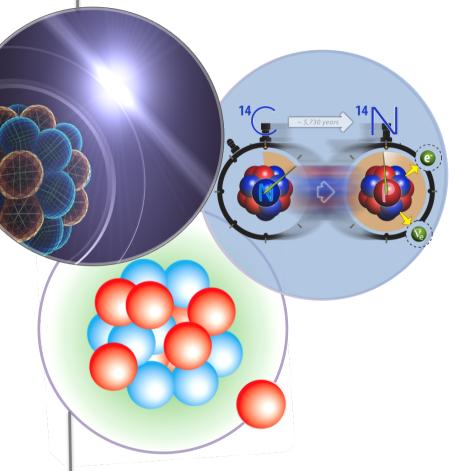
Coupled-cluster calculations of (double-) beta decays

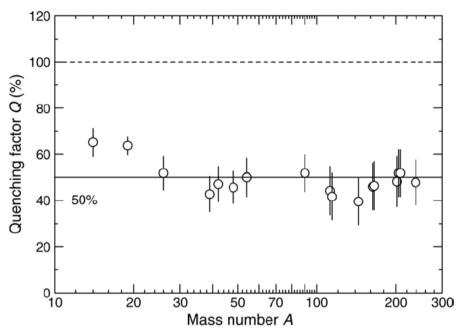
Gaute Hagen
Oak Ridge National Laboratory

Atomic nuclei as laboratories for BSM physics

ECT, April 17th, 2019



A 50 year old problem: The puzzle of quenched of beta decays

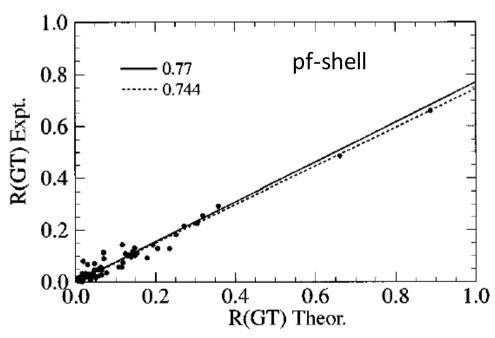


Quenching obtained from charge-exchange (p,n) experiments. (Gaarde 1983).

This work: Focus on strong Gamow-Teller transitions from light to heavy nuclei using state-of-the-art manybody methods with interactions and currents from Chiral EFT

- Renormalizations of the Gamow-Teller operator?
- Missing correlations in nuclear wave functions?
- Model-space truncations?
- Two-body currents (2BCs)?

G. Martinez-Pinedo et al, PRC 53, R2602 (1996)



Discrepancy between experimental and theoretical β-decay rates resolved from first principles

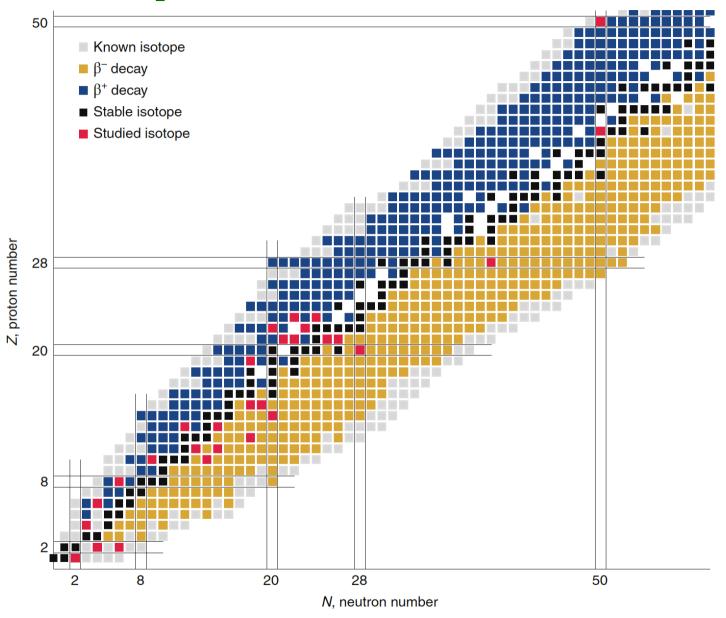
P.Gysbers^{1,2}, G.Hagen^{0,3,4}*, J.D.Holt^{0,1}, G.R.Jansen^{0,3,5}, T.D.Morris^{3,4,6}, P.Navrátil^{0,1}, T.Papenbrock^{0,3,4}, S.Quaglioni^{0,7}, A.Schwenk^{8,9,10}, S.R.Stroberg^{1,11,12} and K.A.Wendt⁷

The dominant decay mode of atomic nuclei is beta decay (β-decay), a process that changes a neutron into a proton (and vice versa). This decay offers a window to physics beyond the standard model, and is at the heart of microphysical processes in stellar explosions and element synthesis in the Universe¹⁻³. However, observed β -decay rates in nuclei have been found to be systematically smaller than for free neutrons: this 50-yearold puzzle about the apparent quenching of the fundamental coupling constant by a factor of about 0.75 (ref. 4) is without a first-principles theoretical explanation. Here, we demonstrate that this quenching arises to a large extent from the coupling of the weak force to two nucleons as well as from strong correlations in the nucleus. We present state-of-the-art computations of β-decays from light- and medium-mass nuclei to ¹⁰⁰Sn by combining effective field theories of the strong and weak forces⁵ with powerful quantum many-body techniques⁶⁻⁸. Our results are consistent with experimental data and have implications for heavy element synthesis in neutron star mergers⁹⁻¹¹ and predictions for the neutrino-less double-β-decay³, where an analogous quenching puzzle is a source of uncertainty in extracting the neutrino mass scale12.

data, and precision, from the systematically improvable EFT expansion. Moreover, EFT enables a consistent description of the coupling of weak interactions to two nucleons via two-body currents (2BCs). In the EFT approach, 2BCs enter as subleading corrections to the one-body standard Gamow–Teller operator $\sigma \tau^+$ (with Pauli spin and isospin matrices σ and τ , respectively); they are smaller but significant corrections to weak transitions as three-nucleon forces are smaller but significant corrections to the nuclear interaction ^{5,17}.

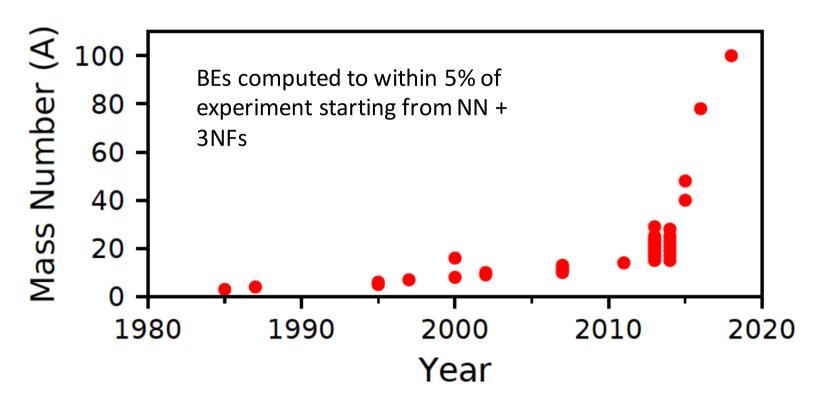
In this work we focus on strong Gamow–Teller transitions, where the effects of quenching should dominate over cancellations due to fine details (as occur in the famous case of the 14 C decay used for radiocarbon dating 18,19). An excellent example is the superallowed β -decay of the doubly magic 100 Sn nucleus (Fig. 1), which exhibits the strongest Gamow–Teller strength so far measured in all atomic nuclei 20 . A first-principles description of this exotic decay, in such a heavy nucleus, presents a significant computational challenge. However, its equal 'magic' numbers (Z=N=50) of protons and neutrons arranged into complete shells makes 100 Sn an ideal candidate for large-scale coupled-cluster calculations 21 , while the daughter nucleus 100 In can be reached via novel extensions of the high-order charge-exchange coupled-cluster methods developed

Isotopes studied in this work



Arnau Rios, Nature News & Views (2019) DOI: 10.1038/s41567-019-0483-y

What precision/accuracy can we aim for in ab-initio calculations of nuclei?



Ab-initio Method: Solve A-nucleon problem with controlled approximations and systematically improvable:

Coupled clusters, Green's function Monte Carlo, In-Medium SRG, Lattice EFT, MCSM, No-Core Shell Model, Self-Consistent Green's Function, UMOA, ...

What precision/accuracy can we aim for in ab-initio calculations of nuclei?

