

Ruben Saakyan
University College London
Atomic Nuclei for BSM Physics
Trento
17-Apr-2019

- Overview of Double Beta Decay
- Recent Results
- g_A, 2vββ decay and all that jazz...
- Next Steps
 - Experiments aimed at exploring inverted ordering of neutrino masses
- Speculations for "ultimate" experiment
 - attacking normal ordering, O(1 meV)

<u>Disclaimer</u>: Impossible to do justice to such a vibrant field. Apologies for omitting many brilliant ideas and experiments.

- Overview of Double Beta Decay
- Recent Results
- g_A, 2vββ decay and all that jazz...
- Next Steps
 - Experiments aimed at exploring inverted ordering of neutrino masses
- Speculations for "ultimate" experiment

 Only if I have time
 - attacking normal ordering, O(1 meV)

<u>Disclaimer</u>: Impossible to do justice to such a vibrant field. Apologies for omitting many brilliant ideas and experiments.

 Neutrinos provide the only "particle physics evidence" beyond the SM

Remaining Big Questions:

- Neutrino mass ordering: normal vs inverted
- CP- violation Dirac phase

OVBB

- Lepton number violation (LNV)
- addressed by Majorana vs Dirac — mass mechanism
- CP- violation Majorana phases
- Neutrino mass ordering: normal vs inverted

The nuclear process of $0v\beta\beta$ is the most sensitive way to address LNV

 Neutrinos provide the only "particle" physics evidence" beyond the SM

Remaining Big Questions:

- Neutrino mass ordering: normal vs inverted
- CP- violation Dirac phase

- Lepton number violation (LNV)
- addressed by Majorana vs Dirac — mass mechanism
- CP- violation Majorana phases
- Neutrino mass ordering: normal vs inverted

The nuclear process of $0v\beta\beta$ is the most sensitive way to address LNV

OVBB

And of course neutrinos are historic dark matter (recall Zeldovich Pancakes!). They are still part of HDM!

Rebranding 0vββ

Search for Matter Creation[©]

Proton Decay: "Disappearance" of nucleons

Neutrinoless
Double Beta Decay
"Creation" of
electrons

© Francesco Vissani

$\Delta L = 2!$ (a. k. a. Matter Creation)

phase space phase space
$$\frac{\frac{\text{NME}}{\text{Nasty}}}{\frac{1}{T_{1/2}^{0v}}} = G^{0v}(Q_{\beta\beta}, Z) \left| M^{0v} \right|^2 \eta^2$$

Most discussed mechanism: Light Majorana neutrino exchange

 η can be due to $\langle m_v \rangle$, V+A Majoron, SUSY, H--, leptoquarks, or a combination of them

Coherent sum over neutrino amplitudes

$$\langle m_{v} \rangle = \left| \sum_{ei} U_{ei}^{2} m_{i} \right| = \left| U_{e1}^{2} m_{1} + U_{e2}^{2} m_{2} e^{i\alpha_{21}} + U_{e3}^{2} m_{3} e^{i\alpha_{31}} \right|$$

Observation of LNV would have profound implications beyond neutrino physics

1935

M. Goeppert-Mayer Phys. Rev. 48, 512 –

Published 15 September 1935

Over **40 nuclei** can undergo $\beta\beta$ -decay (including $\beta^+\beta^+$ and 2K-capture) Only \sim **9** experimentally **feasible**

$$\Gamma^{2\nu} = \frac{1}{T_{1/2}^{2\nu}} = G^{2\nu} g_A^4 |M^{2\nu}|^2$$

- Direct experimental access to NME
- Possible sensitivity to g_A

Isotope	Nat. Abundance (%)	Q _{ββ} (MeV)		
Ca48	0.187	4.274		
Ge76	7.8	2.039		
Se82	9.2	2.996		
Zr96	2.8	3.348		
Mo100	9.6	3.035		
Cd116	7.6	2.809		
Te130	34.5	2.530		
Xe136	8.9	2.462		
Nd150	5.6	3.367		

Experimental Observables

Also: individual electron energies, Ee1, Ee2, and angle θ between them

(available only from NEMO-3/SuperNEMO)

$$\Gamma^{0\nu} = G^{0\nu} \left(g_A^4 \middle| M^{0\nu} \middle|^2 \right) \left\langle m \right\rangle^2$$

