Neutron Electric Dipole Moment

Florian Piegsa

Laboratory for High Energy Physics Albert Einstein Center for Fundamental Physics University of Bern

Situation and Perspective

Dress et al., PRD 15, 9 (1977)

Baker et al., PRL 97, 131801 (2006) Pendlebury et al., PRD 92, 092004 (2015)

Neutron EDM – a Worldwide Endeavor

PSI nEDM & Beam EDM

International Collaboration at PSI nEDM and n2EDM Experiments

Pulsed Cold Neutron Beam

Novel complementary approach in Bern Intended for the European Spallation Source

nEDM Collaboration

15 institutions 7 countries 50 members 10 PhD students

Paul Scherrer Institute

Proton Ring Cyclotron

UCN Source at PSI

nEDM Experiment

- Four layer mu-metal shield
- Surrounding field compensating coils
- ► Temperature stabilization

nEDM Experiment

 $\Delta \boldsymbol{\varphi} = (\boldsymbol{\omega}_{\uparrow\uparrow} - \boldsymbol{\omega}_{\uparrow\downarrow}) \cdot \boldsymbol{T} \propto \boldsymbol{d} \cdot \boldsymbol{E}$

10 kV/cm

1 μΤ

Magnetic Field

Challenge: Magnetic Field

nEDM Experiment

Ramsey Cycle

Ramsey Cycle

Neutron Ramsey Signal

300 sec per data point

"Normal measurement" only 4 data points

Many details of the measurement: Abel et al., arXiv 1811.04012

Relative Frequency Measurement

$$R = \frac{\langle f_{\text{UCN}} \rangle}{\langle f_{\text{Hg}} \rangle} = \frac{\gamma_{\text{n}}}{\gamma_{\text{Hg}}} \left(1 + \delta_{\text{EDM}} \mp \frac{\partial B}{\partial z} \frac{\langle z \rangle}{|B_0|} + \frac{\langle B^2_{\perp} \rangle}{|B_0|^2} \mp \delta_{\text{Earth}} + \delta_{\text{Hg-lightshift}} + \cdots \right)$$

¹⁹⁹Hg & UCN

$$rac{\gamma_{
m n}}{2\pi} pprox 30 \ {
m Hz}/\mu{
m T} \qquad rac{\gamma_{
m Hg}}{2\pi} pprox 8 \ {
m Hz}/\mu{
m T}$$
 $areall_{UCN} pprox 4 \ {
m m/s} \qquad \overline{v}_{
m Hg} pprox 160 \ {
m m/s}$

Recorded data sensitivity:

$$\sigma = 0.94 \times 10^{-26} \text{ecm}$$

Analysis ongoing:

Blinded data in two groups (offset: ±1.5×10⁻²⁵ ecm)

NEW EDM RESULT LATER THIS YEAR ...

Additional Physics Results

Search for new exotic interactions (Axion-Like-Particles) *

n/199Hg - magnetic moment ratio **

* Afach et al., Phys. Lett. B 745, 58 (2015) ** Afach et al., Phys. Lett. B 739, 128 (2014)

Additional Physics Results

Search for time-oscillating signal in EDM data (ILL 1998-2002 & PSI 2015-2016) Such a signal could arise from the interaction with ultra-light (dark matter) axions

Abel et al., Phys. Rev X 7, 041034 (2017)

n2EDM Experiment

	<i>nEDM</i> in 2016	<i>n2EDM</i> baseline
Diameter [cm]	47	80
α	0.75	0.8
E [kV/cm]	11	15
T [s]	180	180
N (per cycle)	15000	120000
$\sigma(d_n)$ (per day)	$11 \times 10^{-26} \text{ ecm}$	$2.6 \times 10^{-26} \text{ ecm}$

$$\sigma(d_n) \propto \frac{1}{\alpha ET\sqrt{N}}$$

- ► Two UCN precession chambers with opposite electric field directions (systematics & *E*-field)
- Improved magnetic enviornment (MSR)
- Higher neutron statistics mainly due to volume
- Improved magnetometry (Hg-laser, Cs-array)
- Improved electric field strength (symmetric)

n2EDM Experiment

MSR 2+4 layers, 5×5×5 m³ Expect. shielding > 100'000

SFC Magn. field compensation

Thermohouse sub-Kelvin stability

Field Mapping 01/2018

Support Construction of MSR 03/2018

Finished outer Layers of MSR 08/2018

Start commissioning of *n2EDM* in 2020 ...