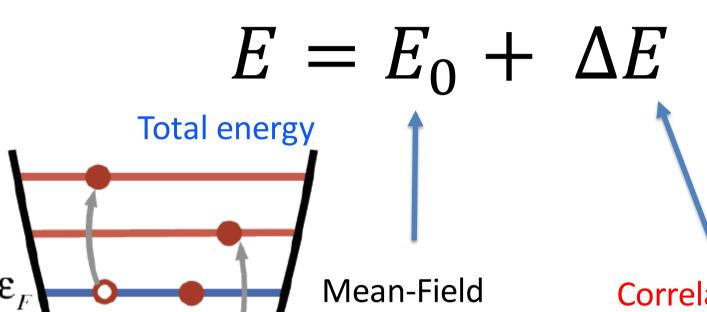
Total error budget:

$$\sigma_{Total} = \\ \sigma_{model/EFT} + \sigma_{data} + \sigma_{numerical} + \sigma_{method}$$

Ab-initio Method: Solve A-nucleon problem with controlled approximations and systematically improvable:

Coupled clusters, Green's function Monte Carlo, In-Medium SRG, Lattice EFT, MCSM, No-Core Shell Model, Self-Consistent Green's Function, UMOA, ...

Correlation energy in wavefunction based methods



Energy

- Easy to calculate
- Provides a starting point for manybody methods

Correlation energy

- Hard to calculate (CC, IM-SRG, NCSM, SCGM)
- Non-observable
- Depends on the employed Hamiltonian and resolution scale

Coupled-cluster method (CCSD approximation)

Ansatz:
$$|\Psi\rangle = e^T |\Phi\rangle$$

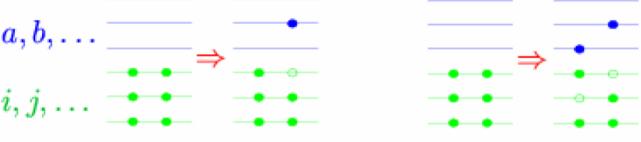
$$T = T_1 + T_2 + \dots$$

$$T_1 = \sum_{ia} t_i^a a_a^{\dagger} a_i$$

$$T_2 = \sum_{i:i} t_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i$$

- Scales gently (polynomial) with increasing problem size o²u⁴.
- Truncation is the only approximation.
- © Size extensive (error scales with A)
- ⊗ Most efficient for closed (sub-)shell nuclei

Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of np-nh excitations included!



$$E = \langle \Phi | \overline{H} | \Phi \rangle$$

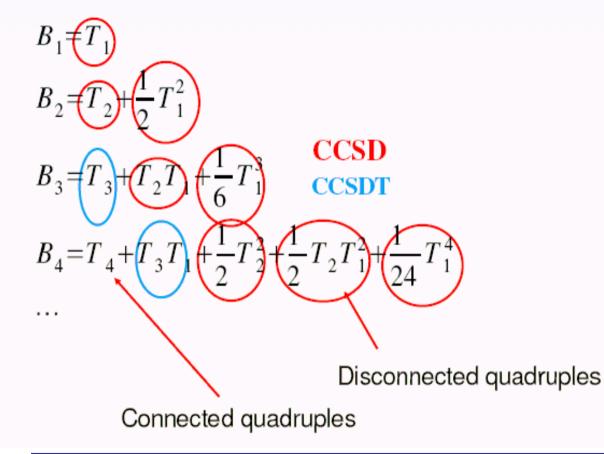
$$0 = \langle \Phi_i^a | \overline{H} | \Phi \rangle$$

$$0 = \langle \Phi_{ij}^{ab} | \overline{H} | \Phi \rangle$$

Alternative view: CCSD generates similarity transformed Hamiltonian with no 1p-1h and $0 = \langle \Phi_{ij}^{ab} | \overline{H} | \Phi \rangle$ no 2p-2h excitations.

$$\overline{H} \equiv e^{-T}He^{T} = (He^{T})_{c} = (H + HT_{1} + HT_{2} + \frac{1}{2}HT_{1}^{2} + \dots)_{c}$$

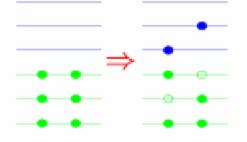
Coupled-cluster method



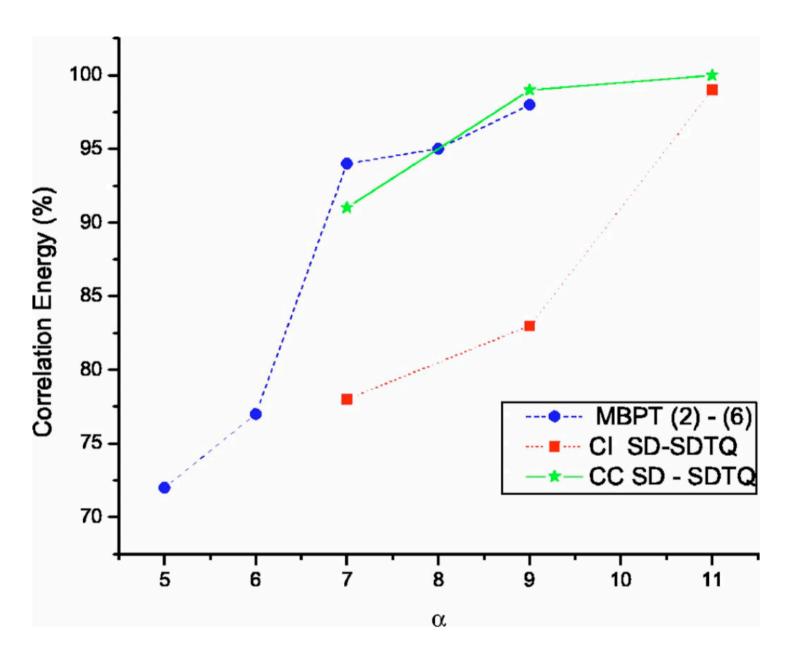
- CCSD captures most of the 3p3h and 4p4h excitations (scales as $n_o^2 n_u^4$)
- In order to describe α —cluster states need to include full quadruples (CCSDTQ) (scales $n_o^4 n_u^6$)

Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of np-nh excitations included!

$$a,b,\dots$$
 \Rightarrow \vdots i,j,\dots



Coupled-cluster method



Bartlett & Musial Rev. Mod. Phys. (2007)

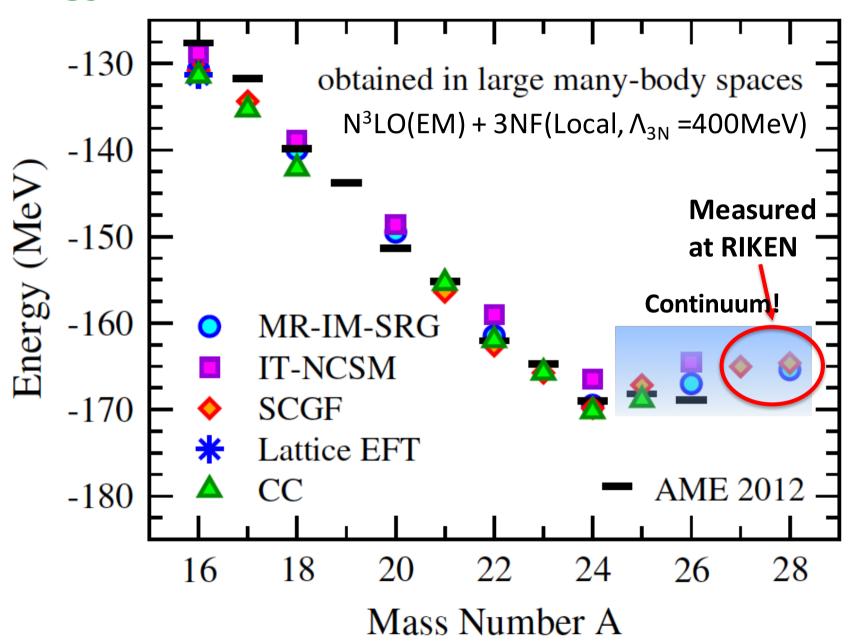
Coupled-cluster method

Energies	¹⁶ O	²² O	²⁴ O	²⁸ O	
$(\Lambda_{\chi} = 500 \text{ MeV})$					
E_0	25.946	46.52	50.74	63.85	
$\Delta E_{ m CCSD}$	-133.53	-171.31	-185.17	-200.63	
ΔE_3	-13.31	-19.61	-19.91	-20.23	
\boldsymbol{E}	-120.89	-144.40	-154.34	-157.01	
$(\Lambda_{\chi} = 600 \text{ MeV})$					
E_0	22.08	46.33	52.94	68.57	
$\Delta E_{ m CCSD}$	-119.04	-156.51	-168.49	-182.42	
ΔE_3	-14.95	-20.71	-22.49	-22.86	
\boldsymbol{E}	-111.91	-130.89	-138.04	-136.71	
Experiment	-127.62	-162.03	-168.38		