- Significant effort from different groups and different nuclear models
- Question of g_A quenching under study
- No isotope has clear preference. Choice driven by experimental considerations.
- Multiple isotope confirmation crucial
- Experimental input important
 - » 2vββ decay
 - » charge exchange reactions
 - » muon capture

g_A could be quenched in nuclear matter

Experimental input from $2\nu\beta\beta$ (and single- β) possible

Experimental Sensitivity

maximise exposure = mass (isotope) × time

maximise efficiency & isotope abundance

$$T_{1/2}^{0v}$$
 (90% C.L.) = 2.54×10²⁶ y $\left(\frac{\varepsilon \times a}{W}\right)\sqrt{\frac{M \times t}{b \times \Delta E}}$

40

45

50

Take Home Message:

10

 $T_{1/2}\sim 10^{26} yr (< m_v>\sim 50-100 meV)$ with 100kg isotope — ~1 event/yr!

• Large isotope mass

15

• Superior background suppression

25

Exposure (kg years)

30

Good energy resolution

- Backgrounds: Cosmic ray muons (underground lab is a must)
 - Natural radioactivity ²³⁸U, ²³²Th, neutrons,...
 - 2νββ

Natural Radioactivity Backgrounds

- Suppress radioactive backgrounds, primarily Uranium and Thorium decay chain products which are present in all materials.
 - $T_{1/2}(^{232}\text{Th},^{238}\text{U}) \sim 10^{10} \text{ years}$
 - $T_{1/2}(0v\beta\beta) > 10^{25}-10^{26} \text{ years}$

 Background from 2νββ: energy resolution and isotope choice.

Pushing low-background technology limits

2.4 ²²²Rn atoms/m³ of N₂/He/Ar/etc.
or
1 part in 10²⁵!!!

Synergy with Dark Matter experiments

2vbb results, intermediate nuclear states and g_A

Best results from 2vββ

Isotope	T _{1/2} (10 ¹⁹ yrs)	Experiment	
⁴⁸ Ca	6.4 ± 1.2	NEMO-3	
⁷⁶ Ge	192.6 ± 9.4	GERDA	
⁸² Se	9.4 ± 0.6	NEMO-3	
⁹⁶ Zr	2.35 ± 0.21	NEMO-3	
¹⁰⁰ Mo	0.68 ± 0.05	NEMO-3	
¹¹⁶ Cd	2.74 ± 0.18	NEMO-3/Aurora	
¹³⁰ Te	79 ± 2	CUORE	
¹³⁶ Xe	216.5 ± 6.1	EXO-200	
¹⁵⁰ Nd	0.93 ± 0.06	NEMO-3	

- Probe nuclear models
 - SSD vs HSD
- Possible experimental access to g_A
- Ultimate background characterisation
- Sensitive to exotic new physics
 - (LNV with Majoron, Lorentz violation, boson neutrinos, G_{F} variation etc)

Plastic

NEMO-3 - 20 sectors with ~10 kg of isotopes

NEMO-3 "camembert"

Data taking 2003-2011 at LSM, Frejus tunnel

25G B-field
Passive shielding
+ anti-radon shielding

Wire Chamber

95% He + 4% C₂H₆O + 1% Ar

PMTs

100Mo
100Mo
100Mo
1100Mo
1100M

(source top view)

[∞]Mo 6,9 kg

82Se 0,93 kg

40Ca 6,99 g

 $\beta\beta$ isotope foils

NEMO-3. 2vββ input to NME

arXiv:1903.08084

¹⁰⁰**Mo**

Single State Dominance vs Higher States Dominance

NEMO-3. 2vββ input to NME. SSD vs HSD

NEMO-3. 2vββ input to NME. SSD vs HSD

EPJ C78, 821 (2018)

Unexpectedly, data favour SSD. HSD excluded at 2.1σ

Other indications from charge-exchange reactions: 82Se(3He,3H)82Br D. Frekers et al., Phys. Rev, C94 014614 (2016)

$$T_{1/2}^{2\nu} = [9.39 \pm 0.17(\text{stat}) \pm 0.58(\text{syst})] \times 10^{19} \text{ yr with SSD}$$

c.f. if HSD: $T_{1/2}^{2\nu} = [10.63 \pm 0.19(\text{stat}) \pm 0.66(\text{syst})] \times 10^{19} \text{ yr}$

Largest discriminating power in *single electron energy distributions*

Reformulate SSD vs HSD in order to extract g_A from 2vββ?

