

BSM physics and DUNE

Pierre Lasorak, for the DUNE collaboration

Atomic nuclei as laboratories for BSM Physics ECT*, Trento Italy 15-19 April 2019

- DUNE experiments
- Neutrino oscillation physics
- Beyond Standard Model (BSM) Physics
 - Oscillation effects
 - Sterile neutrinos
 - Non Standard Interaction (NSI)
 - CPT violation
 - (Tau neutrino appearance, extra dimensions, ...)
 - New signals
 - Nucleon decay
 - Dark sector
 - Neutrino trident
 - (Heavy neutral lepton, ...)

DUNE Goals

DEEP UNDERGROUND NEUTRINO EXPERIMENT

- Primary goals of DUNE:
 - Accelerator neutrino oscillation program:
 - Discover δ_{CP} in the neutrino sector
 - Neutrino mass ordering
 - θ_{23} octant
 - Supernova neutrino burst
 - Proton decay

- Secondary goals of DUNE (ancillary science program):
 - BSM:
 - Non standard interactions
 - Lorentz violation, CPT violation
 - Extra dimensions
 - Heavy neutral lepton
 - Sterile neutrinos
 - Neutrino trident
 - Dark matter
 - ...
 - Atmospheric oscillations program
 - Neutrino cross sections
- Solar neutrinos <u>arXiv:1808.08232v1</u>, <u>arXiv:1702.06097v2</u>

UNIVERSITY **OF SUSSEX**

Beam

- Neutrino beam produced at Fermilab:
 - 60 120 GeV proton beam
 - Upgrade of the main injector (PIP-II)
 - 1.2 MW, upgradable to 2.4 MW (PIP-III)
 - Horn and magnetic field select the sign of pions (and neutrinos)
- At the Far Detector, wide v_{μ} beam:
 - Low beam v_e background (on-axis)

FD v beam (unoscillated) in neutrino mode

Fermilab Accelerator Complex

Pierre Lasorak

ROCK

Near Detector

- Near detector at 575 m from the target:
 - Ar TPC detector
 - Magnetised tracker
 - Calorimeter

OF SUSSEX

- Muon chamber
- Design near final (expected 2019)
 - Conceptual design still allows for a PRISM option for offaxis flux measurement
 - Better constraints for oscillation measurements
- Aim: inform the oscillation measurement at the far, constrain all of the main systematics:
 - Measure the neutrino flux
 - Measure neutrino cross sections
 - Measure detector uncertainties

DUNE Far Detectors

- Liquid Argon Time Projection Chambers (LArTPC):
 - Collect drift electrons with wires (anode plane wires):
 - PID, energy reconstruction, topology...
 - Measure scintillation light with photon detector (T₀).
- Far detector:
 - Sanford underground research facility
 - 4 x 10kT (beam fiducial) of Liquid Argon: ~15 x 14 x 60 m³
 - 2 single phase
 - 1 dual phase (additional gaseous phase)
 - 1 "opportunity" module
 - 1.5 km underground (~ 4300 m.w.e.) → low cosmogenic background

Detector technology: Single/Dual Phase

• Single phase:

- Horizontal drift direction
- Modular building blocks for each 10 kT module = APA (Anode Plane Assembly)
- Design tested at CERN (autumn 2018) ProtoDUNE.
- Dual phase:
 - Vertical drift direction
 - Module = CRP (Charge Readout Plane)

ProtoDUNEs

End Wall Field Cage

- SP ProtoDUNE:
 - Took beam data •
 - Measured pions, kaons, muons, protons and electrons at energies interesting for neutrino oscillation analyses.
 - Now taking cosmics (LHC Long Shutdown 2).
 - Resume test beam after LS2. •
- **DP ProtoDUNE:** ullet
 - Being assembled as we speak. •
 - Will start to take cosmics. •
 - Test beam after LS2. •

DUNE status and timeline

- ProtoDUNE experiments:
 - 2018: Single Phase ProtoDUNE took test beam data at CERN
 - Expect result soon
 - 2019: Dual Phase coming up soon
 - 2019: Cosmic runs for ProtoDUNE SP/DP
 - 2021 (after LS2): Test beam
- 2019: Far site excavation starts
- 2019: FD TDR + ND CDR
- Oct 2019: DOE CD2/3b
- August 2024: First module construction starts
- August 2025: Second module construction starts

DUNE far site excavation

BSM physics

- Non standard oscillation effects
 - Sterile neutrinos
 - NSI
 - CPT violation
- New signals
 - Nucleon decay
 - Dark matter
 - Neutrino trident

Non standard oscillation effects

Sterile neutrinos

- "Simplest" extension to the standard three neutrino oscillations scheme, so called 3+1 model
 - MiniBooNE/LSND excess
- Makes use the broad band DUNE flux, near and far detectors.
- Different measurements possible:
 - Muon CC (ND/FD)
 - Electron CC (ND/FD)
 - NC signal (FD/ND)
- Depending how you combine these you get sensitivity to different parameter of the 3+1 sterile neutrino model.

Sterile neutrinos

Pierre Lasorak

OF SUSSEX

Non-Standard Interactions (NSI)

- Dark energy: <u>arXiv:0010126</u>
- Fuzzy dark matter (DM): <u>arXiv:1608.01307v2</u>
- Any stand-alone particle which only interacts with neutrinos: <u>arXiv:9610317</u>

$$\tilde{V}_{\rm MSW} = \sqrt{2}G_F N_e \begin{pmatrix} 1 + \epsilon_{ee}^m & \epsilon_{e\mu}^m & \epsilon_{e\tau}^m \\ \epsilon_{e\mu}^{m*} & \epsilon_{\mu\mu}^m & \epsilon_{\mu\tau}^m \\ \epsilon_{e\tau}^{m*} & \epsilon_{\mu\tau}^{m*} & \epsilon_{\tau\tau}^m \end{pmatrix}$$

NEUTRINO EXPERIMENT

• DUNE has a longer baseline than other upcoming neutrino experiments.

