Coupled-cluster calculations of beta decays

Gaute Hagen Oak Ridge National Laboratory

Precise beta decay calculations for searches for new physics

ECT, April 11th, 2019

Discrepancy between experimental and theoretical β-decay rates resolved from first principles

P.Gysbers^{1,2}, G.Hagen^{3,4*}, J.D.Holt¹, G.R.Jansen^{3,5}, T.D.Morris^{3,4,6}, P.Navrátil¹, T.Papenbrock^{3,4}, S.Quaglioni⁷, A.Schwenk^{8,9,10}, S.R.Stroberg^{1,11,12} and K.A.Wendt⁷

The dominant decay mode of atomic nuclei is beta decay $(\beta$ -decay), a process that changes a neutron into a proton (and vice versa). This decay offers a window to physics beyond the standard model, and is at the heart of microphysical processes in stellar explosions and element synthesis in the Universe¹⁻³. However, observed β -decay rates in nuclei have been found to be systematically smaller than for free neutrons: this 50-yearold puzzle about the apparent quenching of the fundamental coupling constant by a factor of about 0.75 (ref.⁴) is without a first-principles theoretical explanation. Here, we demonstrate that this quenching arises to a large extent from the coupling of the weak force to two nucleons as well as from strong correlations in the nucleus. We present state-of-the-art computations of β -decays from light- and medium-mass nuclei to ¹⁰⁰Sn by combining effective field theories of the strong and weak forces⁵ with powerful quantum many-body techniques⁶⁻⁸. Our results are consistent with experimental data and have implications for heavy element synthesis in neutron star mergers⁹⁻¹¹ and predictions for the neutrino-less double- β -decay³, where an analogous quenching puzzle is a source of uncertainty in extracting the neutrino mass scale¹².

data, and precision, from the systematically improvable EFT expansion. Moreover, EFT enables a consistent description of the coupling of weak interactions to two nucleons via two-body currents (2BCs). In the EFT approach, 2BCs enter as subleading corrections to the one-body standard Gamow–Teller operator $\sigma \tau^+$ (with Pauli spin and isospin matrices σ and τ , respectively); they are smaller but significant corrections to weak transitions as three-nucleon forces are smaller but significant corrections to the nuclear interaction^{5,17}.

In this work we focus on strong Gamow–Teller transitions, where the effects of quenching should dominate over cancellations due to fine details (as occur in the famous case of the ¹⁴C decay used for radiocarbon dating^{18,19}). An excellent example is the superallowed β -decay of the doubly magic ¹⁰⁰Sn nucleus (Fig. 1), which exhibits the strongest Gamow–Teller strength so far measured in all atomic nuclei²⁰. A first-principles description of this exotic decay, in such a heavy nucleus, presents a significant computational challenge. However, its equal 'magic' numbers (Z=N=50) of protons and neutrons arranged into complete shells makes ¹⁰⁰Sn an ideal candidate for large-scale coupled-cluster calculations²¹, while the daughter nucleus ¹⁰⁰In can be reached via novel extensions of the high-order charge-exchange coupled-cluster methods developed

Isotopes studied in this work

Arnau Rios, Nature News & Views (2019) DOI: 10.1038/s41567-019-0483-y

A 50 year old problem: The puzzle of quenched of beta decays

Quenching obtained from charge-exchange (p,n) experiments. (Gaarde 1983).

<u>This work:</u> Focus on strong Gamow-Teller transitions from light to heavy nuclei using state-of-the-art manybody methods with interactions and currents from Chiral EFT

- Renormalizations of the Gamow-Teller operator?
- Missing correlations in nuclear wave functions?
- Model-space truncations?
- Two-body currents (2BCs)?

What precision/accuracy can we aim for in ab-initio calculations of nuclei?

Discussion points for the workshop:

- Current experiments aim at a few 0.01% to a few 0.1% precision that needs to be reached.
- What are achievable systematic theoretical uncertainties in ab-initio approaches for calculations of ground-state properties and transitions (Gamow-Teller, M1, E2, etc)?

$$\sigma_{Total} = \sigma_{model/EFT} + \sigma_{data} + \sigma_{numerical} + \sigma_{method}$$

Ab-initio Method: Solve A-nucleon problem with controlled approximations and systematically improvable:

Coupled clusters, Green's function Monte Carlo, In-Medium SRG, Lattice EFT, MCSM, No-Core Shell Model, Self-Consistent Green's Function, UMOA, ...