Beam EDM Experiment

Situation and Perspective

Dress et al., PRD 15, 9 (1977)

Baker et al., PRL 97, 131801 (2006) Pendlebury et al., PRD 92, 092004 (2015)

Neutron Beam EDM Experiment (1977)

- $E \approx 100 \text{ kV/cm}$ (1.8 m, gap = 1 cm)
- $B_0 \approx 1.7 \text{ mT}$ (permanent magnets)
- Switching HV polarity every 200 s
- Invert flight direction every other day to overcome systematic v×E-effect

Dress et al., PRD 15, 9 (1977)

Why were Beam EDM Experiments abandoned?

v×E − effect:

$$\vec{B}_{v\times E} = -\frac{\vec{v}\times\vec{E}}{c^2}$$

This can cause a false EDM signal:

$$d_{
m false} pprox {
m 10^{-20}~e~cm} \cdot \sinlpha$$
 for: $v = {
m 100~m/s}$

► The false effect is velocity-dependent, however, a real EDM signal is not!

Novel Neutron Beam EDM Concept

- Concept is ideal for pulsed neutron spallation sources e.g. at the European Spallation Source proposed ANNI beam line

Start with proof-of-principle experiments at Paul Scherrer Institute and Institute Laue-Langevin

Piegsa, PRC 88, 045502 (2013)

Neutron EDM Statistical Sensitivity

$$\sigma(d_n) \propto \frac{1}{ET\sqrt{N}}$$

BEAM

E = 100 kV/cm

N ≈ 100 MHz (ESS)

 $T \approx 100 \text{ ms}$ (50 m)

UCN

E = 10 kV/cm

 $N = 14'000 / 300 s \approx 50 Hz$

T = 130 s (storage)

Baker et al., PRL 97, 131801 (2006) Pendlebury et al., PRD 92, 092004 (2015)

Neutron Beam EDM Experiment

CROSS SECTION

Beam Time at BOA / PSI (Sept./Oct. 2018)

Polarised and White Cold Neutron Beam

Beam Time at PF1b / ILL (March 2018)

Polarised and Monochromatic (Selector) Neutron Beam

Details: Spin Analyser and Detector

Two beams/Four beam spots each with 3×1 cm² 16×16 Pixels, Pixel-Size = 6×6 mm² Exposure time: 10 sec (at λ = 0.48 nm) FeSi supermirror m = 5 (SwissNeutronics)

Ramsey Scan Methods

"Classic Ramsey"

"Phase Ramsey"

Ramsey Apparatus Sensitivity

$$a \approx 2 \text{ nT}/\sqrt{\text{Hz}}$$

 3×10^{-24} e cm (per day)

with: L = 3 m, v = 800 m/s,E = 100 kV/cm

Electrodes and v×E-Effect

- Direct measurement of *E*-field seen by neutrons
- Maximum v×E-effect (with $B \perp E$): 30 kV/cm, 1000 m/s \rightarrow 30 nT

ESS Pulse Structure

New Beam EDM Experiment at ESS

Statistical sensitivity:

$$\sigma_{\text{Beam}}(d_{\text{n}}) \approx \frac{2\hbar}{\eta \tau E \sqrt{N}}$$

$$\eta = 0.75$$
, $L = 50$ m, $L_{\rm tot} = 75$ m, $\tau = 90$ ms, $E = 100$ kV/cm

Polarization ESS
$$\approx$$
 ILL 20 cm²/ (100 m)²

$$N = 1.5 \times 10^{13} \text{ cm}^{-2} \text{s}^{-1} \text{ sr}^{-1} \times 1/3 \times 1/2 \times 1 \times (2 \times 20 \text{ cm}^2) \times 2 \times 10^{-7} \text{sr} \sim 20 \text{ MHz}$$

PF1B part. brightness Skip every Cross section of two beams

 $\sigma(d_n) pprox 1.5 imes 10^{-25}$ e cm / day

Neutron Absorbing Electrodes

* Abele et al., NIM A 562, 407 (2006)

New Beam EDM Experiment at ESS

Statistical sensitivity:

$$\sigma_{\text{Beam}}(d_{\text{n}}) \approx \frac{2\hbar}{\eta \tau E \sqrt{N}}$$

$$\eta = 0.75$$
, $L = 50$ m, $L_{\rm tot} = 75$ m, $\tau = 90$ ms, $E = 100$ kV/cm

Polarization ESS
$$\approx$$
 ILL 20 cm²/ (100 m)²

$$N = 1.5 \times 10^{13} \, \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \times 1/3 \times 1/2 \times 1 \times (2 \times 20 \, \text{cm}^2) \times 2 \times 10^{-7} \text{sr} \sim 20 \, \text{MHz}$$

PF1B part. brightness Skip every Cross section of two beams

$$\sigma(d_n) pprox 5 imes 10^{-26}$$
 e cm / day

Guiding Electrodes
Flux Gain ~ 10

* Abele et al., NIM A 562, 407 (2006)

Reflectometry of Electrodes

Absorbing Electrodes: 20 mm / 75 m → 0.015° (max. vertical divergence)

Guiding Electrodes: about 0.15° @ 0.5 nm (only polished aluminum)

Factor × 10

- nEDM will deliver new best EDM result soon
- n2EDM is currently under construction
- Novel approach:
 - Beam EDM experiment in proof-of-principle phase
 - Future full-scale experiment intended for ESS

Thank you for your attention!