G. Hagen, et al, Phys. Rev. C 80, 021306 (2009).

 $\Delta E_3 \sim 10 - 13\%$

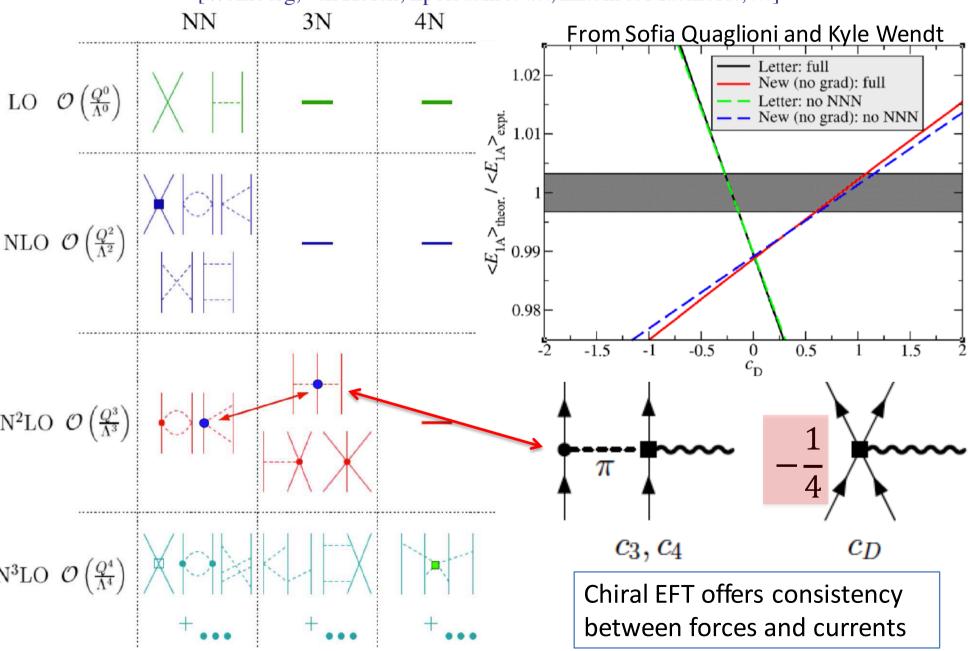
Oxgyen chain with interactions from chiral EFT



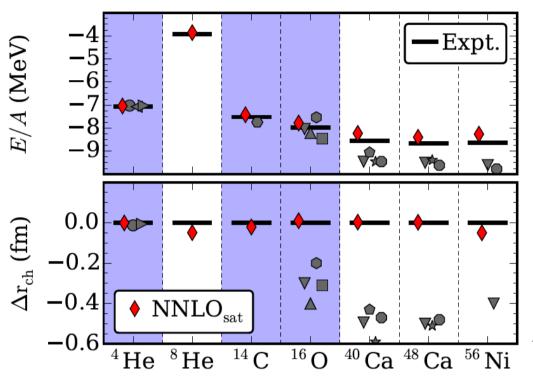
Hebeler, Holt, Menendez, Schwenk, Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)

Nuclear forces from chiral effective field theory

[Weinberg; van Kolck; Epelbaum et al.; Entem & Machleidt; ...]



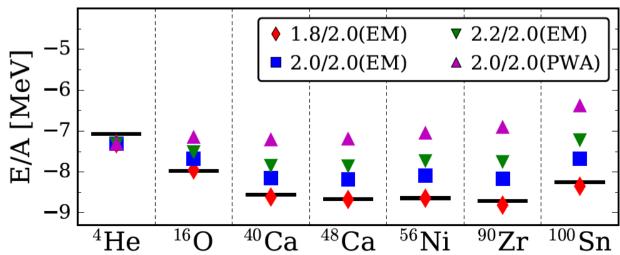
A family of interactions from chiral EFT



NNLO_{sat}: Accurate radii and BEs

- Simultaneous optimization of NN and 3NFs
- Include charge radii and binding energies of ³H, ^{3,4}He, ¹⁴C, ¹⁶O in the optimization
- Harder interaction: difficult to converge beyond ⁵⁶Ni

A. Ekström *et al*, Phys. Rev. C **91**, 051301(R) (2015).



1.8/2.0(EM): Accurate BEs

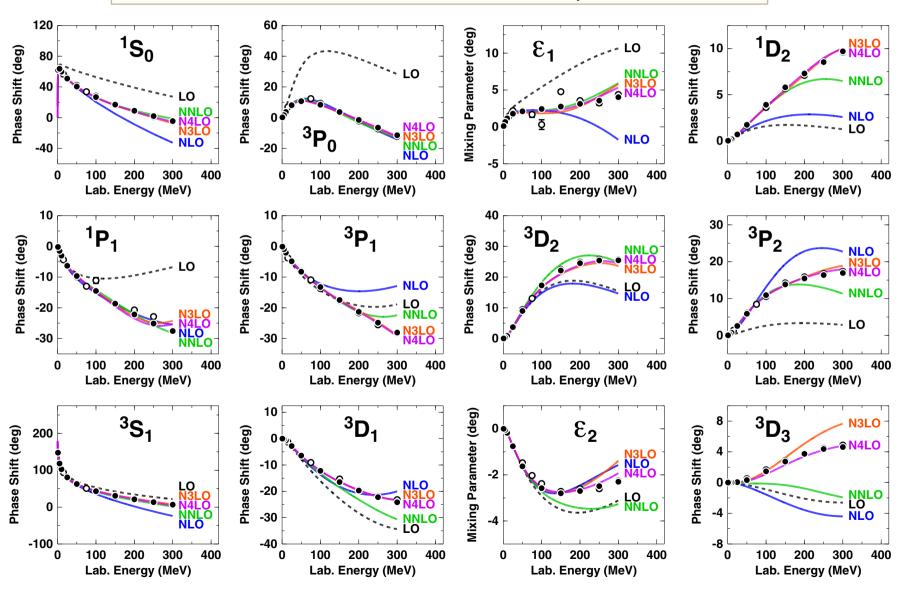
Soft interaction: SRG NN from Entem & Machleidt with 3NF from chiral EFT

- K. Hebeler et al PRC (2011).
- T. Morris *et al*, PRL (2018).

PHYSICAL REVIEW C **96**, 024004 (2017)

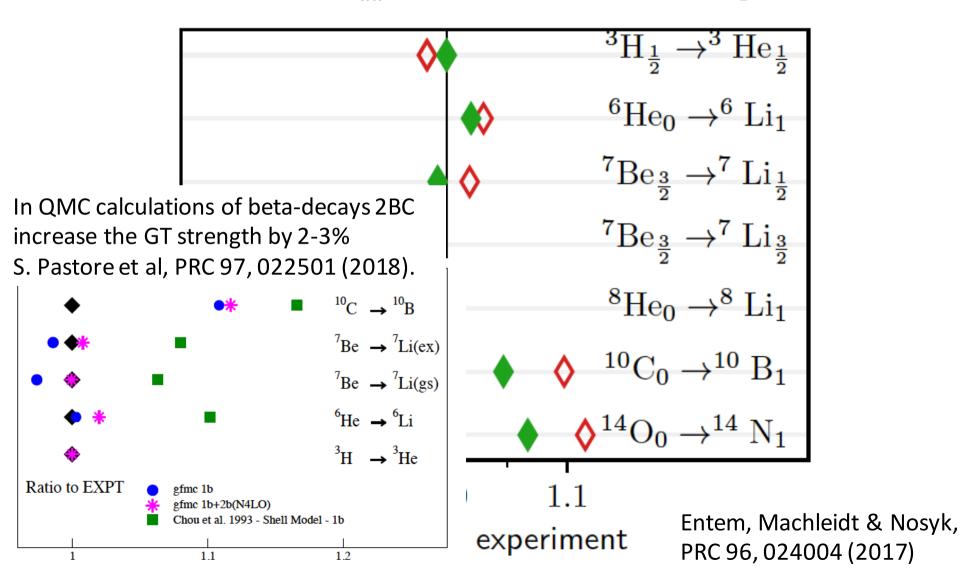
High-quality two-nucleon potentials up to fifth order of the chiral expansion

