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Grand Unification

Running coupling constants seem to cross at single point
( unification scale )

Strong

Weak

Electro-magnetic

Unification of interactions
and

Unification of quark and lepton

Possibility of transition
from quark to lepton

Proton decay
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Predicted decay modes of proton
Two major decay modes 

p → e+p0 p → n̅ K+
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Theoretical predictions
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Model predictions
Γ(n→νπ0)/Γ(p→e+π0)

depends on the gauge groups
SU(5), SO(10), E6

(Y. Muramatsu)

Γ(n→νπ0)/Γ(p→e+π0)

sfermon mixing 

Decay branches depends on 
the size of sfermion mixing. 
(N.Nagata and S.Shirai,

JHEP 1403, 049 (2014))

Branching ratio may tell us
the flavor structure of 

SUSY particles.
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Predicted decay modes of proton
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Outer detector

Inner detector

1885 8” PMTs

11129 20” PMTs

1000m under the ground

Fiducial volume 22.5 ktons

About 40% of the inner detector

is covered

by the sensitive area of PMT.

Total volume 50 ktons

Every day, ~ 20 solar and atmospheric neutrinos are observed.

Ring imaging water Cherenkov detector ~ 22.5k ton

Background of proton decay

Super-Kamiokande

Super-Kamiokande detector



Super-Kamiokande detector

History of the SK detector 

11146 ID PMTs
(40% coverage)

5182 ID PMTs
(19% coverage)

11129 ID PMTs
(40% coverage)

Acrylic (front)
+ FRP (back)

Electronics
Upgrade

SK-I SK-II SK-III SK-IV

SK-I
April 1996
~ June 2001

SK-II
October 2002
~ October 2005

SK-III
June 2006
~ September  2008

SK-IV
September 2008

~ running
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Interaction position 
~ starting point of the charged particle

Ring pattern is also used 
for the precise reconstruction.

∝Momentum of the particle

Amount of the Cherenkov photons

Use observed # of photons
to reconstruct energy.

# of the Cherenkov rings
# of the charged particles & g

Use photon arrival timing.

Event reconstruction

Also, electrons generated 
by the decay of m, p etc. 

gives useful information.

Ring imaging water Cherenkov detector



Particle types ( e-like or m-like ) can be identified 
by the shape of the Cherenkov ring.

Electron ( or gamma ) generates electro-magnetic shower and
ring is more diffused compared to the muon.

e-like eventm-like event

But weak in detecting low momentum heavy particles.

Real data
pm~1.3GeV/c

Real data
pe~ 1GeV/c

Ring imaging water Cherenkov detector



Proton decay search using 
ring imaging water Cherenkov detectors 

p → e+ + p0 

Ring imaging water Cherenkov detectors 
have very high efficiency in identifying both e+ and p0

Clear 3 e-like rings 
are expected to be observed.

Simulation

SK event display 
p → e+ + p0 ( simulation )

pe = pp =459 MeV/c 
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Proton decay signal
𝑝 → 𝑒+ + 𝜋0

Background ( example )
ҧ𝜈𝑒 + 𝑝 → 𝑒+ + 𝜋0 +𝑛

p

Background atmospheric neutrino events could be rejected
if neutrons are tagged.

In the water, neutron is captured by hydrogen ( ~ 200 ms )
and emit 2.2 MeV g ray.

𝑛 + 𝑝 → 𝑑 + 𝜸

Proton decay search ~ signal and background ~



Primary cosmic ray ( p, He .. )

p±, K±

nm

e±

nm

ne

μ±

atmosphere

Generation height 
10~30km

Atmospheric n energy spectrum

Atmospheric neutrino energy spectrum
Peaked at several hundreds of MeV.

~ mass of nucleon ~

nm/ne ~ 2 
( < ~1 GeV )

nm/ne > 2 
( > ~1 GeV )
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Proton decay search ~ background source ~
atmospheric neutrino
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Proton decay search
~ background rejection using neutron tag method ~

capture time

New DAQ system installed for Super-K IV allows us
to store all the PMT hit information for > 500 ms  

after the atmospheric n or proton decay candidates.