Correlation energy in wavefunction based methods

Mean-Field Energy

- Easy to calculate
- Provides a starting point for manybody methods

Correlation energy

- Hard to calculate (CC, IM-SRG, NCSM, SCGM)
- Non-observable
- Depends on the employed Hamiltonian and resolution scale

Coupled-cluster method (CCSD approximation)

Ansatz:

$$\Psi \rangle = e^{T} |\Phi\rangle$$

$$T = T_{1} + T_{2} + \dots$$

$$T_{1} = \sum_{ia} t_{i}^{a} a_{a}^{\dagger} a_{i}$$

$$T_{2} = \sum_{ijab} t_{ij}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i}$$

T

- Scales gently (polynomial) with increasing \odot problem size o²u⁴.
- Truncation is the only approximation. \odot
- Size extensive (error scales with A) \odot
- ⊗ Most efficient for closed (sub-)shell nuclei

Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of np-nh excitations included!

Coupled cluster equations

E = $\langle \Phi | H | \Phi \rangle$ **Alternative view: CCSD generates similarity** $0 = \langle \Phi_i^a | \overline{H} | \Phi \rangle$ transformed Hamiltonian with no 1p-1h and no 2p-2h excitations. $0 = \langle \Phi_{ij}^{ab} | \overline{H} | \Phi \rangle$

$$\overline{H} \equiv e^{-T}He^{T} = \left(He^{T}\right)_{c} = \left(H + HT_{1} + HT_{2} + \frac{1}{2}HT_{1}^{2} + \dots\right)_{c}$$

Coupled-cluster method

- CCSD captures most of the 3p3h and 4p4h excitations (scales as n_o²n_u⁴)
- In order to describe α -cluster states need to include full quadruples (CCSDTQ) (scales $n_o^4 n_u^6$)

Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of np-nh excitations included!

Coupled-cluster method

Bartlett & Musial Rev. Mod. Phys. (2007)

Coupled-cluster method

Energies	¹⁶ O	²² O	²⁴ O	²⁸ O
$(\Lambda_{\chi} = 500 \text{ MeV})$				
E_0	25.946	46.52	50.74	63.85
$\Delta E_{\rm CCSD}$	-133.53	-171.31	-185.17	-200.63
ΔE_3	-13.31	-19.61	-19.91	-20.23
Ε	-120.89	-144.40	-154.34	-157.01
$(\Lambda_{\chi} = 600 \text{ MeV})$				
E_0	22.08	46.33	52.94	68.57
$\Delta E_{\rm CCSD}$	-119.04	-156.51	-168.49	-182.42
ΔE_3	-14.95	-20.71	-22.49	-22.86
E	-111.91	-130.89	-138.04	-136.71
Experiment	-127.62	-162.03	-168.38	

G. Hagen, et al, Phys. Rev. C 80, 021306 (2009).

 $\Delta E_3 \sim 10 - 13\%$

Oxgyen chain with interactions from chiral EFT

Hebeler, Holt, Menendez, Schwenk, Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)

Challenge: Collectivity and transition strengths

- ¹⁴C computed in FCI and CC with psd effective interaction
- Neutron effective charge of charge = 1
- Need excitations beyond 4p4h to describe B(E2) even if 2+ energy is reproduced

Challenge: Collectivity and transition strengths

Nuclear forces from chiral effective field theory

A family of interactions from chiral EFT

NNLO_{sat}: Accurate radii and BEs

- Simultaneous optimization of NN and 3NFs
- Include charge radii and binding energies of ³H, ^{3,4}He, ¹⁴C, ¹⁶O in the optimization
- Harder interaction: difficult to converge beyond ⁵⁶Ni

A. Ekström *et al*, Phys. Rev. C **91**, 051301(R) (2015).

1.8/2.0(EM): Accurate BEs Soft interaction: SRG NN from Entem & Machleidt with 3NF from chiral EFT

K. Hebeler *et al* PRC (2011). T. Morris *et al,* PRL (2018).

SRG and convergence in NCSM

Theory to experiment ratios for beta decays in light nuclei from NCSM

N4LO(EM) + $3N_{lnl}$ SRG-evolved to 2.0fm⁻¹ (c_D = -1.8)

SRG and convergence in NCSM

Theory to experiment ratios for beta decays in light nuclei from NCSM

 $NNLO_{sat} (c_{D} = 0.82)$ $^{3}\mathrm{H}_{\frac{1}{2}} \rightarrow ^{3}\mathrm{He}_{\frac{1}{2}}$ GT onlyGT + 2BC $^{6}\mathrm{He}_{0} \rightarrow ^{6}\mathrm{Li}_{1}$ $^{7}\mathrm{Be}_{\frac{3}{2}} \rightarrow ^{7}\mathrm{Li}_{\frac{1}{2}}$ $^{7}\mathrm{Be}_{\frac{3}{2}} \rightarrow ^{7}\mathrm{Li}_{\frac{3}{2}}$ $^{10}\mathrm{C}_0 \rightarrow ^{10}\mathrm{B}_1$ $^{14}O_0 \rightarrow ^{14}N_1$ 1.000.951.051.10ratio to experiment