D. R. Entem, 1,* R. Machleidt, 2,† and Y. Nosyk²

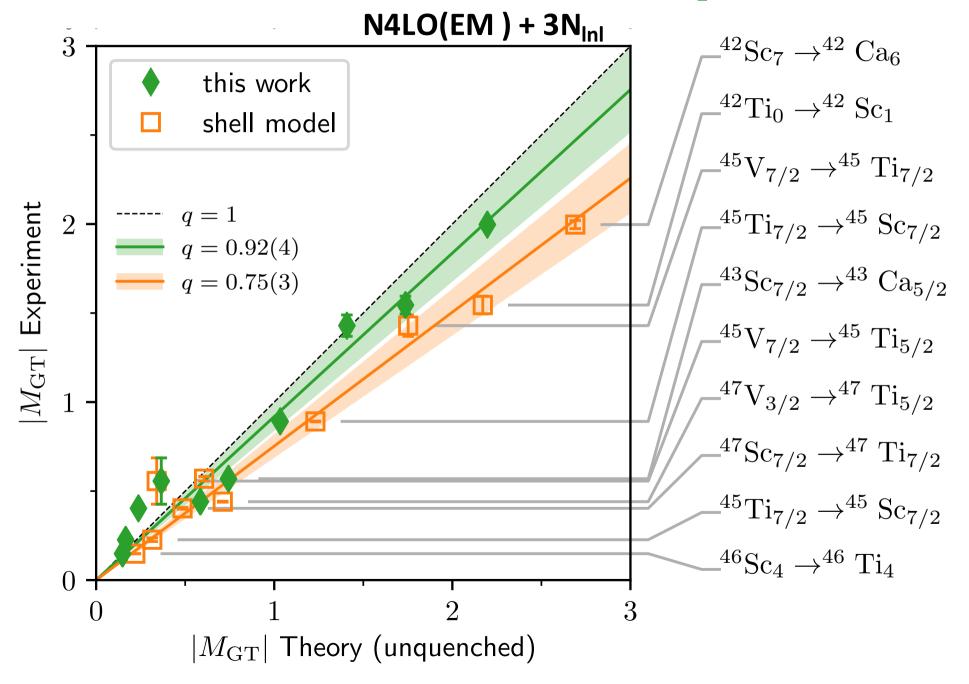


Theory to experiment ratios for beta decays in light nuclei from NCSM

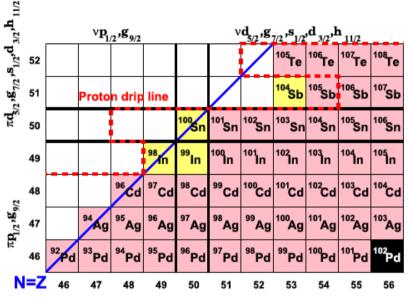
N4LO(EM) + $3N_{lnl}$ SRG-evolved to 2.0fm^{-1} ($c_D = -1.8$)

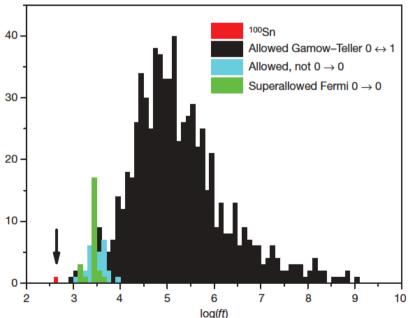


The role of 2BC in the pf-shell



¹⁰⁰Sn – a nucleus of superlatives





Hinke et al, Nature (2012)

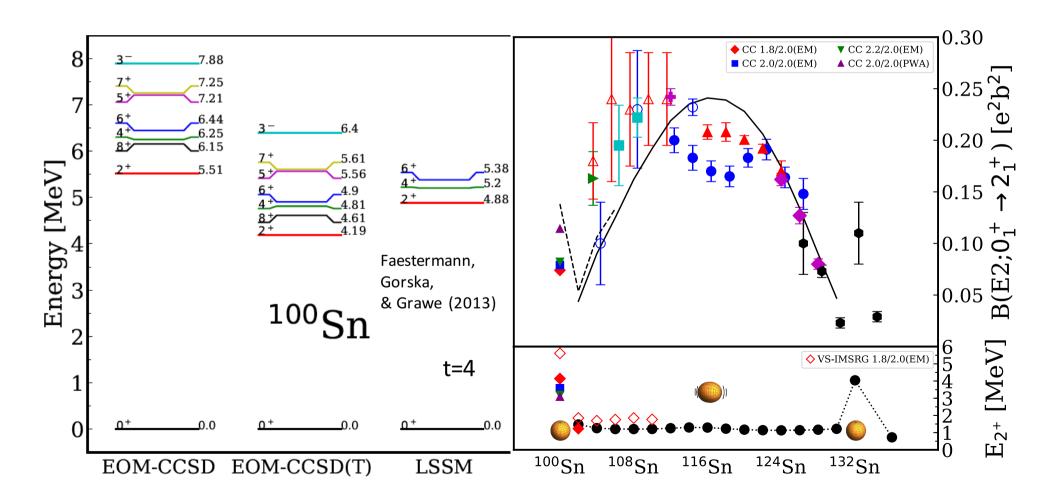
- Heaviest self-conjugate doubly magic nucleus
- Largest known strength in allowed nuclear β-decay
- Ideal nucleus for highorder CC approaches

Quantify the effect of quenching from correlations and 2BCs

Editors' Suggestion

Structure of the Lightest Tin Isotopes

T. D. Morris, ^{1,2} J. Simonis, ^{3,4} S. R. Stroberg, ^{5,6} C. Stumpf, ³ G. Hagen, ^{2,1} J. D. Holt, ⁵ G. R. Jansen, ^{7,2} T. Papenbrock, ^{1,2} R. Roth, ³ and A. Schwenk ^{3,4,8}



Coupled cluster calculations of beta-decay partners

Diagonalize $\overline{H}=e^{-T}H_Ne^T$ via a novel equation-of-motion technique:

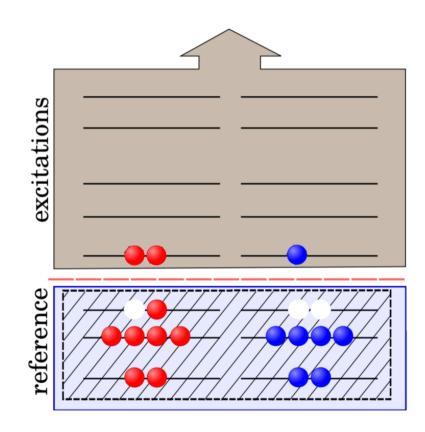
$$R_{\nu} = \sum_{i} r_{i}^{a} p_{a}^{\dagger} n_{i} + \frac{1}{4} \sum_{i} r_{ij}^{ab} p_{a}^{\dagger} N_{b}^{\dagger} N_{j} n_{i} + \frac{1}{36} \sum_{i} r_{ijk}^{abc} p_{a}^{\dagger} N_{b}^{\dagger} N_{c}^{\dagger} N_{k} N_{j} n_{i}$$

Introduce an energy cut on allowed threeparticle three-hole excitations:

$$\tilde{E}_{pqr} = \tilde{e}_p + \tilde{e}_q + \tilde{e}_r \le \tilde{E}_{3\max}$$

$$\tilde{e}_p = |N_p - N_F|$$

measures the difference of number of harmonic oscillator shells wrt the Fermi surface.



Charge exchange EOM-CCSDT-1

$$\overline{H}_{CCSDT-1} = \begin{bmatrix} \langle S|\overline{H}|S\rangle & \langle D|\overline{H}|S\rangle & \langle T|V|S\rangle \\ \langle S|\overline{H}|D\rangle & \langle D|\overline{H}|D\rangle & \langle T|V|D\rangle \\ \langle S|V|T\rangle & \langle D|V|T\rangle & \langle T|F|T\rangle \end{bmatrix} \text{Q-space}$$

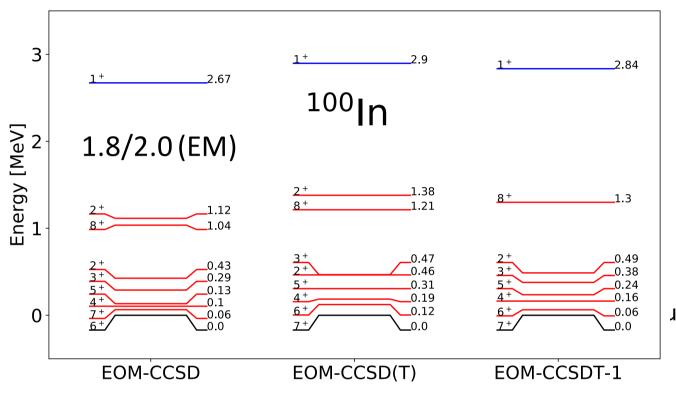
Bloch-Horowitz is exact; iterative solution poss.

$$\overline{H}_{PP}R_P + \overline{H}_{PQ}(\omega - \overline{H}_{QQ})^{-1}\overline{H}_{QP}R_P = \omega R_P$$

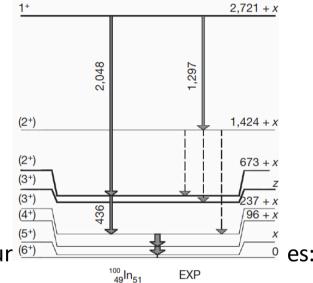
- lacktriangle Q-space is restricted to: $\tilde{E}_{pqr}=\tilde{e}_p+\tilde{e}_q+\tilde{e}_r\leq \tilde{E}_{3\max}$
- No large memory required for lanczos vectors
- Can only solve for one state at a time
- Reduces matrix dimension from ~10⁹ to ~10⁶

W. C. Haxton and C.-L. Song Phys. Rev. Lett. 84 (2000); W. C. Haxton Phys. Rev. C 77, 034005 (2008)C. E. Smith, J. Chem. Phys. 122, 054110 (2005)

Spectrum of daughter nucleus 100 In



Hinke et al, Nature (2012)