Possible to search for 2.2 MeV g,
which gives about 10 PMT hits.

Search for hit cluster
( N≥7 in 10ns ) 

after prompt event
and select candidates

using neural network.

Detection efficiency ~ 20.5%
( mis-tag ~ 1.8% )

About half of the background events
could be rejected by requiring no neutron candidates.



Proton decay search in SK p → e+ + p0 

Event selection criteria

• 2 or 3 e-like ring
(  e+ + 1 or 2 g )

~ one of the gs may have low energy 
or overlap with the other rings

• Reconstructed p0 mass
85 ~ 185 MeV/c2

( for 3 ring events )

• No decay electron

• Vertex in the fiducial volume

• No activity in the outer detector

• Reconstructed proton mass
800 ~ 1050 MeV/c2

• Reconstructed total ( proton ) momentum
ptot < 250 MeV/c

• No tagged neutron ( only for SK4 )



Proton decay search in SK p → e+ + p0 

Source of the background events
→ atmospheric n

30% from CC single p
( ne N → e N’ p )

20% from CC multi p
( ne N → e N’ mp )

30% from CC QE
p0 from secondary

interactions of nucleon
( ne N → e N’ 

+ secondary p0)
20% from NC

( n N → n N’ X )

p interaction in Oxygen or in the detector
changes the charge, momentum and direction of p.

~ 1.5 events / Mt·year

Total Mass ( MeV/c2 )
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Total mass and total momentum
atmospheric n MC sample



Proton decay search in SK p → e+ + p0 

p+ interaction cross-section on carbon p0 interaction probability in 16O

momentum of p0

( from stationary proton’s decay ) 

One of the major sources 
of inefficiency

p interaction in Oxygen ( before escaping from 16O )

• charge exchange ( p0 → p±)
• inelastic scattering ~ change momentum and direction of p0



Proton decay search in SK p → e+ + p0 

Toward the precise estimation of the background

For the SK analysis,
data from the 1kt water Cherenkov detector

in the K2K experiment
were used to check our estimations.

K2K : nm beam, En ~ a few hundreds of MeV ~ a few GeV.

Data from the accelerator experiments are very useful.

Simulation, En<3GeV
1.8 +/- 0.3(stat.) 
events / Mt·yr

2- or 3-ring 
mp0 events

Data from p beam experiments are also useful.

Good agreement

K2K (p→e++p0 BG by En<3GeV)
1.63 +0.42/-0.33 (stat.) 

+0.45/-0.51 (sys.) 
events / Mt·yr



Proton decay search in SK p → e+ + p0 

Further reduction of background
Divide the sample into two.
• High momentum sample 

( 100 < p < 250 MeV/c )
to search for the decay of 

proton in Oxygen
Larger # of backgrounds

• Low momentum sample  ( p < 100MeV/c ) 
to search for the decay of Hydrogen

Smaller # of backgrounds

One of the major sources 
of inefficiency

p interaction in Oxygen ( before escaping from 16O )

• charge exchange ( p0 → p±)
• inelastic scattering ~ change momentum and direction of p0

Cyan : Free proton
Blue : Bound proton

(MeV/c2)



Proton decay search in SK p → e+ + p0 

Total Mass ( MeV/c2 )
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SK-IV Low Ptot High Ptot

Signal efficiency 18.7 ( ±1.9 ) % 19.4 ( ± 3.4 ) %

Background ( /Mt*yr) 0.18−0.13
+0.25 1.1 ± 0.3

Cyan : Free proton
Blue : Bound proton



Proton decay search in SK p → e+ + p0 

Partial lifetime limit = 1.6x1034year 

So far, no candidate events have been observed.

