}{\Lambda} \bar{L}^c H H^T L + \mathrm{h.c.}$

Dirac Majorana

Implications for m_v:

Schecter-Valle: non-vanishing
Majorana mass at (multi) loop level

Simplified model: possible (larger) one loop Majorana mass

0νββ-Decay: TeV Scale LNV & m_ν

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H} \nu_R + \mathrm{h.c.}$$
 $\mathcal{L}_{\mathrm{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \mathrm{h.c.}$

Dirac

Majorana

Implications for m_v:

Ονββ / LHC Interplay: Matrix Elements

$$\mathcal{L}_{ ext{mass}} = y ar{L} \widetilde{H}
u_R + ext{h.c.}$$

$$\mathcal{L}_{\mathrm{mass}} = y \bar{L} \tilde{H} \nu_R + \mathrm{h.c.}$$
 $\mathcal{L}_{\mathrm{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \mathrm{h.c.}$

Dirac Majorana

Benchmark Sensitivity: TeV LNV

T. Peng, MRM, P. Winslow 1508.04444

III. CP (Flavor Conserving)

Highlight: EW Baryogenesis, Dark Z

Collaborators: T. Chupp, K. Fuyuto, X.-G. He, S. Inoue, G. Li, Y. Li, G. Ovanesyan, S. Profumo, S. Shen

Fermion Masses & Baryon Asymmetry

Baryogenesis Scenarios

Era of EWSB: $t_{univ} \sim 10 \text{ ps}$

Electroweak Baryogenesis

- Was Y_B generated in conjunction with electroweak symmetry-breaking?
- To what extent can EDM searches test this scenario?

EDMs & EWBG: MSSM & Beyond

Heavy sfermions: LHC consistent & suppress 1-loop EDMs

 $\chi_a^+ \chi_a^+ \chi_a^+ \chi_a^+ \chi_a^+ \chi_a^+ \chi_a^+ \chi_a^+ \chi_a^- \chi_a^$

Sub-TeV EW-inos: LHC & EWB - viable but non-universal phases

Li, Profumo, RM '09-'10

EDMs: What We May Learn

CPV for EWBG

"Two-Step EW Baryogenesis"

Two CPV sources for baryon asymmetry

BSM Physics: Where Does it Live?

BSM Physics: T (CP) Invariant?

Dark Photon Portal

New CPV?

Dark Photon Portal

SM SU(2) Triplet

Mediator

X

Dark Sector

Thanks: K. Fuyuto

CPV Dark Photon

 $X - \gamma$ Mixing

EDM

CPV Dark Photon

EDM Complementarity

Paramagnetic Systems: Two Sources

Paramagnetic Systems: Two Sources

Chupp, Fierlinger, R-M, Singh 1710.02504; Fleig & Jung 1802.02171

Inclusion of HfF+ : ~ 6 times stronger bounds on $d_e \& C_S \to 2.5$ higher on Λ

New ThO → even stronger!

Illustrative Example: Leptoquark Model

Fuyuto, R-M, Shen 1804.01137

(3, 2, 7/6)

$$\mathcal{L} \ni -\lambda_u^{ab} \bar{u}_R^a X^T \epsilon L^b - \lambda_e^{ab} \bar{e}_R^a X^\dagger Q^b + \text{h.c.}$$

Illustrative Example: Leptoquark Model

(3, 2, 7/6)

$$\mathcal{L} \ni -\lambda_u^{ab} \bar{u}_R^a X^T \epsilon L^b - \lambda_e^{ab} \bar{e}_R^a X^{\dagger} Q^b + \text{h.c.}$$

IV. Precision Tests

Highlight: β *-decay*

Collaborators: M. Gorchtein, H. Patel, C. Seng

PRL 121 (2018) 241804 [1807.10197], 1812.03352

Precision ~ BSM Mass Scale

$$\Delta_{SM} = (O_{EXP} - O_{SM}) / O_{SM}$$

Precision Goal: *

$$\delta \Delta_{SM} \sim O(10^{-4})$$

Heavy BSM Physics:

$$\Delta_{SM} \sim C (v/\Lambda)^2$$

$$\Lambda \sim 10 \text{ TeV (tree)}$$

$$\Lambda < 1$$
 TeV (loop)