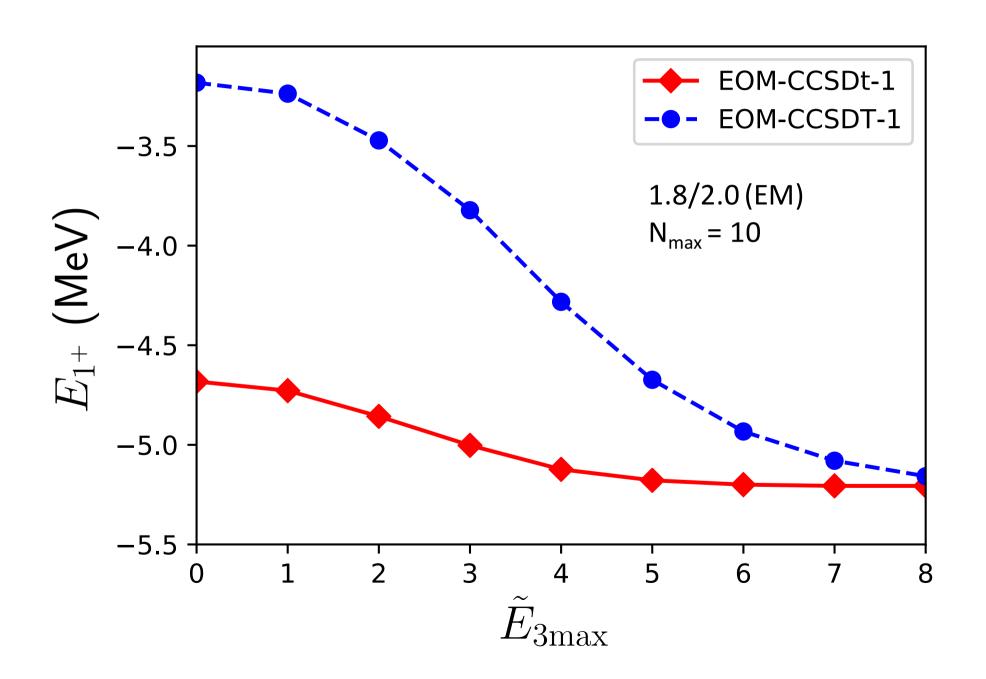
Q-space: $\tilde{E}_{pqr} = \tilde{e}_p + \tilde{e}_q + \tilde{e}_r \leq \tilde{E}_{3\max}$

Everything outside Q we label Q'

Use perturbative approach to calculate contribution from Q':

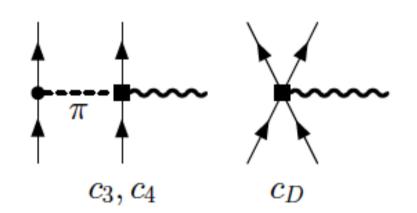
$$\Delta\omega_{\mu} = \langle \Phi_0 | L_{\mu} \overline{H}_{PQ'} (\omega_{\mu} - \overline{H}_{Q'Q'})^{-1} \overline{H}_{Q'P} R_{\mu} | \Phi_0 \rangle$$

Convergence of excited states in ¹⁰⁰In



Normal ordered one- and two-body current

Gamow-Teller matrix element: $\hat{O}_{\rm GT} \equiv \hat{O}_{\rm GT}^{(1)} + \hat{O}_{\rm GT}^{(2)} \equiv g_A^{-1} \sqrt{3\pi} E_1^A$



Normal ordered operator:

$$\hat{O}_{\mathrm{GT}} = O_N^1 + N_N^2$$

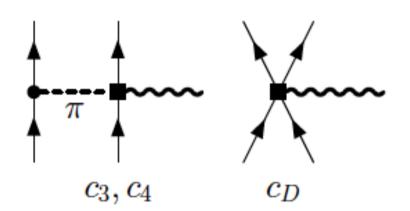
Benchmark between NCSM and CC using NN-N⁴LO 3N_{InI} in ⁸He:

$${}^{8}\mathrm{He}_{0} \rightarrow {}^{8}\mathrm{Li}_{1}$$

Method	$ M_{\mathrm{GT}}(oldsymbol{\sigma}oldsymbol{ au}) $	$ M_{ m GT} $
EOM-CCSD	0.45	0.48
EOM-CCSDT-1	0.42	0.45
NCSM	0.41(3)	0.46(3)

Normal ordered one- and two-body current

Gamow-Teller matrix element: $\hat{O}_{\rm GT} \equiv \hat{O}_{\rm GT}^{(1)} + \hat{O}_{\rm GT}^{(2)} \equiv g_A^{-1} \sqrt{3\pi} E_1^A$



Normal ordered operator:

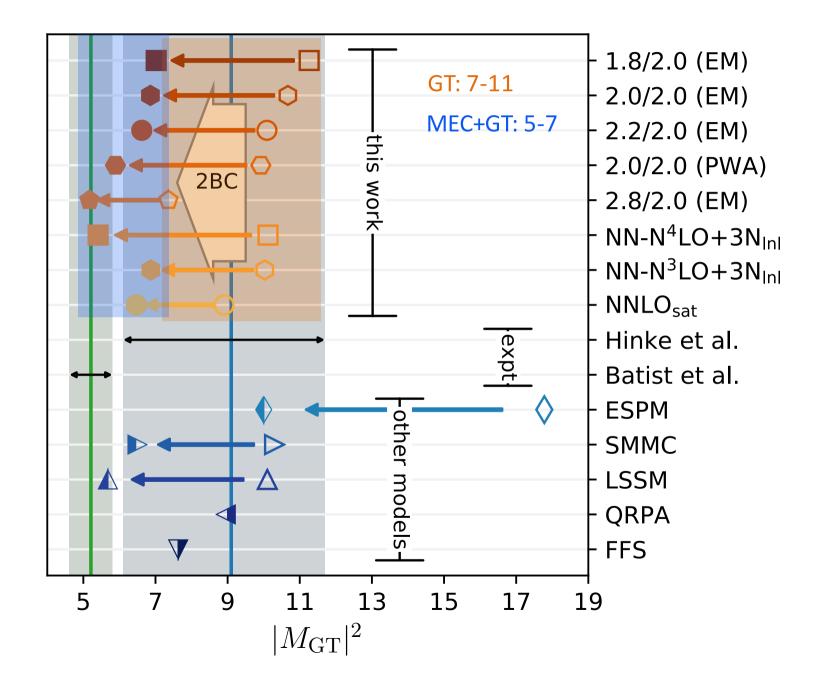
$$\hat{O}_{\mathrm{GT}} = O_N^1 + O_N^2$$

Benchmark between NCSM and CC using NN-N⁴LO 3N_{InI} and NNLO_{sat}:

$$^{14}O_0 \to ^{14}N$$

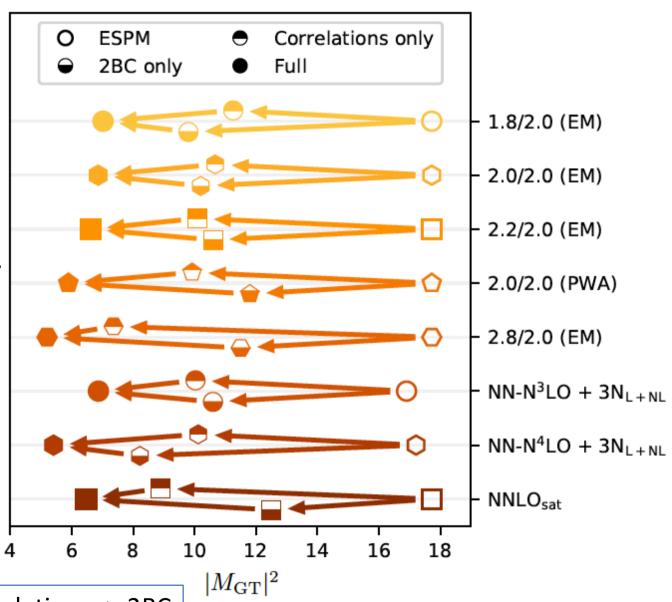
	$ M_{\mathrm{GT}}(oldsymbol{\sigma}oldsymbol{ au}) $		$ M_{ m GT} $	
Method	$\mathrm{NNLO}_{\mathrm{sat}}$	$NN-N^4LO +3N_{lnl}$	$NNLO_{\rm sat}$	$NN-N^4LO +3N_{lnl}$
EOM-CCSD	2.15	2.0	2.08	2.0
EOM-CCSDT-1	1.77	1.97	1.69	1.86
NCSM	1.80(3)	1.86(3)	1.69(3)	1.78(3)

Super allowed Gamow-Teller decay of ¹⁰⁰Sn



Role of 2BC and correlations in 100Sn

- Subtle interplay between correlations and 2BCs
- Role of correlations
 (2BC) increase
 (decrease) for larger
 cutoffs
- Only sum of correlations and 2BC is observable



Upper path: ESPM -> Correlations -> 2BC

Lower path: ESPM -> 2BC -> Correlations

Conclusions part 1

It is the combination of a proper treatment of strong nuclear correlations and twobody currents that to a large extent solves the beta decay quenching problem

For more details:

P. Gysbers, G. Hagen, et al, Nature Physics,

https://www.nature.com/articles/s4156 7-019-0450-7



Neutrinoless ββ-decay of ⁴⁸Ca

Nuclear matrix element for neutrinoless double beta decay in ⁴⁸Ca using different methods. From Y. Iwata et al, PRL (2016).