Upper block : Low momentum region
Lower block : High momentum region



Proton decay search in SK p → m+ + p0 

Event selection criteria

• 2 or 3 rings and only 1 m-like 
(  m+ + 1 or 2 g )

~ one of the gs may have low energy 
or overlap with the other rings

• Reconstructed p0 mass
85 ~ 185 MeV/c2

( for 3 ring events )

• No decay electron

• Vertex in the fiducial volume

• No activity in the outer detector

• Reconstructed proton mass
800 ~ 1050 MeV/c2

• Reconstructed total ( proton ) momentum
ptot < 250 MeV/c

• No tagged neutron ( only for SK4 )

muon



Proton decay search in SK p → m+ + p0 

Total Mass ( MeV/c2 )
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SK-IV Low Ptot High Ptot

Signal efficiency 20.1 ( ±1.9 ) % 18.2 ( ± 3.3 ) %

Background ( /Mt*yr) 0.09−0.08
+0.21 1.7 ± 0.6



Proton decay search in SK p → m+ + p0 

Partial lifetime limit = 7.7x1033year 

2 candidate events have been observed in high 
momentum region.

Upper block : Low momentum region
Lower block : High momentum region

Total Mass ( MeV/c2 )

0 500 1000





Proton decay search in SK p → n̅ + K+ 

Ring imaging water Cherenkov detectors 
can not detect K+ from proton decay directly

due to its small momentum. ( pK = 339 MeV/c )

Use decay products of K+

for the identification of the candidate events

Interaction probability of low momentum K+ is small
and most of K+ are expected to decay at rest.

• Two e-like rings with 1 decay-e
• Small activity ( from p+ )

in the opposite direction of p0

pp = 205 MeV/c

• Single m-like ring
with 1 decay electron

pm = 236MeV/c

K+ → p+ + p0 K+ → m+ + n



e+ne

16O →15N

n

g  ( 6.3MeV )

K+ m+

nm

nm

When a proton in oxygen decays,
6.3MeV de-excitation g is also emitted

with probability of ~ 40 %.

Proton decay search in SK p → n̅ + K+ 

visible
invisible

• Search for 1 ring m-like events with pm ~ 236 MeV/c 
with 1 decay electron

• Additionally, search for the pre-activity 
from prompt de-excitation 6.3 MeV g

K+ → m+ + n with prompt g tag.

tTm

(dN/dt=max)

Tstart

12ns window

g m e

Hits
( 236 MeV/c )

Tg
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e+ne

16O →15N

n

g  ( 6.3MeV )

K+ m+

nm

nm

visible
invisible

K+ → m+ + n with prompt g tag.

Proton decay search in SK p → n̅ + K+ 

• 1 m-like ring

• 1 decay electron

• Vertex in the fiducial volume

• No activity in the outer detector

• No tagged neutron ( only for SK4 )

• Maximum # of hit cluster in 12ns
after prior to the m signal

( N12 )
8 < N12 < 60 ( SK1,3,4 )
4 < N12 < 30 ( SK2 )
Tm – Tg < 75ns

Event selection criteria
tTm

(dN/dt=max)

Tstart

12ns window

g m e

Hits
( 236 MeV/c )

Tg



Proton decay search in SK p → n̅ + K+ 

K+ → m+ + n̅ with prompt g tagging 

Number of g hits Number of g hits

Exposure 
(kt.yr )

Efficiency
(%)

Background Data

SK1 91.7 7.9±0.1 0.08 0

SK2 49.2 6.3±0.1 0.14 0

SK3 31.9 7.7±0.1 0.03 0

SK4 133.5 8.5±0.1 0.14 0

Total 306.3 0.39 0

Red: Atm. n MC
Blue: Signal MC
Dot with cross 

: Data



Proton decay search in SK
Event selection criteria

• 1 or 2 e-like rings ( from p0 )

• Reconstructed p0 mass
85 ~ 185 MeV/c2

• 1 decay electron
• Vertex in the fiducial volume
• No activity in the outer detector

• No tagged neutron ( only for SK4 )

• Reconstructed p0 momentum
175 ~ 250 MeV/c

• Visible energy sum in 140~180o

from p0 direction ( Ebk )
10 < Ebk < 50 MeV

• Visible energy sum in 90~140o from p0 direction ( Eres )
Eres < 12 MeV ( 2 rings ), 20 MeV ( 1 ring )

