

Coupled-cluster theory + Lorentz integral transform *Present and Future*

Sonia Bacca

Johannes Gutenberg Universität Mainz

April 11th, 2019

Disclaimer:

This talk is not really going to answer any of the questions posed by Doron, and probably mostly out of topic

The idea is to see if the machinery we recently developed can be any useful to the subjects discussed in this workshop

Present

Mostly investigations of dipole response functions and related sum rules

IGU

How does the nucleus respond to external electromagnetic excitations?

Experimental Status

Stable Nuclei

We have data on ~180 stable nuclei Giant dipole resonances

Do we see the emergence of collective motions from first principle calculations?

Unstable Nuclei

Leistenschneider et al.

Fewer data, pigmy dipole resonances

Continuum problem

Reduce the continuum problem to a bound-state-like equation

Inversion of the LIT

The inversion is performed numerically with a regularization procedure needed for the solution of an ill-posed problem

Ansatz

Least square fit of the coefficients c_i to reconstruct the response function

Message: using bound-states techniques to calculate the LIT is correct and inversions are stable If the LIT is calculated precisely enough

A few-body example

S.B. and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

A few-body example

S.B. and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

Coupled-cluster theory formulation

See Gaute's talk

S.B. et al., Phys. Rev. Lett. 111, 122502 (2013)

$$(\bar{H} - E_0 - \boldsymbol{\sigma} + i\boldsymbol{\Gamma})|\tilde{\Psi}_R\rangle = \bar{\Theta}|\Phi_0\rangle$$

$$\bar{H} = e^{-T} H e^{T}$$
$$\bar{\Theta} = e^{-T} \Theta e^{T}$$

 $|\tilde{\Psi}_R\rangle = \hat{R}|\Phi_0\rangle$

Results with implementation at CCSD level

$$T = T_1 + T_2$$
$$R = R_0 + R_1 + R_2$$

Validation in 4He

Dipole response function

Comparison of CCSD with exact hyperspherical harmonics with NN forces at N³LO

S.B. et al., Phys. Rev. Lett. 111, 122502 (2013)

Addressing medium-mass nuclei

Theory helps interpret existing experimental data

SB et al., PRC 90, 064619 (2014)

Addressing neutron-rich nuclei

Theory helps interpret existing experimental data

SB et al., PRC 90, 064619 (2014) 25 22 20 Leistenschneider et al. NN (N³LO) [qm] (∞) o[×] 10 core 5 <u>+</u> 0_5^{\perp} 15 25 20 10

 S_n^{exp}

ω [MeV]

⁴⁸Ca electric dipole polarizability

$$\alpha_D = 2\alpha \int_{\omega_{ex}}^{\infty} d\omega \frac{R(\omega)}{\omega}$$

Can be calculated:

- (1) by integrating the strength obtained from LIT inversion
- (2) Directly from the Lanczos coefficients (not going via the inversion)
 Phys. Rev. C 94, 034317 (2017)

Theory tends to overestimate experiment Can we improve the theoretical prediction?

JG U JOHANNES G

Adding triples in ⁴⁸Ca

M. Miorelli et al., PRC 98, 014324 (2018)

Higher order correlations are important

They improve the comparison with experiment

Future

Extend these studies to weak operators, e.g., Gamow-Teller strengths

$$\Theta \to GT = \sum_i \sigma_i \tau_i^+$$

In principle any one-body operator ...

Gamow-Teller strength

Calculations by M.Miorelli, 2017

Broad curves: LIT with Γ =1 MeV for $\hbar\omega = 10, 12, N_{max} = 10, 12$

Peaked curves: LIT with Γ = 0.01 for $\hbar \omega = 12$ $N_{max} = 10, 12$ $L(\sigma, \Gamma \to 0) = \int R(\omega)\delta(\omega - \sigma)d\omega = R(\sigma)$ Dots: from diagonalization of Lanczos $\hbar \omega = 12$ $N_{max} = 10, 12$

Kind of convergent at low-energy, much more than for electric dipole case...

Gamow-Teller strength in ¹³²Sn

Calculations by M.Miorelli, 2017

Gamow-Teller strength in ⁴⁸Ca

Calculations by S.Novario, 2019

D/T-1, no 2BC Discretized strength, folded with a Lorentzian of 0.5 MeV

Outlook

- Remarkable progress in first principle calculations of electromagnetic reactions; the theoretical progress is key to guide and support major experimental efforts
- Much of what we have developed in the electromagnetic sector can be used also for the weak sector.
 See Bijaya Acharya's talk about our plans for electron and neutrino scattering.

Thanks to all my collaborators

B. Acharya, N. Barnea, G. Hagen, **M. Miorelli**, **S.Novario**, G. Orlandini, T. Papenbrock, J. Simonis, A. Schwenk, and many more

Thanks for your attention!