(pf)

(MBPT)

(sdpf)

- The NME for $0v\beta\beta$ differ by a factor two to six depending on the method
- Need to determine the NME more precisely with quantified uncertainties
- What does ab-initio calculations add to this picture?

Editors' Suggestion

Featured in Physics

New Leading Contribution to Neutrinoless Double-β Decay

Vincenzo Cirigliano, Wouter Dekens, Jordy de Vries, Michael L. Graesser, Emanuele Mereghetti, Saori Pastore, and Ubirajara van Kolck^{3,4}

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Nikhef, Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands

Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay, France

Department of Physics, University of Arizona, Tucson, Arizona 85721, USA

(1)

(Received 1 March 2018; revised manuscript received 28 March 2018; published 16 May 2018)

Within the framework of chiral effective field theory, we discuss the leading contributions to the neutrinoless double-beta decay transition operator induced by light Majorana neutrinos. Based on renormalization arguments in both dimensional regularization with minimal subtraction and a coordinate-space cutoff scheme, we show the need to introduce a leading-order short-range operator, missing in all current calculations. We discuss strategies to determine the finite part of the short-range coupling by matching to lattice QCD or by relating it via chiral symmetry to isospin-breaking observables in the two-nucleon sector. Finally, we speculate on the impact of this new contribution on nuclear matrix elements of relevance to experiment.

DOI: 10.1103/PhysRevLett.12

Conclusion.—The above arguments suggest that the new leading-order short-range $\Delta L=2$ potential identified in this Letter can affect the $0\nu\beta\beta$ amplitude and, consequently, the quantitative implications of experiments on $m_{\beta\beta}$ at the $\mathcal{O}(1)$ level. (At subleading orders, a similar analysis of the

Neutrinoless ββ-decay of ⁴⁸Ca

$$|\langle^{48}\text{Ti}|O|^{48}\text{Ca}\rangle|^{2} = \langle^{48}\text{Ti}|O|^{48}\text{Ca}\rangle\langle^{48}\text{Ca}|O^{\dagger}|^{48}\text{Ti}\rangle$$
$$= \langle\Phi_{0}|L_{0}\overline{O}_{N}|\Phi_{0}\rangle\langle\Phi_{0}|(1+\Lambda)\overline{O^{\dagger}}_{N}R_{0}|\Phi_{0}\rangle$$

Closure approximation with Gamow-Teller, Fermi and Tensor $M_{GT}^{0\nu}+M_F^{0\nu}+M_T^{0\nu}$ contributions:

Compute ⁴⁸Ti using a double charge exchange equation of motion method: $\overline{H}_N R_\mu |\Phi_0\rangle = E_\mu R_\mu |\Phi_0\rangle$

$$R_{\mu} = \frac{1}{4} \sum_{ijab} r_{ij}^{ab} p_a^{\dagger} p_b^{\dagger} n_i n_j + \frac{1}{36} \sum_{ijkabc} r_{ijk}^{abc} p_a^{\dagger} p_b^{\dagger} N_c^{\dagger} N_k n_i n_j$$

$$L_{\mu} = \frac{1}{4} \sum_{ijab} l_{ab}^{ij} p_b p_a n_i^{\dagger} n_j^{\dagger} + \frac{1}{36} \sum_{ijkabc} l_{abc}^{ijj} p_a p_b N_c N_k^{\dagger} n_i^{\dagger} n_j^{\dagger}$$

ββ-decay of ⁴⁸Ca

$$M^{2\nu} = \sum_{\mu} \frac{\langle 0_f^+ | O_{GT} | 1_{\mu}^+ \rangle \langle 1_{\mu}^+ | O_{GT} | 0_i^+ \rangle}{E_{\mu} - E_i + Q_{\beta\beta}/2}$$

$$= \langle 0_f^+ | O_{GT} \frac{1}{H - E_i + Q_{\beta\beta}/2} O_{GT} | 0_i^+ \rangle$$

$$= \langle \Phi_0 | L_0 \overline{O}_{GT} \frac{1}{\overline{H} - E_i + Q_{\beta\beta}/2} \overline{O}_{GT} | \Phi_0 \rangle$$

Lanczos continued fraction method

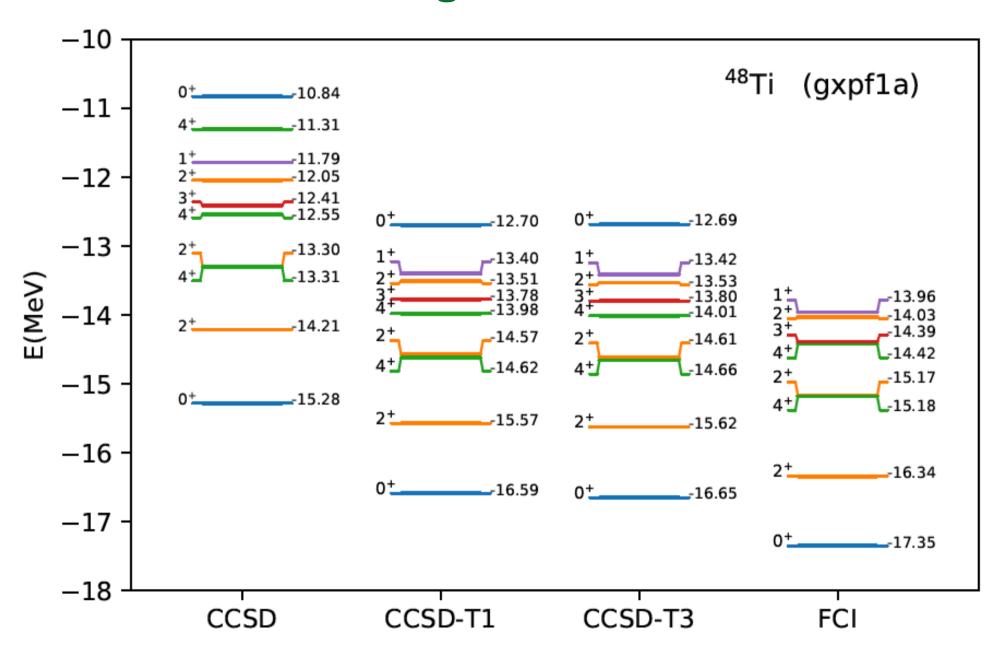
$$M^{2\nu} = \langle \Phi_0 | L_0 \overline{O}_{GT} \frac{1}{\overline{H} - E_i + Q_{\beta\beta}/2} \overline{O}_{GT} | \Phi_0 \rangle$$

Define left/right Lanczos pivots: $\langle ilde{
u}_0|=\langle \Phi_0|L_0\overline{O}_{\mathrm{GT}} \quad |
u_0
angle=\overline{O}_{\mathrm{GT}}|\Phi_0
angle$

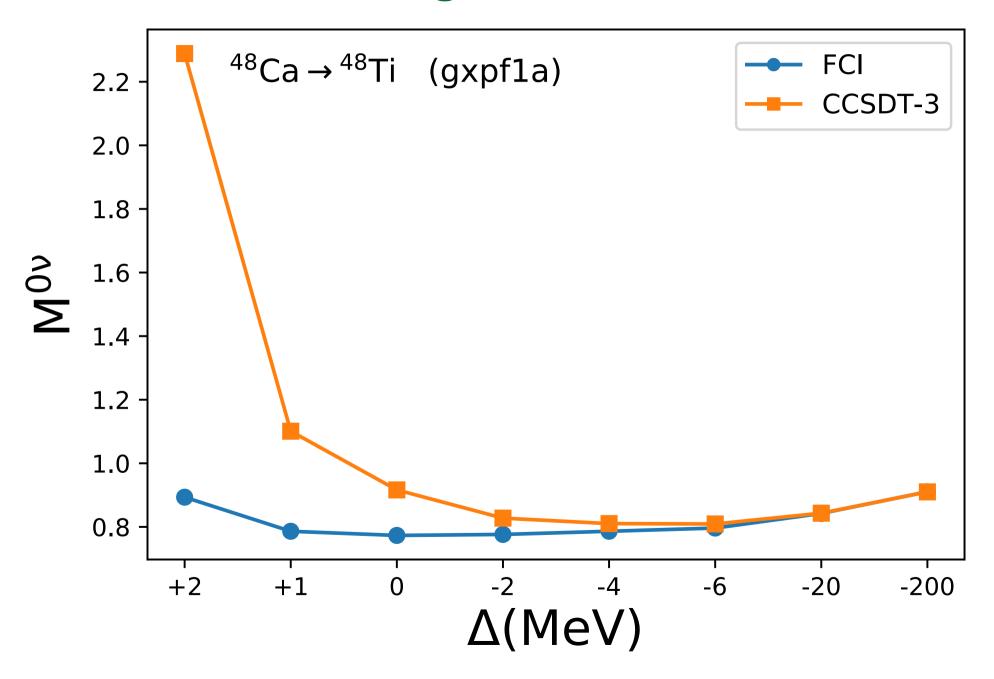
$$M^{2\nu} = \langle \tilde{\nu}_0 | \nu_0 \rangle \left\{ \frac{1}{(a_0 - Q_{\beta\beta}/2) - \frac{b_0^2}{(a_1 - Q_{\beta\beta}/2) - \frac{b_1^2}{(a_2 - Q_{\beta\beta}/2) - \cdots}}} \right\}$$