• Charge distribution likelihood cut

pp : 205 MeV/c

𝐾 → 𝜋+ + 𝜋0
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Exposure 
(kt.yr )

Efficiency
(%)

Background Data

SK1 91.7 7.8±0.1 0.18 0

SK2 49.2 6.7±0.1 0.17 0

SK3 31.9 7.9±0.1 0.09 0

SK4 133.5 9.0±0.1 0.12 0

Total 306.3 0.56 0

Proton decay search in SK p → n̅ + K+ 

𝐾 → 𝜋+ + 𝜋0

Red: Atm. n MC
Blue: Signal MC
Dot with cross 

: Data



Proton decay search in SK p → n̅ + K+ 

Exposure 
(kt.yr )

Efficiency
(%)

Background Data

SK1 91.7 7.9±0.1 0.08 0

SK2 49.2 6.3±0.1 0.14 0

SK3 31.9 7.7±0.1 0.03 0

SK4 133.5 8.5±0.1 0.14 0

Total 306.3 0.39 0

Exposure 
(kt.yr )

Efficiency
(%)

Background Data

SK1 91.7 7.9±0.1 0.08 0

SK2 49.2 6.3±0.1 0.14 0

SK3 31.9 7.7±0.1 0.03 0

SK4 133.5 8.5±0.1 0.14 0

Total 306.3 0.39 0

K+ → m+ + n̅ 
with 
prompt g tag.

K+ → p0 + p+

Partial lifetime limit ( combined ) = 6.6 x1033 year @ 306.3 kt·yr



More nucleon decay searches in SK

Decay modes Background 
events

Candidate 
events

Probability
(%)

Lifetime limit
(1033yrs)

90%C.L.

𝒑 → 𝒆+ + 𝜼 0.78 ± 0.30 0 --- 10.

𝒑 → 𝝁+ + 𝜼 0.85 ± 0.23 2 20.9 4.7

𝒑 → 𝒆+ + 𝝆𝟎 0.64 ± 0.17 2 13.5 0.72

𝒑 → 𝝁+ + 𝝆𝟎 1.30 ± 0.33 1 72.7 0.57

𝒑 → 𝒆+ + 𝝎 1.35 ± 0.43 1 74.1 1.6

𝒑 → 𝝁+ + 𝝎 1.09 ± 0.52 0 --- 2.8

𝒏 → 𝒆+ + 𝝅− 0.41 ± 0.13 0 --- 5.3

𝒑 → 𝝁+ + 𝝅− 0.77 ± 0.20 1 53.7 3.5

𝒏 → 𝒆+ + 𝝆− 0.87 ± 0.26 4 1.2 0.03

𝒏 → 𝝁+ + 𝝆− 0.96 ± 0.28 1 61.7 0.06



Nucleon decay searches in SK

Extensive studies have been
performed.

However, no signature of
nucleon decay was observed.
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Extensive studies have been
performed.

However, no signature of
nucleon decay was observed.

*) Blue lines are analysis with
less than 300kt yr data

and we can improve with
revised analyses.

Nucleon decay searches in SK
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So far, we have not found no indication of nucleon decay.
Latest lifetime limits from SK

p -> e+ p0 t/B > 1.6 x 1034 yr
p -> n̅ K+ t/B > 6.6 x 1033 yr

Proton decay searches in SK



Search for dinucleon decay and n – n̅ oscillation

Sakharov conditions
Three minimum properties of Nature

for any baryogenesis to occur.
1. At least one B-number violating process.
2. C- and CP-violation
3. Interactions outside of thermal equilibrium.

No experimental signature of |DB| = 1  baryon number violation
( proton decay ) until now.