F.Šimkovic et al. Phys. Rev. C 97, 034315 (2018)

 $\varepsilon_{K} = (E_{e2} + E_{v2} - E_{e1} - E_{v1})/2$ $\varepsilon_{r} = (E_{e1} + E_{v2} - E_{e2} - E_{v1})/2$

Usually lepton energies are neglected

$$M_{GT}^{K,L} \simeq M_{GT}^{2v} = m_e \sum_{n} \frac{M_n}{E_n - (E_i + E_f)/2}$$

$$M_{GT}^{K,L} \simeq M_{GT}^{2v} = m_e \sum_n \frac{M_n}{E_n - (E_i + E_f)/2} \quad \text{c.f. full expression} \qquad M_{GT}^{K,L} = m_e \sum_n M_n \frac{E_n - (E_i + E_f)/2}{\left[E_n - (E_i + E_f)/2\right]^2 - \mathcal{E}_{K,L}^2}$$

$$M_n = \left\langle 0_f^+ \middle| \sum_m \tau_m^- \sigma_m \middle| 1_n^+ \right\rangle \left\langle 1_n^+ \middle| \sum_m \tau_m^- \sigma_m \middle| 0_i^+ \right\rangle$$

Include lepton energies by performing Taylor expansion

$$[T_{1/2}^{2v}]^{-1} = \frac{\Gamma^{2v}}{\ln 2} \simeq \frac{\Gamma_0^{2v} + \Gamma_2^{2v} + \Gamma_4^{2v}}{\ln 2}$$

where
$$M_0 = (M_{GT-1}^{2v})^2$$
, $M_2 = M_{GT-1}^{2v} M_{GT-3}^{2v}$, etc

$$M_{GT-1}^{2v} \equiv M_{GT}^{2v}, \ M_{GT-3}^{2v} = \sum_{n} M_{n} \frac{4m_{e}^{3}}{[E_{n} - (E_{i} + E_{f})/2]^{3}}$$

Keeping only first expansion term

$$\frac{\Gamma_0^{2v}}{\ln 2} \simeq (g_A^{eff})^4 M_0 G_0^{2v}, \quad \frac{\Gamma_0^{2v}}{\ln 2} \simeq (g_A^{eff})^4 M_2 G_2^{2v}
\frac{\Gamma_4^{2v}}{\ln 2} \simeq (g_A^{eff})^4 (M_4 G_4^{2v} + M_{22} G_{22}^{2v})$$

$$[T_{1/2}^{2v}]^{-1} \simeq (g_A^{eff})^4 (|M_{GT-1}^{2v}|^2 G_0^{2v} + M_{GT-1}^{2v} M_{GT-3}^{2v} G_2^{2v})$$

Introducing
$$\xi_{31}^{2v} = \frac{M_{GT-3}^{2v}}{M_{GT-1}^{2v}}$$

the previous

$$[T_{1/2}^{2v}]^{-1} \simeq (g_A^{eff})^4 (|M_{GT-1}^{2v}|^2 G_0^{2v} + M_{GT-1}^{2v} M_{GT-3}^{2v} G_2^{2v})$$

can be rewritten as

$$[T_{1/2}^{2\nu\beta\beta}]^{-1} \simeq (g_A^{eff})^4 |M_{GT-3}^{2\nu}|^2 \frac{1}{|\xi_{31}^{2\nu}|^2} (G_0^{2\nu} + \xi_{31}^{2\nu} G_2^{2\nu})$$

$$\xi_{31}^{2v} = \frac{M_{GT-3}^{2v}}{M_{GT-1}^{2v}}$$

is sensitive to contributions from $\xi_{31}^{2v} = \frac{M_{GT-3}^{2v}}{M_{GT-1}^{2v}}$ low-lying intermediate states (SSD, SSD+) since

$$M_{GT-3}^{2v} = \sum_{n} M_{n} \frac{4m_{e}^{3}}{\left[E_{n} - (E_{i} + E_{f})/2\right]^{3}}$$

is suppressed for higher states

F.Šimkovic et al. Phys. Rev. C 97, 034315 (2018)

$$\left[T_{1/2}^{2\nu\beta\beta}\right]^{-1} \simeq \left(g_A^{\rm eff}\right)^4 \left|M_{GT-3}^{2\nu}\right|^2 \frac{1}{\left|\xi_{31}^{2\nu}\right|^2} \left(G_0^{2\nu} + \xi_{31}^{2\nu} G_2^{2\nu}\right)$$

$$\xi_{31}^{2\nu} = \frac{M_{GT-3}^{2\nu}}{M_{GT-1}^{2\nu}}$$

Fit energy spectra of $2\nu\beta\beta$ electrons to extract $\xi_{31}^{2\nu}$

Then use NME calculations and experimental $T_{1/2}(2v)$ measurement to constraint g_A (M^{2v})