¹⁰⁰Sn – a nucleus of superlatives

- Heaviest self-conjugate doubly magic nucleus
- Largest known strength in allowed nuclear β-decay
- Ideal nucleus for highorder CC approaches

Quantify the effect of quenching from correlations and 2BCs

Structure of the Lightest Tin Isotopes

T. D. Morris,^{1,2} J. Simonis,^{3,4} S. R. Stroberg,^{5,6} C. Stumpf,³ G. Hagen,^{2,1} J. D. Holt,⁵ G. R. Jansen,^{7,2} T. Papenbrock,^{1,2} R. Roth,³ and A. Schwenk^{3,4,8}

Coupled cluster calculations of beta-decay partners

Diagonalize $\overline{H} = e^{-T} H_N e^T$ via a novel equation-of-motion technique:

 $R_{\nu} = \sum r_{i}^{a} p_{a}^{\dagger} n_{i} + \frac{1}{4} \sum r_{ij}^{ab} p_{a}^{\dagger} N_{b}^{\dagger} N_{j} n_{i} + \frac{1}{36} \sum r_{ijk}^{abc} p_{a}^{\dagger} N_{b}^{\dagger} N_{c}^{\dagger} N_{k} N_{j} n_{i}$

Coupled cluster calculations of beta-decay partners

Diagonalize $\overline{H} = e^{-T} H_N e^T$ via a novel equation-of-motion technique:

$$R_{\nu} = \sum r_{i}^{a} p_{a}^{\dagger} n_{i} + \frac{1}{4} \sum r_{ij}^{ab} p_{a}^{\dagger} N_{b}^{\dagger} N_{j} n_{i} + \frac{1}{36} \sum r_{ijk}^{abc} p_{a}^{\dagger} N_{b}^{\dagger} N_{c}^{\dagger} N_{k} N_{j} n_{i}$$

Introduce an energy cut on allowed threeparticle three-hole excitations:

$$\tilde{E}_{pqr} = \tilde{e}_p + \tilde{e}_q + \tilde{e}_r \le \tilde{E}_{3\max}$$

 $\tilde{e}_p = |N_p - N_F|$

measures the difference of number of harmonic oscillator shells wrt the Fermi surface.

Charge exchange EOM-CCSDT-1

 $\overline{H}_{CCSDT-1} = \begin{bmatrix} \langle S | \overline{H} | S \rangle & \langle D | \overline{H} | S \rangle & \langle T | V | S \rangle \\ \langle S | \overline{H} | D \rangle & \langle D | \overline{H} | D \rangle & \langle T | V | D \rangle \\ \langle S | V | T \rangle & \langle D | V | T \rangle & \langle T | F | T \rangle \end{bmatrix}$

$\begin{array}{l} \textbf{P-space} \\ \overline{H}_{CCSDT-1} = \begin{bmatrix} \langle S | \overline{H} | S \rangle & \langle D | \overline{H} | S \rangle & \langle T | V | S \rangle \\ \langle S | \overline{H} | D \rangle & \langle D | \overline{H} | D \rangle & \langle T | V | D \rangle \\ \langle S | V | T \rangle & \langle D | V | T \rangle & \langle T | F | T \rangle \end{bmatrix} \textbf{Q-space} \end{array}$

Bloch-Horowitz is exact; iterative solution poss.

$$\overline{H}_{PP}R_P + \overline{H}_{PQ}(\omega - \overline{H}_{QQ})^{-1}\overline{H}_{QP}R_P = \omega R_P$$

- Q-space is restricted to: $\tilde{E}_{pqr} = \tilde{e}_p + \tilde{e}_q + \tilde{e}_r \leq \tilde{E}_{3\max}$
- No large memory required for lanczos vectors
- Can only solve for one state at a time
- Reduces matrix dimension from ~10⁹ to ~10⁶

W. C. Haxton and C.-L. Song Phys. Rev. Lett. **84** (2000); W. C. Haxton Phys. Rev. C **77**, 034005 (2008) C. E. Smith, J. Chem. Phys. **122**, 054110 (2005)

Spectrum of daughter nucleus¹⁰⁰In

$$\Delta\omega_{\mu} = \langle \Phi_0 | L_{\mu} \overline{H}_{PQ'} (\omega_{\mu} - \overline{H}_{Q'Q'})^{-1} \overline{H}_{Q'P} R_{\mu} | \Phi_0 \rangle$$

Convergence of excited states in ¹⁰⁰In

Normal ordered one- and two-body current

Gamow-Teller matrix element: $\hat{O}_{\rm GT} \equiv \hat{O}_{\rm GT}^{(1)} + \hat{O}_{\rm GT}^{(2)} \equiv g_A^{-1} \sqrt{3\pi} E_1^A$