Other possibilities of |DB| = 2 
dinucleon decay
n – n̅ oscillation etc…

35
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Search for dinucleon decay
Search for NN → pp in Oxygen 

q1 , q2 : u or d
X1, X2 : Scalar particle   

pp → p+p+

One example of Feynman diagram for dinucleon decay 

Ref. J. M. Arnold, B. Fornal, and M. B. Wise
Phys. Rev. D 87, 075004 (2013)

pn → p+p0

nn → p0p0

Search for 3 channels using SK data
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Search for dinucleon decay

In SK, p+ is identified as non-showering ring ( m-like ring )
p0 could be reconstructed from 2 showering rings

( e-like rings  )

Basic Idea : Search for two back-to back pions in an event
and calculate the reconstruct invariant mass.

Difficulties
m is also identified as non-showering ring 
dinucleon decay occurs in Oxygen and go through water
→ pions interact with the other nucleons.

= May change charge, direction and momentum.
In the worst case, pions are absorbed.

Simple cut-based analysis results in poor efficiency
and poor background rejection power.

Background
Atmospheric n events ( n N → n N’ p p etc.. )

Signal : Reconstructed Invariant mass ~ ( 2xMp – 2xMp )
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Search for dinucleon decay in Super-Kamiokande ( I )
pp → p+p+

Event displays ( remained as candidates )

dashed ring
( e-like ) 
hard scatter ?

dashed ring
( e-like ) 
hard scatter ?

4.5 background expected, 2 observed. ( bkg. consistent … )
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Search for dinucleon decay in Super-Kamiokande ( I )
pp → p+p+

Remaining background events
~ 45% : Charged current single p production ( n N → l- N’ p+ etc. )
~ 30% : Charged current deep inelastic scattering (DIS) 

( n N → l- N’ p+ p+  etc. )
Systematic uncertainties

Major uncertainty ( Simulation )  p interactions in/with nucleus

Obtained lifetime limit : tpp → p+p+ > 7.22 x 1031 yrs 39



0.75 background expected, 1 observed. ( bkg. consistent… )

Search for dinucleon decay in Super-Kamiokande ( II )
pn → p+p0

Event display ( remained as candidates )

2 ring event
Opening angle = 140 deg.
pe = 987 MeV/c
pm = 460 MeV/c
Reconstructed p0 mass = 10MeV/c2

No decay electron
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Search for dinucleon decay in Super-Kamiokande ( II )
pn → p+p0

Remaining background events
30 ~ 45% : Charged current single p production

( n N → l- N’ p+ etc. )
30 ~ 45% : Charged current deep inelastic scattering (DIS) 

( n N → l- N’ p+ p+  etc. )Systematic uncertainties

Obtained lifetime limit : tpn → p+p0 > 1.70 x 1032 yrs

Major uncertainty ( Simulation )  p interactions in/with nucleus
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Search for dinucleon decay in Super-Kamiokande ( III )
nn → p0p0

0.14 background expected, 0 observed. 

Obtained lifetime limit : tnn → p0p0 > 4.04 x 1032 yrs 42



Search for dinucleon decay in Super-Kamiokande

pp → p+p+, pn → p+p0, nn → p0p0

Search for 3 channels using SK data ( 282.1 kt·yr )

All modes are consistent with background 
( atmospheric neutrino interactions )

No signature was observed.
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Search for n – n̅ oscillation

X1, X2 : Scalar particle   

Ref. J. M. Arnold, B. Fornal, and M. B. Wise
Phys. Rev. D 87, 075004 (2013)

One example of Feynman diagram for dinucleon decay 

Basically same as the diagram for dinucleon decay.

44



Search for n – n̅ oscillation
Once an anti-neutron is produced,

it annihilates with one the surrounding nucleon
and produce pions.

Estimated branching ratio after annihilation.

( Estimated based on the p̅ p  & p̅ d bubble chamber experiments )
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Signal M.C. simulation

Atmospheric n M.C. simulation

Real data

Search for n – n̅ oscillation in Super-Kamiokande
Used data set

SK 1 ( 1489 days ) 92 kt·yr = 2.45 x 1034 neutron·year

Expected # of
background events

24.1

Observed # of events
24

( background consistent…. )

Signal efficiency 
12.1 %

T̅n-n̅ > 1.9x1032 years
46



Search for n – n̅ oscillation in Super-Kamiokande
Relation between oscillation time of a free neutron ( t2

n-n̅ )
and lifetime of a bound neutron (Tn-n̅ )

R : Nuclear suppression factor ( O(1023) sec-1)
Recent calculation : R = 0.571 x 1023 sec-1

Tn-n̅ > 1.9 x 1032 years 
⇒ tn-n̅ > 2.7 x 108 sec.