KamLAND-Zen

arXiv:1901.03871

Starts excluding some of NME models

Chimney

More discriminating power in single electron energy distribution

F.Šimkovic et al. Phys. Rev. C 97, 034315 (2018)

Angular distributions being looked it

NEMO-3/SuperNEMO technique is likely to be most sensitive here

0νββ Results and Next Generation Experiments

Best results from 0vββ

$$T_{1/2}^{0v}$$
 (90% C.L.) = 2.54 × 10²⁶ y $\left(\frac{\varepsilon \times a}{W}\right)\sqrt{\frac{M \times t}{b \times \Delta E}}$

Isotope, mass	Q _{ββ} , keV	b x ΔE x M, counts/yr	T _{1/2} , yr	<m<sub>v>, eV</m<sub>	Experiment, technique
⁷⁶ Ge, 40kg	2039	0.07	> 0.9 x 10 ²⁶	< 0.11-0.25	GERDA, HPGe
⁸² Se, 5kg	2998	0.4	> 2.4 x 10 ²⁴	< 0.38-0.77	CUPID-0, scintillating bolometers
¹⁰⁰ Mo, 7kg	3034	1.5	> 1.1 x 10 ²⁴	< 0.33-0.62	NEMO-3, tracko-calo
¹³⁰ Te, 200kg	2528	21	> 1.5 x 10 ²⁵	< 0.13-0.50	CUORE, bolometers
¹³⁶ Xe, 380kg	2458	1	> 1.07 x 10 ²⁶	< 0.06-0.16	KamLAND- Zen, doped LS

Different techniques reach similar sensitivity with different isotope mass

HP76Ge

- Enriched ⁷⁶Ge crystals (in LAr in case of GERDA)
- Particle ID with single-site ($\beta\beta$) vs multiple-site (γ) events using pulse shape

- Superior $\Delta E/E \sim 0.15\%$ at 2039 keV (Q_{ββ})
- High detection efficiency ~ 70-90%

- Low $Q_{\beta\beta}$ = 2039 keV. Need to reach longer $T_{1/2}$ for same $< m_v >$
- Single isotope

Broad Energy Ge detectors (BEGe) — "solid state TPC"

Broad Energy Ge detectors (BEGe) — "solid state TPC"

Broad Energy Ge detectors (BEGe) — "solid state TPC"

GERDA (76Ge)

- Enriched ⁷⁶Ge crystals in LAr
- Superior $\Delta E/E \sim 0.15\%$ at 2039 keV (Q_{ββ})
- High detection efficiency ~ 70-90%

Upgrades in summer 2018:

- 5 inverted coax detectors (LEGEND-200 prototypes)
- Improved LAr veto

GERDA (76Ge)

Best fit N⁰ $^{\circ}$ = 0 T⁰ $^{\circ}$ _{1/2} > 0.9 · 10²⁶ yr (90% C.L.) Median sensitivity (NO Signal) T⁰ $^{\circ}$ _{1/2} > 1.1 · 10²⁶ yr (90% C.L.)

 $m_{\beta\beta} < 0.11 - 0.25 \text{ eV}$

- Enriched ⁷⁶Ge crystals in LAr
- Superior $\Delta E/E \sim 0.15\%$ at 2039 keV (Q_{ββ})
- High detection efficiency ~ 70-90%

Upgrades in summer 2018:

- 5 inverted coax detectors (LEGEND-200 prototypes)
- Improved LAr veto

Merging the best of GERDA and Majorana:

E.g. LAr veto of GERDA and ultra-pure copper/electronics of Majorana

Phased approach

LEGEND-200 (first phase):

- up to 200 kg of detectors
- BI ~0.6 cts/(FWHM t yr)
- use existing GERDA infrastructure at LNGS
- design exposure: 1 t yr
- Sensitivity 10²⁷ yr
- Isotope procurement ongoing
- Start in 2021

LEGEND-1000 (second phase):

- 1000 kg of detectors (deployed in stages)
- BI <0.1 cts/(FWHM t yr)
- Location tbd
- Design exposure 12 t yr
- $1.2 \times 10^{28} \text{ yr}$