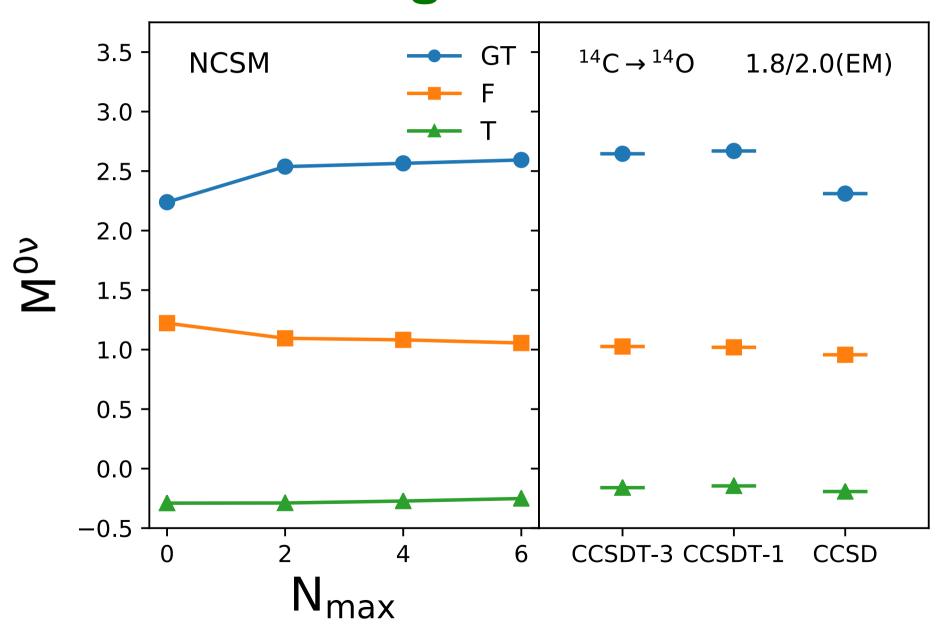
- Lanczos continued fraction method, see e.g. Engel, Haxton, Vogel PRC (1992), Haxton, Nollett, Zurek PRC (2005), Miorelli et al PRC (2016).
- Matrix element is converged to machine precision after ~10-20 iterations.
- Need more than 50 1⁺ states converged in ⁴⁸Sc (300-400 Lanczos iterations) if we sum explicitly over intermediate states