Tn-n̅ = R· t2
n-n̅ ⇔ 𝜏𝑛− ത𝑛 = 𝑇𝑛− ത𝑛/𝑅
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Hyper-Kamiokande



Hyper Kamiokande project

260 kton ( Fiducial volume ~ 186 kton ) scale detector

39m

4
1

.4
m

Expand the size of the cylindrical ( SK-like ) detector
Effective photo sensitive area ~ 40%

Higher sensitivity PMTs (~2 times)

SK : Fiducial 22.5 kton

60m

74m

What is not sufficient in SK? => ~ Statistics = target mass ~

~ Use established technology for the long term operation
to achieve physics goal in timely manner.

Maximum utilization of resources and experiences in SK

HK : Fiducial 186 kton ~ 8 x SK



Hyper-Kamiokande detector

Is it possible to construct such gigantic detectors?

Based on the geological survey and analyses,
the cavern and the supporting structures were designed.

Candidate site : Tochibora mine in Kamioka

Possible to construct HK Caverns with existing technology. 50
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Hyper-Kamiokande detector ~ Further improvements ~

Photo sensors ~ R&D to improve the detector performance
Better timing resolution ~ better vertex resolution
Higher quantum efficiency

New photo sensor
Higher quantum efficiency 22% → > 30%
Higher collection efficiency 80% → ~ 90%

Photon detection efficiency
is expected to be improved by > 50% 

With the same photo sensitive coverage,
# of photons expected to be larger.

Efficiency to detect 2.2 MeV g
from neutron capture

is expected to be improved by ~ 3 times.

# of hits from 2.2 MeV g
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Proton decay search @ Hyper-K

p → e+p0 0 < ptot < 100 MeV/c 100 < ptot < 250 MeV/c

Signal efficiency # of background
( /Mton·yr)

Signal efficiency # of background
( /Mton·yr)

SK IV 19% 0.2 19% 1.1

Hyper-K 19% 0.06 19% 0.6

p → e+p0 # of background is further reduced
with `improved’ neutron tag efficiency.

p → n̅ K+ K+ → m+nm with prompt g K+ → p+p0

Signal efficiency # of background
( /Mton·yr)

Signal efficiency # of background
( /Mton·yr)

SK IV 8.5% 1.1 9% 0.9

Hyper-K 13% 0.9 11% 0.7

p → n̅ K+ : Efficiencies are improved 
owing to higher photon detection efficiency.
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p → e+p0 p → n̅ K+

Proton decay search @ Hyper-K

K+ → p+ + p0

K+ → m+ + n
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p → e+p0 p → n̅ K+

Proton decay search @ Hyper-K

For p → e+p0 3s discovery will reach ~ 1035 years
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Hyper-K excavation will be started in 2020

and start observation in ~2027.

• For FY 2019, “funding for feasibility study” was approved.

Past examples include; 
Super-Kamiokande received the “funding for feasibility study” in 1990, 
and the construction budget was approved in 1991. 
Subaru telescope (8m telescope at Hawaii), 
ALMA telescope in Chili (for 2 years), and 
TMT (30 meter telescope in Hawaii). 

• Then, the President of the Univ. of Tokyo, in recognition of both 
the project’s importance and value both nationally and 
internationally, pledged to ensure construction of the Hyper-
Kamiokande detector commences as scheduled in April 2020.

Funding outlook in Japan
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Summary

So far, we have not found no indication of nucleon decay.
Latest lifetime limits from SK

p -> e+ p0 t/B > 1.6 x 1034 yr
p -> n̅ K+ t/B > 6.6 x 1033 yr
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Summary

With Hyper-Kamiokande detector,

p → e+p0 3s discovery will reach ~ 1035 years
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fin.