LEGEND Sensitivity

90% CL exclusion

3σ evidence

KamLAND-Zen ¹³⁶Xe in Liquid Scintillator

Upcoming: KamLAND-Zen 800

- New inner ballon installation in May'18
- Final preparations to load 800 kg of 136Xe underway
- DAQ expect to start this year
- 50 meV sensitivity
- Improved scintillator and PMT coverage

 $\sigma(2.6 MeV)=4\% \rightarrow < 2.5\%$ Target $\langle m_{\beta\beta} \rangle \sim 20 meV$ in 5 yrs

SNO+ ¹³⁰Te in Liquid Scintillator

- Has been operating with water since Spring 2017@SNOLAB
- Background model in good agreement with data
- First solar-v results
- Transition to scintillator later this month
- Te loading envisaged this year
- Phase-I result by 2024
 - R&D on increased loading
 - If successful 15-50 meV in phase-II

Bolometers

Scintillating bolometers to suppress surface contamination background

Light Detector Zn82Se Light Energy release Scintillating bolometer

- Excellent $\Delta E/E \sim 0.2-0.3\%$ at $Q_{\beta\beta}$
- Multiple isotopes possible
- Complex ultra-low temperature technology

Significant synergies with direct DM detection technologies

Prospects for CUPID

¹⁰⁰Mo, ¹³⁰Te

Results of the ongoing R&D and demonstrators + CUORE background model

- Li₂¹⁰⁰MoO₄ scintillating bolometers → promising baseline option for CUPID
- 2. ¹³0TeO₂ Cherenkov bolometers → mature viable alternative
 - Fast and high-sensitivity light detectors are a common R&D
 - Detection of Cherenkov light in TeO₂
 - Rejection of 2v2β random coincidences in Li₂¹⁰⁰MoO₄

The purpose of CUPID is to fully explore the IO region

Mission: half-life sensitivity higher than 10²⁷ y

With background < 0.1 counts/(ton y) in the ROI, 100 Mo sensitivity is $2.1x10^{27}$ y m_{BB} < 6-17 meV

- CUPID collaboration will be formed in the near future
- CUPID kick-off meeting is being planned in fall 2018

akino C

LXe-TPC EXO-200 and nEXO

EXO-200 at WIPP. Active L136Xe mass ~110kg

Towards nEXO

- Self-shielding better for larger detectors!
- Sensitivity estimates rely on <u>measured</u> materials

Ba-tagging

Possibility to identify daughter ¹³⁶Ba to eliminate all backgrounds apart from 2vββ

NEXT — High Pressure ¹³⁶Xe TPC

NEXT-100 aims to start in 2019

NEXT100 Standard

Exposure (kg year)

800

- High-Pressure ¹³⁶Xe TPC (10-20 bar)
- Topological signature to suppress backgrounds
- EL amplification allows for good ΔE/E <1% at Qββ
- Prototypes operated at LSC (Canfranc, Spain) show reaching resolutions and backgrounds possible

Ba-tagging might be easier in gas

200

Planning for success: In the event of a discovery in IH region

Opportunity for:

- Multi-isotope confirmation
- Exploring underlying physics mechanism (need not be <m_v>)

- Experience from **SuperNEMO Demonstrator** suggests 10²⁶ yr (50 meV) tracking experiment possible
- Can the technique be extended to confirm signal anywhere in IH region?
- Under study. There is no "no-go theorem" but requires targeted R&D in parallel with Demonstrator exploitation

Phys. Rev. D 96, 053001 (2017)

Outlook into Future Sensitivity

Global Bayesian analysis including neutrino oscillations, ³H β-decay, 0vββ decay, cosmology Scale-invariant priors: $\Sigma = m_1 + m_2 + m_3$; $\Delta m_{ij}^2 \rightarrow logarithmic$

 $\theta_{ij}, \delta, \alpha_{ij} \rightarrow \text{flat}$

3σ Bayesian discovery probability

Thoughts and speculations on "ultimate" experiment

*Targeting Normal Ordering of neutrino masses, O(meV)

A straightforward extrapolation: Reaching O(meV) requires at least 10t of isotope

Adopted from arXiv:1803.06894

Isotope	Abundance, %	Cost/kg, k\$	Cost/10t, M\$
⁷⁶ Ge	7.61	80	640
⁸² Se	8.73	80	640
¹⁰⁰ Mo	9.63	80	640
¹³⁰ Te	34.08	20	160
¹³⁶ Xe	8.87	5-10	40-80