CPT violation

High octant Low octant

25

Maximal mixing

- $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) \rightarrow CP \text{ violation}$
- $P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right) \neq P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}\right) \rightarrow \text{CPT violation}$
- Huge disappearance stats at DUNE.
- Any difference between v_µ and anti-v_µ should be clearly visible:

New signals

Nucleon decay

- DUNE is shielded from cosmic, has a high mass and precise particle tracking → Baryon number violation can be done:
 - neutron anti-neutron oscillation
 - $p \rightarrow anti-v K^+$, $n \rightarrow K^+ e^-$
 - $p \rightarrow \pi^0 e^+$
- Sensitivity using full simulation (including atmospheric neutrinos and final state interactions with the Argon nucleus) is coming for the TDR (summer 2019).

18

100 um

15/04/2019

Dark Sector

- 2 benchmark models studied:
 - Vector portal-type scenario with a massive dark photon (V) mixes with SM photon

$$\mathscr{L}_{\text{int}} \ni -\frac{\epsilon}{2} V_{\mu\nu} F^{\mu\nu} + g_{11} \bar{\chi}_1 \gamma^{\mu} \chi_1 V_{\mu} + g_{12} \bar{\chi}_2 \gamma^{\mu} \chi_1 V_{\mu} + \text{h.c.}$$

- ϵ kinetic mixing parameter, χ_1, χ_2 dark matter particles
- Lepto-phobic Z' scenario:

$$\mathscr{L}_{\text{int}} \ni -g_{Z'} \sum_{f} Z'_{\mu} \bar{q}_{f} \gamma^{\mu} \gamma^{5} q_{f} - g_{Z'} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi - Q_{\psi} g_{Z'} Z'_{\mu} \bar{\psi} \gamma^{\mu} \gamma^{5} \psi$$

• χ, ψ dark matter states

- 3 types of sources:
 - Beam / Target interactions
 - Galactic halo
 - Sun core

19

Dark Sector

- DM comes from the target (Photon oscillates to Dark Photon)
 - "Internal" source (beam), closer to the target is better \rightarrow ND analysis.
 - Main background is from v NC

Work in progress

DM. E = 12.5 GeV × 5

DM E = 20 GeV

DM E = 100 GeV

5000

4000

- Significant improvement is expected to come from ND-PRISM option: <u>arXiv:1903.10505v1</u>
- Galactic halo can produce DM which could interact inelastically in DUNE (dark matter annihilation) Dark photon
- DM from the core of the Sun could interact elastically with the DUNE (dark matter annihilation) - Lepto-phobic Z'
 - External sources (Sun, Galaxy halo), so bigger mass is better \rightarrow FD analysis.

Neutrino trident

15/04/2019

- Source are the neutrinos from the beam → ND analysis
- Process allowed by SM

F SUSSE)

• Measurement by CHARM-II, CCFR, NuTeV

 $\frac{\sigma(\nu_{\mu} \to \nu_{\mu} \mu^{+} \mu^{-})_{\text{exp}}}{\sigma(\nu_{\mu} \to \nu_{\mu} \mu^{+} \mu^{-})_{\text{SM}}} = \begin{cases} 1.58 \pm 0.64 & \text{(CHARM-II)} \\ 0.82 \pm 0.28 & \text{(CCFR)} \\ 0.72^{+1.73}_{-0.72} & \text{(NuTeV)} \end{cases}$

• Main background is v_{μ} CC 1π

g'

Conclusion

- DUNE is an upcoming neutrino experiment aimed at measuring CP violation in the neutrino sector, proton decay and neutrinos from supernova explosions.
- Shown that DUNE has an extensive BSM physics program, sterile neutrino searches, NSI, CPT violation, dark matter, neutrino tridents, nucleon decay...
 - Direct example of the versatility of the LAr detector and, for me, one of the main advantages of this detector technology.
 - Analyses with very different threshold, topology statistics... lead to very competitive results.
 - Convinced that new ideas will come and we will be able to have many other interesting results.
- In recent time, DUNE has been able to prove its feasibility:
 - Building on experience from the SBN program and previous LAr experiments.
 - ProtoDUNE program is a success, now able to use a smaller replica of DUNE for physics.

Thanks!

"Standard" oscillations

- Octant and mass ordering sensitivity via v_{μ} disappearance measurement •
 - Large matter effect helps disentangling the mass ordering

Octant Sensitivity

NEUTRINO EXPERIMENT

Sterile neutrino Fits description

Source	Systematic uncertainty	GLoBES fit
Signal flux	8%	 Pluggin for steriles and NSI from JKopp
Background flux	15%	• 300 kT.MW.years
F/N flux electron neutrino	2%	
F/N flux muon neutrino	0.4%	 80 GeV proton beam
CC cross section	15%	
NC cross section	25%	Same reconstruction efficiency as CDR
F/N cross section (separated between flavour and sign)	2%	 Larger systematics than CDR
Fiducial volumes	1%	

 Neutrino decay point uncertainty → 20% smearing in E_{true}/E_{reco}

ProtoDUNE DM

Sensitivity for ProtoDUNE: <u>arXiv:1803.03264v2</u>

20

- Year 1 (2026): 20-kt FD with 1.07 MW (80-GeV) beam and initial ND constraints
- Year 2 (2027): 30-kt FD
- Year 4 (2029): 40-kt FD and improved ND constraints
- Year 7 (2032): upgrade to 2.14 MW (80-GeV) beam

Exposure [years]	Exposure [kT.MW.years]
5	171
7	300
10	556
15	984