Benchmark between NCSM and CC using NN-N⁴LO 3N_{Inl} in ⁸He:

$${}^{8}\mathrm{He}_{0} \rightarrow {}^{8}\mathrm{Li}_{1}$$

Method	$ M_{ m GT}(oldsymbol{\sigma au}) $	$ M_{ m GT} $
EOM-CCSD	0.45	0.48
EOM-CCSDT-1	0.42	0.45
NCSM	0.41(3)	0.46(3)

Normal ordered one- and two-body current

Gamow-Teller matrix element: $\hat{O}_{\rm GT} \equiv \hat{O}_{\rm GT}^{(1)} + \hat{O}_{\rm GT}^{(2)} \equiv g_A^{-1} \sqrt{3\pi} E_1^A$

Benchmark between NCSM and CC using NN-N⁴LO $3N_{Inl}$ and NNLO_{sat}:

$$^{14}O_0 \rightarrow^{14} N$$

	i	$M_{ m GT}(oldsymbol{\sigma au}) $	$ M_{ m GT} $			
Method	$\mathrm{NNLO}_{\mathrm{sat}}$	$NN-N^4LO + 3N_{lnl}$	$\mathrm{NNLO}_{\mathrm{sat}}$	$NN-N^4LO + 3N_{lnl}$		
EOM-CCSD	2.15	2.0	2.08	2.0		
EOM-CCSDT-1	1.77	1.97	1.69	1.86		
NCSM	1.80(3)	1.86(3)	1.69(3)	1.78(3)		

Super allowed Gamow-Teller decay of ¹⁰⁰Sn

Convergence of GT transition in ¹⁰⁰Sn

Role of 2BC and correlations in ¹⁰⁰Sn

- Subtle interplay between correlations and 2BCs
- Role of correlations (2BC) increase (decrease) for larger cutoffs
- Only sum of correlations and 2BC is observable

Lower path: ESPM -> 2BC -> Correlations

Conclusions

It is the combination of a proper treatment of strong nuclear correlations and twobody currents that to a large extent solves the beta decay quenching problem

<u>For more details:</u> P. Gysbers, G. Hagen, *et al*, Nature Physics, <u>https://www.nature.com/articles/s4156</u> 7-019-0450-7

Collaborators

@ ORNL / UTK: G. R. Jansen, T. Morris, T. Papenbrock

- @ INT: S. R. Stroberg
- @ TRIUMF: P. Gysbers, J. Holt, P. Navratil
- @ TU Darmstadt: C. Drischler, C. Stumpf, K. Hebeler, R. Roth, A. Schwenk
- @ LLNL: K. Wendt, S. Quaglioni

The small role of short-ranged 2BC on GT decay

J. Menéndez, D. Gazit, A. Schwenk

PRL 107, 062501 (2011)

One-body normal ordering of 2BC in free Fermi gas

$$q \approx 1 - \frac{\rho \hbar^3 c^3}{F_{\pi}^2} \left(-\frac{c_D}{4g_A \Lambda} + \frac{I}{3} (2c_4 - c_3) + \frac{I}{6m} \right)$$

Short-ranged contact term of 2BC (heavy meson exchange)

Summary of results for ¹⁰⁰Sn

Interaction	$ m_{ m GT}(oldsymbol{\sigma au}) ^2$	$ M_{ m GT}(oldsymbol{\sigma}oldsymbol{ au}) ^2$	$ m_{\rm GT} ^2$	$ M_{\rm GT} ^2$	$\log ft$	q	q (ESPM)	$\Delta E \; [\text{MeV}]$	BE/A [MeV]
$NNLO_{sat}$	17.7	8.9	12.5	6.5	2.77	0.85	0.84	7.4	not converged
$NN-N^3LO+3N_{lnl}$	16.9	10.0	10.6	6.9	2.74	0.83	0.79	6.1	7.6
$NN-N^4LO+3N_{lnl}$	17.2	10.1	8.2	5.4	2.85	0.73	0.69	5.8	7.1
1.8/2.0 (EM)	17.7	11.3	9.8	7.0	2.73	0.79	0.74	5.1	8.4
2.0/2.0 (EM)	17.7	10.7	10.2	6.9	2.74	0.80	0.76	6.0	7.7
2.0/2.0 (PWA)	17.7	9.9	11.5	5.9	2.81	0.77	0.81	6.8	6.4
2.2/2.0 (EM)	17.7	10.1	10.6	6.6	2.76	0.81	0.77	6.7	7.2
2.8/2.0 (EM)	17.7	7.4	11.8	5.2	2.86	0.84	0.82	8.3	not converged
Batist et al. [14]				5.2 ± 0.6				5 11	8.05
Hinke et al. [13]				$9.1^{+2.6}_{-3.0}$	$2.62\substack{+0.13 \\ -0.11}$			0.11	0.20