- Gaseous centrifugation is currently the only feasible isotope enrichment method
 - Current production capacity ~200kg/yr. But x10 increase possible
- 130Te and 136Xe significantly more affordable
- Future breakthrough in enrichment may change this picture

Sensitivity and expected number of 0vbb events after 10t x 10yr = 100 t×yr

Range due to NME uncertainties

$$< m_v > = 5 \text{ meV}$$

Isotope	T _{1/2} (x10 ²⁹ yr)	No of events in ROI	
⁴⁸ Ca	0.23-5.6	1.5-37	
⁷⁶ Ge	0.48-3.1	1.8-11.5	
⁸² Se	0.14-0.83	6-36	
⁹⁶ Zr	0.05-0.44	10-86	
¹⁰⁰ M o	0.05-0.17	24-82	
¹³⁰ Te	0.1-1.6	2-32	
¹³⁶ Xe	0.16-1.2	.16-1.2 2.5-19	
¹⁵⁰ Nd	0.02-0.23	12-140	

$< m_v > = 3 \text{ meV}$

Isotope	T _{1/2} (x10 ²⁹ yr)	No of events in ROI
⁴⁸ Ca	0.64-16	0.5-13.4
⁷⁶ Ge	1.3-8.5	0.7-4.2
82Se	0.4-2.3	2.2-12.5
⁹⁶ Zr	0.14-1.2	3.6-30.7
¹⁰⁰ M o	0.13-0.47	9-32
¹³⁰ Te	0.3-4.4	1-11
¹³⁶ Xe	0.4-3.2	1-8
¹⁵⁰ Nd	0.06-0.33	8.5-47

For $\langle m_v \rangle = 1$ meV only 100t×yr of ¹⁵⁰Nd has any events in Rol: 0.5-5.6

- Assuming an "ideal" detector (good ΔE/E, ε~90-100%, b×ΔE~0) the most promising isotopes appear to be ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹⁵⁰Nd.
- Only ⁸²Se and ¹⁰⁰Mo can be enriched with current technologies but the cost is >0.6B\$ only for isotopes (>1B\$ for detector)
- ¹³⁰Te and ¹³⁶Xe are suitable for a more economical detector (~0.5B\$ price tag).
- An "ideal" (see above) detector with ¹³⁰Te and ¹³⁶Xe will have some discovery potential in 3-5 meV region.
- A 10t detector with ¹⁵⁰Nd could in principle explore a region down to 1 meV. A drastically cheaper technology for ¹⁵⁰Nd enrichment will be required.
- Upshot: The "meV" 0vββ experiment will require consolidation of world-wide effort and breakthroughs in a number of technologies

Concluding Remarks I

- 0vββ is the most sensitive way to probe Lepton Number
 Violation and its connection to neutrino mass mechanism
- The case for 0vββ is compelling regardless of nature's choice for neutrino mass ordering
- 0vββ community is technologically ready for experiments exploring IO region down to 10-20 meV — Next Generation NDBD (NG-NDBD)
 - Phased approach is a must with every stage informing the next phase.
 - Important to be open minded about mechanism behind LNV (beyond neutrino mass)

Concluding Remarks II

- Consolidation of effort is required as NDBD become O(\$100M) experiments.
 - –With experiments operational in mid-2020's. 10 meV target may be reached by mid-late 2030's
 - –Does it make sense to push for synergies with DM more aggressively (e.g. combined DM/NDBD LXe experiment)?
- A major international effort is required for R&D towards "ultimate" experiment aimed at exploring NO region down to O(meV)

BACKUP

10⁻¹⁰

Equivalent Vertical Depth (km w.e.)

LEGEND-200 background projections

- Monte Carlo simulations based on experimental data and material assays.
- Assay limits correspond to the 90% CL upper limit.
- Grey bands indicate uncertainties in overall background rejection efficiency.

50

Comparison of projected sensitivities after a nominal 5 year SNO+ run (2024) assuming we remain at the nominal 0.5% Te loading level:

SNO+ Water run background results

Topological Signature in NEXT

The quenching of ga

by J. Suhonen

$$0\nu\beta\beta - \text{rate} \sim \left| M_{\text{GTGT}}^{(0\nu)} \right|^2 = (g_{\text{A},0\nu})^4 \left| \sum_{J^{\pi}} (0_f^+ || \mathcal{O}_{\text{GTGT}}^{(0\nu)}(J^{\pi}) || 0_i^+) \right|^2$$

potentially harmful!