^{*} Can be ~ 10^{-3} or larger if O_{SM} suppressed

Weak Decays: CKM Unitarity

$$d \to u e^- \overline{\nu}_e$$

$$s \to u e^- \overline{\nu}_e$$

$$b \to u e^- \overline{\nu}_e$$

$$(u \quad c \quad t) \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\Delta_{\text{CKM}} = (|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2)_{\text{exp}} - 1$$

$$0.94906 \pm 0.00041 \qquad 0.05031 \pm 0.00022 \qquad 0.00002$$

$$\Delta_{\rm CKM} = -0.0006 \pm 0.0005$$

Precision ~ BSM Mass Scale

Precision Goal:

$$\delta \Delta_{CKM} \sim O(10^{-4})$$

Heavy BSM Physics:

$$\Delta_{CKM} \sim C (v/\Lambda)^2$$

$$\Lambda < 1 \text{ TeV (loop)}$$

Ultralight BSM Physics:

$$\Delta_{\rm CKM} \sim \varepsilon^2 \ (\alpha/4\pi)$$
 $\varepsilon < 1 \ (loop)$

Error Budget

$$\Delta_{\text{CKM}} = (|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2)_{\text{exp}} - 1$$

$$0.94906 \pm 0.00041$$

$$0.05031 \pm 0.00022$$

$$0.00002$$

Error Budget

$$\Delta_{\text{CKM}} = (|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2)_{\text{exp}} - 1$$

 0.94906 ± 0.00041

Radiative Correction

Factor of 2 reduction using disp relations

Thanks: J. Hardy

Error Budget

$$\Delta_{\text{CKM}} = (|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2)_{\text{exp}} - 1$$

 0.94906 ± 0.00041

Radiative Correction

Factor of 2 reduction using disp relations

Nuclear Correction

Increase due to previously omitted contributions

Thanks: J. Hardy

Radiative Corrections

Dominant source of uncertainty:

Long distance

Sensitive to hadronic & nuclear dynamics

Dispersion Relations

Dispersion relation:

Write T₃ as integral over discontinuity along cut

$$T_3^{(I)}(\nu, Q^2) = \frac{2}{i} \int_0^\infty d\nu' \left[\frac{1}{\nu' - \nu} + \frac{\xi^I}{\nu' + \nu} \right] F_3^{(I)}(\nu', Q^2)$$

Electroproduction structure functions:

$$W_{\gamma W}^{(I)\mu\nu} = \frac{1}{8\pi} \sum_{X} (2\pi)^4 \delta^4(p + q - p_X) \langle p | J_{em}^{(I)\mu} | X \rangle \langle X | J_W^{\nu} | n \rangle$$
$$= \left[-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right] F_1^{(I)} + \frac{\hat{p}^{\mu}\hat{p}^{\nu}}{(p \cdot q)} F_2^{(I)} + \frac{i\epsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2(p \cdot q)} F_3^{(I)}$$

$$d\sigma \propto L_{\mu\nu}W^{\mu\nu}$$

Dispersion Relations

$$ar{v}_{e}$$
 0+(f) Radiative Correction:
$$\Box_{\gamma W}^{VA\,(0)} \,=\, rac{lpha}{\pi M} \int\limits_{0}^{\infty} rac{dQ^{2} M_{W}^{2}}{M_{W}^{2} + Q^{2}} \int\limits_{0}^{\infty} d
u rac{(
u + 2q)}{
u(
u + q)^{2}} F_{3}^{(0)}(
u, Q^{2})$$

$$= \frac{3\alpha}{2\pi} \int_0^\infty \frac{dQ^2 M_W^2}{Q^2 [M_W^2 + Q^2]} M_3^{(0)}(1, Q^2)$$

Nachtmann Moments:

$$M_3^{(0)}(N,Q^2) = \frac{N+1}{N+2} \int_0^1 \frac{dx\xi^N}{x^2} \left[2x - \frac{N\xi}{N+1} \right] F_3^{(0)}$$

$$\xi = 2x \left(1 + \frac{4M^2x^2}{Q^2} \right)^{-1}$$

Dispersion Relations

Radiative Correction:

$$\Box_{\gamma W}^{VA\,(0)} \; = \; \frac{\alpha}{\pi M} \int_{0}^{\infty} \frac{dQ^2 M_W^2}{M_W^2 + Q^2} \int_{0}^{\infty} d\nu \frac{(\nu + 2q)}{\nu(\nu + q)^2} F_3^{(0)}(\nu, Q^2)$$

$$= \; \frac{3\alpha}{2\pi} \int_{0}^{\infty} \frac{dQ^2 M_W^2}{Q^2 [M_W^2 + Q^2]} M_3^{(0)}(1, Q^2)$$