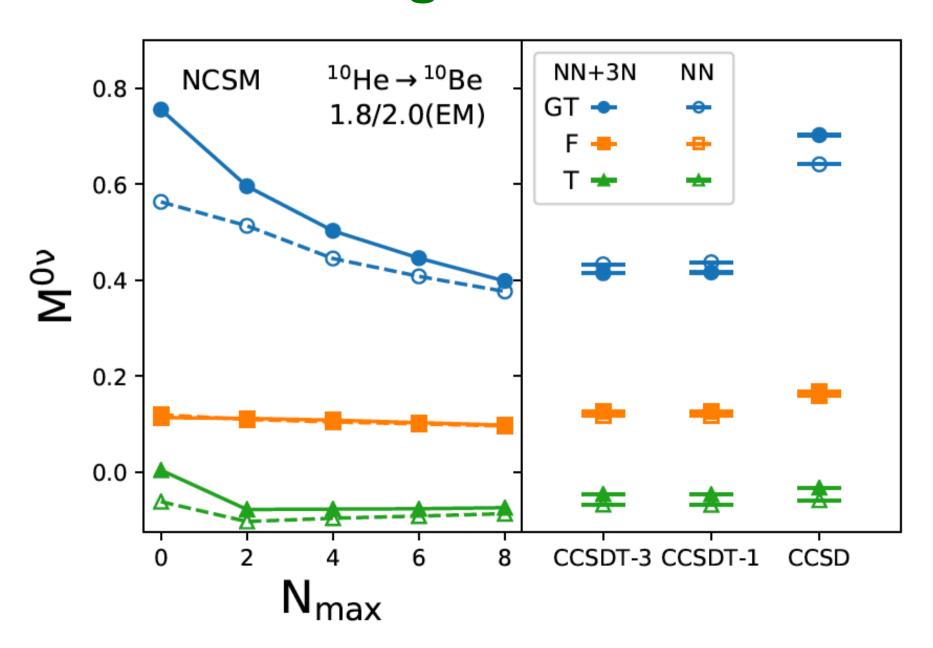
Benchmarking CC with FCI in ⁴⁸Ti

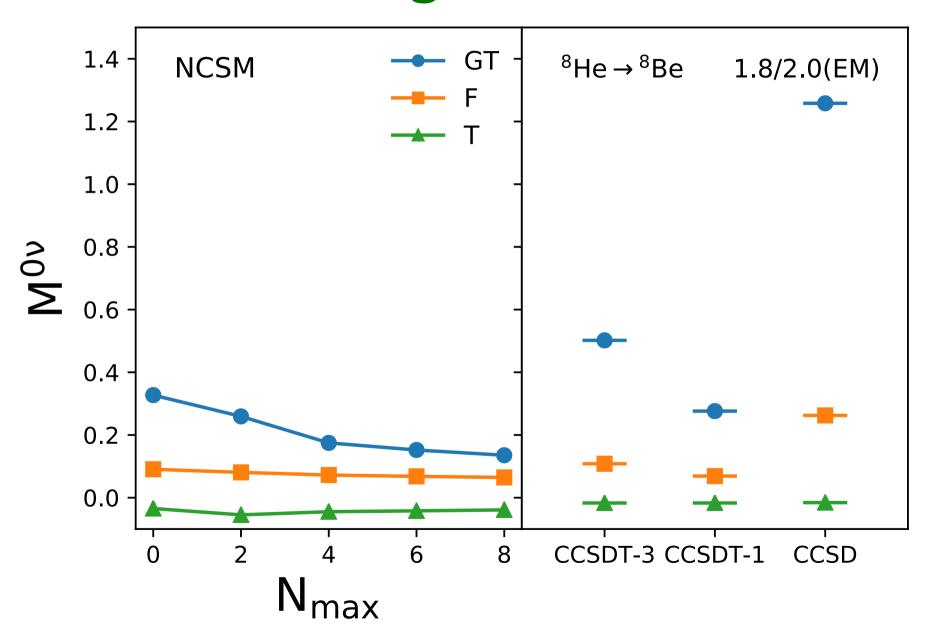


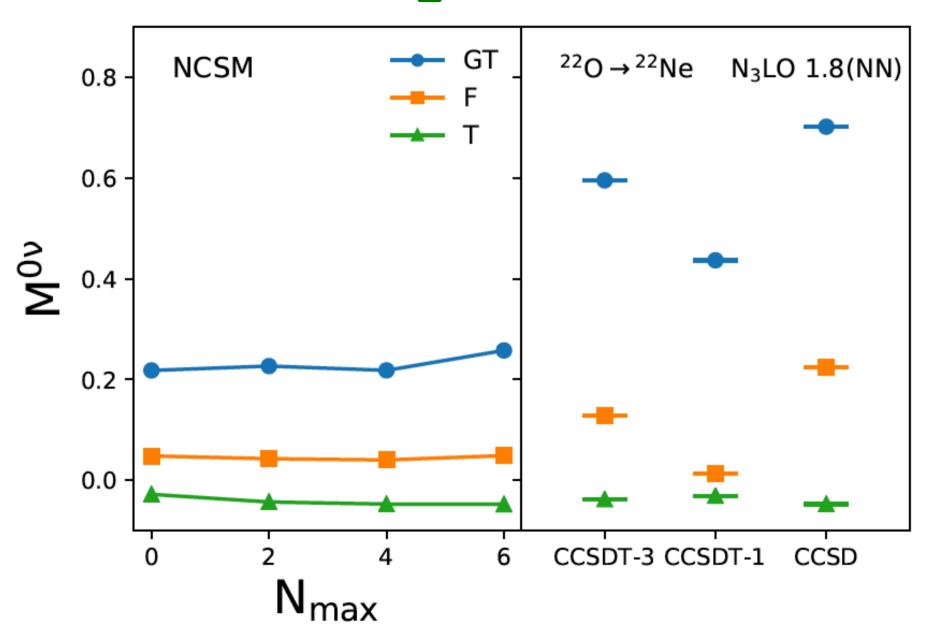
Benchmarking CC with FCI in ⁴⁸Ca



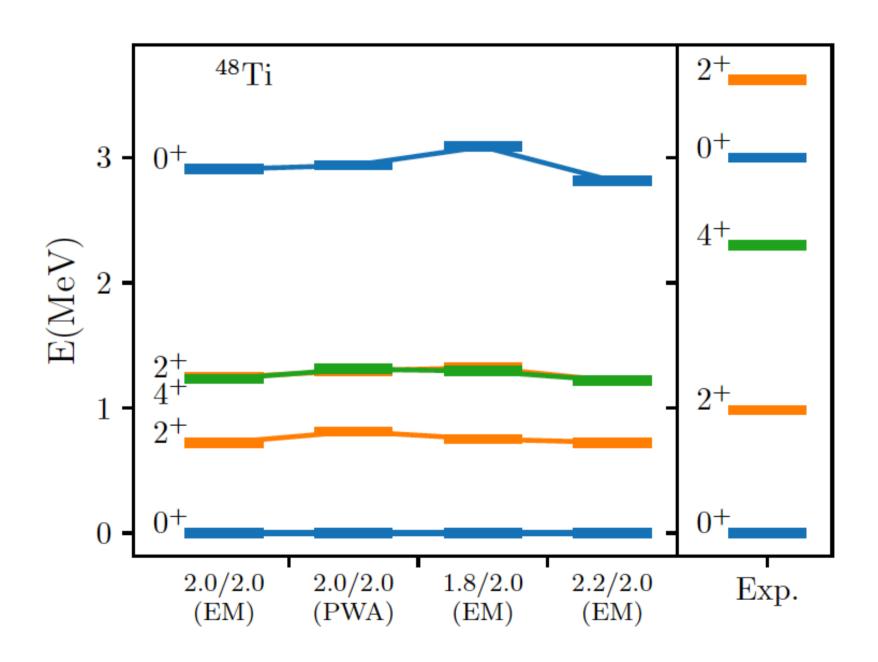




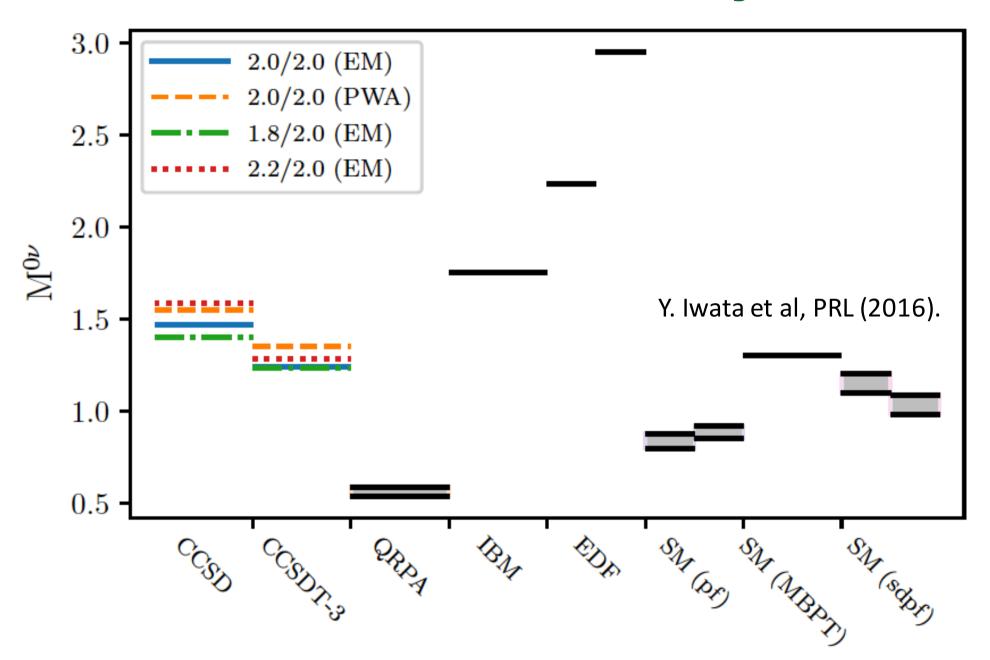




Spectra of ⁴⁸Ti from EOM-CC



Neutrinoless double beta-decay of ⁴⁸Ca

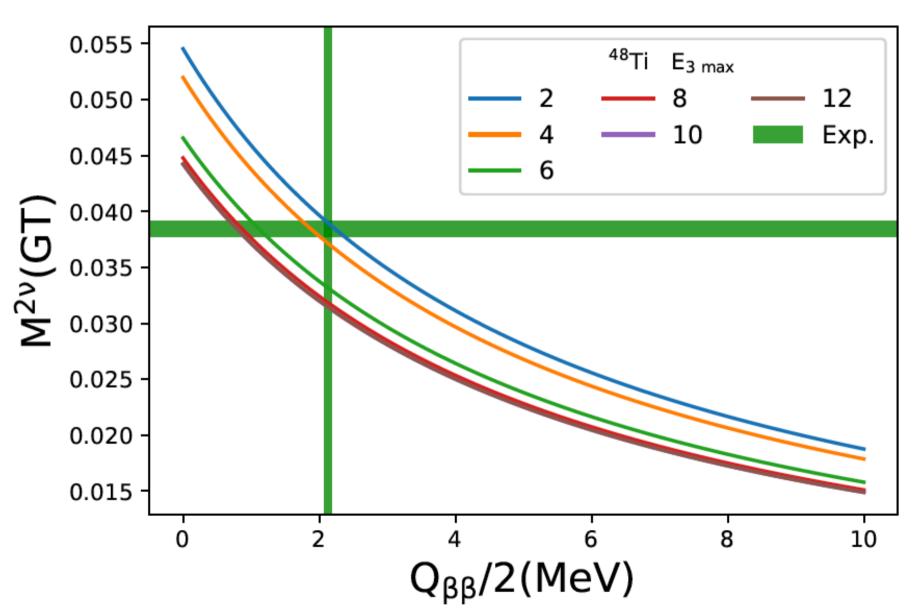


Double beta-decay of ⁴⁸Ca: Benchmark EOM-CC with FCI



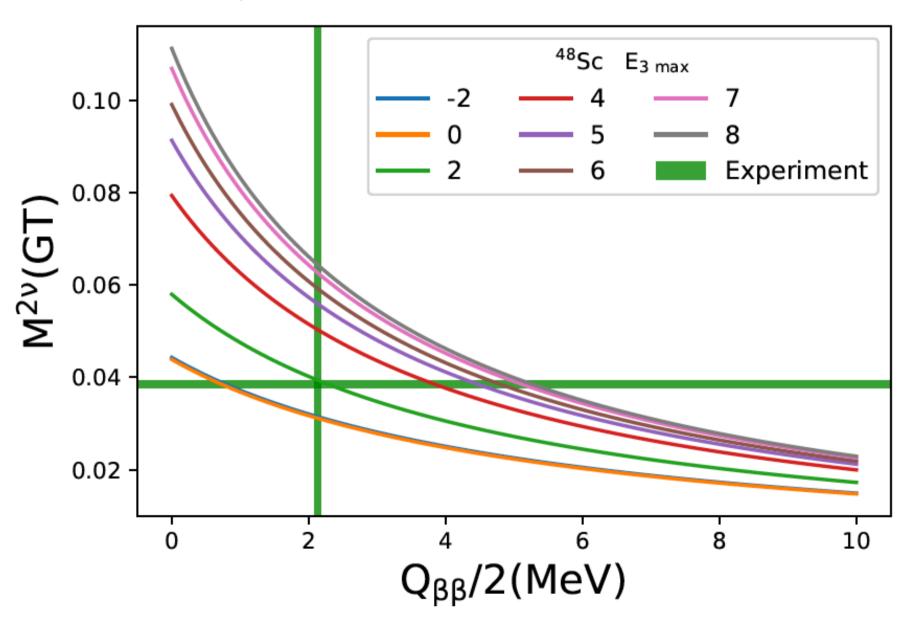
Double beta-decay of ⁴⁸Ca

The role of 3p3h excitations in the ground-state of ⁴⁸Ti



Double beta-decay of ⁴⁸Ca

The role of 3p3h excitations in the intermediate 1⁺ states of ⁴⁸Sc



Conclusions part 2

- Double-charge exchange EOM-CC allows for a systematically improvable description of double-beta decay:
 - Ovbb compatible with large-scale shell-model
 - 2vbb is in fair agreement with experiment (2BC missing)
- EOM-CC is in good agreement with exact calculations for states that are not well deformed
- In order to properly describe deformed final states we are working on a deformed mscheme implementation of EOM-CC

Collaborators

- @ ORNL / UTK: G. R. Jansen, **T. Morris**, **S. J. Novario**, T. Papenbrock
- @ INT: S. R. Stroberg
- @ TRIUMF: P. Gysbers, J. Holt, P. Navratil
- @ TU Darmstadt: **C. Drischler**, **C. Stumpf**, K. Hebeler, R. Roth, A. Schwenk
- @ LLNL: K. Wendt, S. Quaglioni
- @ UNC: Jon Engel