Can it be extracted from double- $\beta(2v)$ and single- β experimental data?

$$2\nu\beta\beta - \text{rate} \sim \left| M_{\text{GTGT}}^{(2\nu)} \right|^2 = (g_{\text{A}})^4 \left| \sum_{m,n} \frac{M_{\text{L}}(1_m^+)M_{\text{R}}(1_n^+)}{D_m} \right|^2$$

Yes, but still need nuclear physics model

Possible input from SuperNEMO Demonstrator (single electron spectra/angular distribution)

Collaboration with Simkovic and Deppisch

poster by A. Leder

Measuring 115In β-decay shape with LiInSe₂ crystal

Nuclear Model	g_A Value	Error	Best χ^2
Shell Model	0.83	± 0.03	158.2
MQPM Model	0.94	+0.03 -0.04	170.5
IBM Model	0.880	± 0.06	269.0

gA quenching status as of Neutrino'18

Mass range	A = 76 - 82	A = 100 - 116	A = 122 - 136
$g_{ m A,0 u}^{ m eff}$	0.7 - 0.9	0.5	0.5 - 0.7

by J. Suhonen

Too early to panic — quenching must depend on momentum transfer

Petcov: Do you mean we do not understand gA quenching?

Suhonen: Yes. Thank you for summarising my talk.

Reformulate SSD vs HSD in order to extract g_A from 2vββ?

F.Šimkovic et al. Phys. Rev. C 97, 034315 (2018)

$$\left[T_{1/2}^{2\nu}\right]^{-1} = \frac{m_e}{8\pi^7 \ln 2} (G_\beta m_e^2)^4 \left(g_A^{\text{eff}}\right)^4 I^{2\nu},$$

$$\mathcal{A}^{2\nu} = \left[\frac{1}{4} |M_{GT}^K + M_{GT}^L|^2 + \frac{1}{12} |M_{GT}^K - M_{GT}^L|^2 \right],$$

where

$$M_{GT}^{K,L} = m_e \sum_{n} M_n \frac{E_n - (E_i + E_f)/2}{[E_n - (E_i + E_f)/2]^2 - \varepsilon_{K,L}^2}$$

with

$$M_n = \langle 0_f^+ \parallel \sum_m \tau_m^- \sigma_m \parallel 1_n^+ \rangle \langle 1_n^+ \parallel \sum_m \tau_m^- \sigma_m \parallel 0_i^+ \rangle,$$

$$\varepsilon_K = (E_{e_2} + E_{\nu_2} - E_{e_1} - E_{\nu_1})/2,$$

 $\varepsilon_L = (E_{e_1} + E_{\nu_2} - E_{e_2} - E_{\nu_1})/2.$

$$\begin{split} I^{2\nu} &= \frac{1}{m_e^{11}} \int_{m_e}^{E_i - E_f - m_e} F_0(Z_f, E_{e_1}) p_{e_1} E_{e_1} dE_{e_1} \\ &\times \int_{m_e}^{E_i - E_f - E_{e_1}} F_0(Z_f, E_{e_2}) p_{e_2} E_{e_2} dE_{e_2} \\ &\times \int_{0}^{E_i - E_f - E_{e_1} - E_{e_2}} E_{\nu_1}^2 E_{\nu_2}^2 \mathcal{A}^{2\nu} dE_{\nu_1}. \end{split}$$

Include lepton energies by performing Taylor expansion over the ratio $\varepsilon_{K,L}/(E_n-(E_i+E_f)/2)$

Reformulate SSD vs HSD in order to extract g_A from 2vββ?

F.Šimkovic et al. Phys. Rev. C 97, 034315 (2018)

Then

$$\left[T_{1/2}^{2\nu}\right]^{-1} \equiv \frac{\Gamma^{2\nu}}{\ln{(2)}} \simeq \frac{\Gamma_0^{2\nu} + \Gamma_2^{2\nu} + \Gamma_4^{2\nu}}{\ln{(2)}}$$

$$\begin{split} &\frac{\Gamma_0^{2\nu}}{\ln{(2)}} = \left(g_A^{\text{eff}}\right)^4 \mathcal{M}_0 G_0^{2\nu}, \quad \frac{\Gamma_2^{2\nu}}{\ln{(2)}} = \left(g_A^{\text{eff}}\right)^4 \mathcal{M}_2 G_2^{2\nu} \\ &\frac{\Gamma_4^{2\nu}}{\ln{(2)}} = \left(g_A^{\text{eff}}\right)^4 \left(\mathcal{M}_4 G_4^{2\nu} + \mathcal{M}_{22} G_{22}^{2\nu}\right). \end{split}$$