- Relate $F_3^{(0)}$ and $M_3^{(0)}$ to data and/or
- Compute F₃⁽⁰⁾ and M₃⁽⁰⁾ using same methods used to describe semileptonic scattering processes with nucleon & nuclear targets

Leptoproduction: Had & Nuc Response

Nuclei

Free nucleons

Leptoproduction: Had & Nuc Response

Nuclei

Free nucleons

Single nucleon: PRL 121 (2008) 241804

 $\Delta_R^{\ V} = 0.02361(38) \rightarrow 0.02467 (22)$

Wy Box: Update from 2006

$$\Box_{\gamma W}^{VA} = \frac{\alpha}{2\pi} [C_{DIS} + C_B + C^{Regge} + C^{\pi N} + C^{Res}]$$

$$C_{DIS}^{MS} = 1.84 \rightarrow C_{DIS}^{new} = 1.87$$

$$C_B^{MS} = 0.829(83) \rightarrow C_B^{new} = 0.91(5)$$

$$C_{INT}^{MS} = 0.14(14) \rightarrow C^{Regge} + C^{\pi N} + C^{Res} = 0.48(7)$$

$$F_{\rm MS}(Q^2) = \frac{12}{O^2} M_3^{(0)}(1, Q^2)$$

Leptoproduction: Had & Nuc Response

New work 64

Impact on δ_{NS}

$$\Delta \,\delta_{NS} = \frac{\alpha}{\pi} \left(C_{QE} - q_S^{(0)} q_A C_B \right) = -(4.6 \pm 0.9) \times 10^{-4}$$

Our new work: QE response

Towner & Hardy

Features:

- Few x 10^{^-4}
- Error bar?
- Refinements?

Other Nuclear Corrections

Nuclei

Free nucleons

Low-lying transitions

Part of $\delta_{\rm NS}$

Outlook

- Fundamental questions motivate the search for physics beyond the Standard Model
- Tests of fundamental symmetries at low-energy are poised to
 - discover the BSM physics that answers several of these questions
 - determine its character
- Robust hadronic & nuclear computations plus high sensitivity experiments are essential

Back Up Slides

TeV LNV & Leptogenesis

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
ThO	8.7 x 10 ⁻²⁹ **	10 ⁻³⁸	10 ⁻²⁹
n	3.3 x 10 ⁻²⁶	10 -31	10 ⁻²⁶

* 95% CL ** e⁻ equivalent New ACME: < 1.1 x 10⁻²⁹

Mass Scale Sensitivity

$$\psi$$
 φ $\sin\phi_{\rm CP} \sim 1 \to M > 5000~{
m GeV}$ ψ ψ φ $M < 500~{
m GeV} \to \sin\phi_{\rm CP} < 10^{-2}$

$$\sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$$

M < 500 GeV
$$ightarrow$$
 sin $\phi_{ extsf{CP}}$ < 10-2

EDMs: New CPV?

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
ThO	8.7 x 10 ⁻²⁹ **	10-38	10 ⁻²⁹
n	3.3 x 10 ⁻²⁶	10 - ³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent *New ACME:* < 1.1 x 10⁻²⁹

- * neutron
- proton& nuclei
- **★** atoms

~ 100 x better sensitivity

Not shown: muon

Future Tests

- Lattice computation of M₃⁽⁰⁾ (Q²)
- PV electron scattering

Isospin relation

$$4F_3^{(0)} = F_{3,\gamma Z}^p - F_{3,\gamma Z}^n$$

- SoLID?
- EIC ?
- More neutrino data for M₃⁽⁰⁾ (Q²)

$0^+ ightarrow 0^+$ Decay: $\delta_{ m NS}$

Dispersion Corrections

Two-boson exchange in semileptonic processes: important for elastic PV eN & eA scattering (12 C) & nuclear β -decay; beam normal asymmetry, Olympus... provide tests

- J Lab Hall A
- Future: Mainz, J Lab

Dispersion Corrections

Two-boson exchange in semileptonic processes: important for elastic PV eN & eA scattering (12 C) & nuclear β -decay; beam normal asymmetry provides, Olympus... provide tests

Important for O(0.1%) probes of PV ¹²C(e,e') & superallowed β -decay

Radiative Corrections & Ft Values

Corrected ft values:

Radiative Corrections & V_{ud}

Superallowed

$$|V_{ud}|^2 = \frac{2984.43s}{\mathcal{F}t(1+\Delta_R^V)}$$

Hadronic & short distance part of $\mathbf{M}_{\gamma W}$

Neutron