Keeping only first expansion term

$$(T_{1/2}^{2\nu})^{-1} \simeq (g_A^{\text{eff}})^4 \left| (M_{GT}^{2\nu})^2 G_0^{2\nu} + M_{GT}^{2\nu} M_{GT-3}^{2\nu} G_2^{2\nu} \right|$$

= $(g_A^{\text{eff}})^4 |M_{GT-3}^{2\nu}|^2 \frac{1}{|\xi_{21}^{2\nu}|^2} \left| G_0^{2\nu} + \xi_{31}^{2\nu} G_2^{2\nu} \right|$,

$$\xi_{31}^{2\nu} = \frac{M_{GT-3}^{2\nu}}{M_{GT-1}^{2\nu}}$$

Reformulate SSD vs HSD in order to extract g_A from 2vββ?

F.Šimkovic et al. Phys. Rev. C 97, 034315 (2018)

or in full:

$$G_N^{2\nu} = \frac{c_{2\nu}}{m_e^{11}} \int_{m_e}^{E_i - E_f - m_e} F_0(Z_f, E_{e_1}) p_{e_1} E_{e_1} dE_{e_1}$$

$$\times \int_{m_e}^{E_i - E_f - E_{e_1}} F_0(Z_f, E_{e_2}) p_{e_2} E_{e_2} dE_{e_2} \qquad (14)$$

$$\times \int_{0}^{E_i - E_f - E_{e_1} - E_{e_2}} E_{\nu_2}^2 A_N^{2\nu} dE_{\nu_1}, \quad (N=0, 2, 4, 22)$$
with $c_{2\nu} = m_e (G_{\beta} m_e^2)^4 / (8\pi^7 \ln 2)$ and
$$A_0^{2\nu} = 1, \quad A_2^{2\nu} = \frac{\varepsilon_K^2 + \varepsilon_L^2}{(2m_e)^2},$$

$$A_{22}^{2\nu} = \frac{\varepsilon_K^2 \varepsilon_L^2}{(2m_e)^4}, \quad A_4^{2\nu} = \frac{\varepsilon_K^4 + \varepsilon_L^4}{(2m_e)^4}.$$

The products of nuclear matrix elements are given by

$$\mathcal{M}_0 = (M_{GT-1}^{2\nu})^2,$$
 $\mathcal{M}_2 = M_{GT-1}^{2\nu} M_{GT-3}^{2\nu},$
 $\mathcal{M}_{22} = \frac{1}{3} (M_{GT-3}^{2\nu})^2,$
 $\mathcal{M}_4 = \frac{1}{3} (M_{GT-3}^{2\nu})^2 + M_{GT-1}^{2\nu} M_{GT-5}^{2\nu},$ (16)

where nuclear matrix elements take the forms

$$M_{GT-1}^{2\nu} \equiv M_{GT}^{2\nu}$$

$$M_{GT-3}^{2\nu} = \sum_{n} M_{n} \frac{4 m_{e}^{3}}{(E_{n} - (E_{i} + E_{f})/2)^{3}},$$

$$M_{GT-5}^{2\nu} = \sum_{n} M_{n} \frac{16 m_{e}^{5}}{(E_{n} - (E_{i} + E_{f})/2)^{5}}.$$
 (17)

By introducing two ratios of nuclear matrix elements,

$$\xi_{31}^{2\nu} = \frac{M_{GT-3}^{2\nu}}{M_{GT-1}^{2\nu}}, \quad \xi_{51}^{2\nu} = \frac{M_{GT-5}^{2\nu}}{M_{GT-1}^{2\nu}},$$
 (18)

$$\begin{split} \left[T_{1/2}^{2\nu\beta\beta}\right]^{-1} &= \left(g_A^{\text{eff}}\right)^4 \left|M_{GT-1}^{2\nu}\right|^2 \left(G_0^{2\nu} + \xi_{31}^{2\nu}G_2^{2\nu} + \frac{1}{3} \left(\xi_{31}^{2\nu}\right)^2 G_{22}^{2\nu} + \left(\frac{1}{3} \left(\xi_{31}^{2\nu}\right)^2 + \xi_{51}^{2\nu}\right) G_4^{2\nu}\right), \end{split}$$